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Abstract: In adaptive optics scanning laser ophthalmoscope (AOSLO) systems, capturing the 
multiply scattered light can increase the contrast of the retinal microvasculature structure, 
cone inner segments, and retinal ganglion cells. Current systems generally use either a split 
detector or offset aperture approach to collect this light. We tested the ability of a spatial light 
modulator (SLM) as a rapidly configurable aperture to use more complex shapes to enhance 
contrast of retinal structure. Particularly, we varied the orientation of a split detector aperture 
and explored the use of a more complex shape, the half annulus, to enhance the contrast of the 
retinal vasculature. We used the new approach to investigate the influence of scattering 
distance and orientation on vascular imaging. 
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1. Introduction 

When illuminated, retinal structures may directly scatter light back through the system pupil, 
and be captured directly by the imaging system, or may scatter light in other directions [1].  If 
an image is formed from these other portions of light that have undergone additional 
scattering and subsequently exit the pupil, the images are generically referred to as indirect or 
multiply scattered light images [1-3]. While most images are actually combinations of singly 
and multiply scattered light, confocal images emphasize the singly scattering light whereas 
multiply scattered light images reveal information about structures that may otherwise be 
nearly transparent and not readily imaged using confocal imaging [2-6]. 

In current adaptive optics scanning laser ophthalmoscope (AOSLO) systems, two main 
approaches are utilized to capture multiply scattered light: 1) an offset aperture displaced from 
the center of the point spread function (PSF) [4] and 2) a split detector in which the center of 
the PSF is removed and light in two directions is collected [5]. Chui et al. [4] first utilized 
multiply scattered light imaging within an AOSLO by using an offset aperture to improve 
imaging of vascular wall structures that were not readily observed in confocal imaging. 
Pathological changes to the vessel wall structure are of particular interest in subjects with 
diabetes and hypertension and have been observed with this technique [7, 8]. Furthermore, 
this approach has proven useful in characterizing the murals cells of the retinal vasculature 
[9]; to detect subclinical vascular and cystic changes in subjects with diabetes [7]; 
characterize wall-to-lumen ratios (WLR) in normo-, hypo-, and hypertensive subjects [8]; 
provide perfusion maps comparable to AOSLO fluorescein angiography [10]; and detect 



erythrocytes in small capillaries to compute blood flow velocity [11]. Similar to the offset 
aperture, split detection systems have proven useful in imaging the retinal microvasculature 
producing similar results to those of an offset aperture [12] and the detection of cone inner 
segments [5]. Both split detection and offset aperture variations of multiply scattered light 
AOSLO imaging enable the inner segments to be visualized and this has proven useful in 
improving our understanding of photoreceptor structure in several retinal diseases affecting 
the photoreceptors. In particular, indirect imaging of the cones provides additive information 
regarding the integrity of photoreceptors whose outer segments are not functioning or oriented 
properly in choroideremia [13], outer retinal tubulation [14], and achromatopsia[15-17].  The 
use of multiply scattered light photoreceptor imaging is expanding rapidly and is currently 
being investigated as a potential biomarker for therapeutic interventions in some hereditary 
retinal degenerations [18].  

Additionally, there has been a focus of the adaptive optics community on using multiply 
scattered light imaging to improve visibility of other retinal cells not readily imaged with 
confocal imaging approaches. Rossi et al. [19] recently demonstrated the ability of AOSLO 
systems to image retinal ganglion cell (RGC) layer neurons in both monkeys and humans by 
capturing images of the same retinal region with multiple offset aperture configurations. 
Contrast of the RGC layer neurons could then be further enhanced by combining contrast 
across scattering directions.  

The light captured in multiply scattered light imaging arises from both scattering and 
refraction of the incident light, and is also dependent on the path of light until the next 
scattering event.  Given the heterogeneity of sizes and scattering distances, more flexible 
approaches to collecting multiply scattered light should enable improvement of the contrast of 
structures of interest. In this study, we used a spatial light modulator (SLM) in a retinal plane 
of our AOSLO to serve as an aperture to image multiply scattered light.  By programming 
specific shapes onto the SLM, non-standard aperture configurations can be chosen and 
manipulated dynamically.  In the current work we implement such a system and investigate its 
applicability to imaging the retinal microvasculature.  For this work we concentrate on testing 
the utility of using an SLM to improve understanding of light tissue interactions that control 
the contrast of imaging the inner retina. 

2. Methods 

2.1 Subjects 

Nine eyes from nine normal subjects (23-94 years of age, mean ± SD, 26.6±3.4, 6 males and 3 
females) with no retinal pathology and one eye from one hypertensive (HTN) subject (31 year 
old female)  were imaged.   Informed consent was obtained prior to imaging in all subjects.  
The research was approved by the Indiana University Institutional Review Board and 
complied with the tenets of the Declaration of Helsinki. 

2.2 AOSLO System 

For this work we used a new AOSLO system similar to the Indiana AOSLO previously 
described [20-22]. The current AOSLO is a dual-channel system that combines a Shack 
Hartmann (SH) wavefront sensor with two deformable mirrors in a woofer-tweeter design 
[22, 23] that corrects for optical aberrations over a wide range of refractive errors. Two 
simultaneous imaging channels (769 nm and the other at 840 nm) derived from a 
supercontinuum laser (Fianium, NKT Photonics, Birkerod, Denmark), are used to scan the 
retina. Each detection channel contains retinal conjugate apertures that can be manually 
configured at the retinal plane and the light from the retina is detected using avalanche 
photodiodes (APD, Pacer C30659-90, together with custom amplifier and temperature 
controller).  For both channels, the Airy disk diameter (ADD) at the plane of the confocal 
pinhole was 50 μm.  In the first imaging channel (769 nm) light was imaged onto a 2 Airy 
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imaging session. In each imaging session we measured changes in contrast of one or more 
features for a series of aperture conditions.  For this work we concentrated primarily on 
smaller retinal arterioles and venules between 20-50μm since they have different wall 
structures and quantification of changes to small vessels are important for understanding the 
impact of both diabetes [7, 24] and hypertension [8].  To limit the number of shapes used we 
concentrated on a subset of variations of two simple shape configurations that provided both 
flexibility to investigate scattering distances and orientations and were likely to be sensitive to 
a range of retinal features; a split detector (Fig. 1A) and half annulus (Fig. 1B).   

In each subject 2-4 ROIs were selected in a single imaging session. At each ROI, the 
system was carefully focused in the plane of the feature since all imaging modes are very 
sensitive to best focus.  For the non-confocal modes this is presumably because contrast of 
small, high spatial frequency targets is dependent on the size of the scanning beam. At each 
ROI, either a 1.2⁰ x 1.3⁰ or 2⁰ x 1.8⁰ imaging field captured 2-4 videos of 100 frames (30 
frames/second) with each programmed aperture variation. Between 4-12 different aperture 
variations were used at each ROI dependent on what programmed feature of the aperture was 
systematically varied. For the split detection configuration we concentrated on the orientation 
of the split between the “ON” and “OFF” detectors.  For all subjects and all regions of interest 
(ROI’s) splits were oriented at 0⁰ or 90⁰ with respect to the retina. For the half annulus we 
varied three parameters; 1) inner radius, 2) outer radius, and 3) the angle of orientation of the 
half annulus (axis of where it is halved).  

To measure the scattering distance of retinal features, in 3 subjects, we began with a 10 
ADD inner radius and 20 ADD outer radius and increased inner and outer radii together in 5 
ADD increments until a half annulus ending with a 25 ADD inner radius and a 35 ADD outer 
radius. The half annulus orientation was held constant at 270⁰ with respect to the retina. 

To measure variations in scattering at smaller angular distances, in 9 subjects, the outer 
radius was held constant at 22.7 ADD while the inner radius was varied between 2.3 and 11.3 
ADD in 1.5 ADD increments. The half annulus orientation was held constant at 270⁰ with 
respect to the retina. 

To measure the impact of scattering direction, in 9 subjects the inner and outer radii of a 
half annulus were held constant at 8.3 and 23.7 ADD while the orientation of the half annulus 
was rotated in 45⁰ increments from 0⁰ to 360⁰ with respect to the retina. 

2.4 Image Processing 

After the imaging session, videos were corrected for sinusoidal distortions, aligned, and 
averaged, generating both standard averages and optimized averages [25] using custom 
Matlab programs. 

The SLM utilized did not allow us complete control of mirror timing.  To avoid mirror 
overheating in some applications the SLM manufacturer hard codes brief “flips” of the 
mirrors in the control system.  These flips create high contrast black and white lines 
throughout the image, representing a few percent of each image. As the images generated 
from the SLM have low contrast, we removed these lines by computing the z-score of each 
pixel across all image frames, and removed all pixels with values outside 2 standard 
deviations from the mean or approximately 5% of the pixels. The resulting images were 
typically free of artifact from these mirror resets.  Because alignment is performed on the 
confocal images, and these necessarily have identical eye movement components to the 
images from the SLM channels, this suffices to remove the impact of eye movements and 
SLM artifacts. 

From the resulting “on” and “off” images we also calculated a contrast image by 
normalizing the difference of the two images by the sum similar to computations typically 
performed using a split detector configuration (Fig. 2. E and J) [5]. 

3. Results 



3.1 SLM performance as an aperture 

When placed at a retinal conjugate plane, an SLM can effectively be used as a configurable 
aperture. The SLM produces images of comparable quality to those generated by both our 

standard confocal and offset aperture images (Fig. 2) although specific image features 
depended systematically on details of the programmable aperture used.  Multiple aperture 
configurations could be rapidly generated and loaded onto the SLM allowing multiple views 
of the same feature to be obtained within an imaging session (Fig. 2-5).  For the current study, 
within one imaging session lasting between 45-60 minutes, 4-12 aperture configurations were 
utilized for up to 4 ROIs. In general, the “OFF” detector had larger signals and lower contrast 
than the “ON” detector, other than for the split detector configurations (Fig. 2C vs. Fig. 2D 
and Fig. 2H vs. Fig. 2I). This occurred presumably due to the inclusion of a much larger 
proportion of the extended PSF being directed to the “OFF” detector than the  
ON” (Fig. 1), and the fact that it included a much wider range of angles and distances.  

3.2 Scattering distance and direction 

The retina scatters light in various directions and angles depending on the properties of the 
tissue and the local anatomy. For blood vessels the contrast of the vessel wall was improved 
with multiply scattered light imaging generated with the half annulus aperture, as opposed to 
the directly reflected light captured in the confocal image (Fig. 2A vs. Fig. 2C,E and Fig. 2F 
vs. Fig. 2H,J). Additionally, the contrast of the vessel walls is also improved in comparison to 
the standard offset aperture images (Fig. 2B and Fig. 2G) [4]. This increased contrast, as 
discussed below, is dependent on the characteristics of the aperture used for detection. 

Varying the inner radius of the half annulus had an impact on contrast of the fine details of 
the vessel wall structure presumed to be mural cells [9]. For example, the contrast of the 
mural cells  in smaller arterioles improved with  the small to moderate inner radii tested (2.3-
8.3 ADD) compared to imaging with a larger inner radii (Fig. 3A vs. Fig. 3B; 6.4% vs. 4.9% 

Fig. 3. Arteriole ratio images with different apertures. Small arteriole in a healthy 34 year old (A-D). Large 
arteriole in a hypertensive 31 year old (E-H). Mural cell contrast in the small arteriole is higher with a smaller 
inner radius (A, 3.8 ADD vs. B, 11.3 ADD) but not for the larger arteriole (E and F) for a fixed outer radius of 
22.7 ADD. Orthogonal split detector orientation of a small (C and D) and large (G and H) arteriole. When the 
split detector is roughly orthogonal to the cell walls (C and H), the contrast of the mural cells is higher, whereas, 
when the split is roughly parallel to the wall itself, the contrast of the wall border is higher (D and G). Contrast 
of the small vessel branch (C and D, blue arrowheads) is highly dependent on the orientation of the split 
detector. Scale bar = 50µm. 



Michelson contrast). At larger inner radii, scattering from the moving red blood cell column 
contributed more to vessel contrast (Fig. 3B). While we only imaged 5 larger vessels in this 
study, the walls were always visible and as a result the size of the inner radius did not have as 
great an impact. This is apparent in images of a larger arteriole in a hypertensive subject with 
thickened walls (Fig. 3E vs. Fig. 3F).  For venules, where vascular walls are thin and usually 
difficult to image, small to moderate inner radii also improved the contrast (Fig. 2C-E). In 
general, vessel wall contrast continued to decrease at larger distances dropping to near zero 
beyond 30 ADD when both the inner and outer radii were increased (Fig. 4). However, for 
these larger distances scatter from the moving red blood cells predominated the images (Fig. 
4).The contrast of structures also depended on the orientation of the aperture chosen. The 
impact of orientation was qualitatively similar for both the split detector (Fig. 3) and the half 
annulus (Fig. 5). Depending on orientation, the split detector may highlight fine vessel wall 
structure (Fig. 3C and Fig. 3H) or increase contrast of the wall edges compared to the 
surrounding retina (Fig. 3C vs. Fig. 3D; 20% vs. 35% Michelson contrast). The split detector 
orientation is also more sensitive to the contrast of the entire vessel structures. For example, 
when a small (13 μm) vessel branch is oriented parallel to the split, the contrast of the branch 
to the surrounding retina is high (Fig. 3C, blue arrowheads) compared to when the branch is 
orthogonal to the split and the contrast between it and the surrounding retina decreased to 
immeasurably low values (Fig. 3D, blue arrowheads). The half annulus, however, generally 
produces higher contrast for small features and did not show as strong an angular dependence 



for entire structures. Instead, individual murals cells of the vessel walls oriented orthogonal to 
the aperture had the highest contrast but there was not as large a reduction in contrast between 
the surrounding retina and the vessel walls (Fig. 5).  The half annulus also revealed a cellular 
array similar to that previously described [12, 19] just below the nerve fiber layer. While the 
array is evident in many of the split detector images (Fig. 2), the half annulus seemed more 
sensitive to enhancing the contrast of these presumed retinal ganglion cell (RGC) layer 
neurons [19]. This array often followed the orientation of the overlying nerve fiber layer 
bundles (Fig. 5). 

4. Discussion 

4.1 Improved efficiency 

Multiply scattered light imaging in AOSLO systems, whether via split detection or offset 
aperture methods, has provided increased ability to image and interpret retinal vessel structure 
in normal eyes and changes to these structures arising from disease processes [4, 7-10, 12]. 
While systematically controlling the aperture direction and displacement has been shown to 
be beneficial[4], previous implementations required aperture parameters to be manipulated via 
electronic motor or manually, which can be time consuming and limit the number of scattered 
light images that can be collected. For example, Chui et al. [4] showed that when the direction 
of offset of an offset aperture is orthogonal to the orientation of the blood vessel, the contrast 

Fig. 4. Wall contrast depends on distance from the center of the PSF with a half 
annulus oriented roughly parallel to the vessel. Contrast was measured between the 
vessel wall and surrounding retina by integrating intensity values parallel to the vessel 
and averaging along roughly 70 μm (red box). As the inner radius increased from 10 
ADD (A) to 25 ADD (D) in 5 ADD increments, contrast decreased from 21.3% (A), 
13.5% (B), 10.6% (C), to 2.4% (D). The outer radius was maintained at 5 ADD larger 
than the inner radius. Scale bar = 100 μm.  



of the mural features of only the wall orthogonal to the direction of offset is maximized. Thus, 
when an offset aperture is maintained in a fixed position, potentially beneficial information 
from that vessel of the light scattered elsewhere may be lost. Likewise, split detectors are also 
generally left in a fixed orientation and entire structures may be lost (Fig. 3D). Using an SLM 
as a rapidly configurable aperture enables the orientation and displacement of a particular 
shape to be easily configured, improving the characterization of the feature of interest by 
capturing the scattered light at different distances and directions in an efficient manner, that 
for predetermined shapes and orientations, is only limited by the time to select an aperture and 
upload it to the SLM. Since it is possible to preload shapes, switching could be done very 
rapidly.  Figure 5 demonstrates the change in wall contrast that is obtained simply by 
collecting the scattered light at different orientations and these images could be further 
combined into one summation image to include all features obtained with the various 
apertures similar to the work of Rossi et al. [19] to improve RGC layer neuron visibility. 

In addition to time efficiency, our detection scheme also enables more efficient use of 
light returned from the retina. By using the entire PSF, and directing the light to two, or 
potentially more, additional multiply scattered light views we have the same advantage of the 
split aperture approach, but now with the ability to optimize the orientation. 

4.2 Optimizing conditions for retinal vasculature imaging 

For smaller vessels imaged with a half annulus and fixed outer radius, it appears that the wall 
contrast of individual mural cells had a broad optimum for inner radii between 2.3 and 8.3 
ADD. When the inner radius was larger, the contrast of the fine detail of the vessel wall 
structure diminished. Exact details seemed to depend on vessel orientation and retinal 
thickness (see below).  

In contrast with Chui et al. [9], we often resolved the wall structure and laminar flow in 
venules (Fig. 2C and Fig. 2E). While decreasing the inner radius helps to capture the small 
scatter from the venule walls, the more specialized shape of the half annulus also likely 
improves the contrast of these and smaller structures as well. With a half annulus, more of the 
PSF center is removed compared with an offset aperture that is limited in its angular extent. 
Thus, we are more selectively capturing the scattered light with a half annulus and more 
background scatter is removed further improving the contrast of small vessel structures.  

For the few larger vessels (> 50µm) imaged, varying the inner radius did not qualitatively 
have as large of an impact of viewing the vessel wall structure (Fig. 2E, F) as for smaller 
vessels. This difference in contrast could arise from the fact that larger vessels are generally 
located in regions where the retina is thicker compared to the smaller vessels that were the 
primary focus of this study. The thicker retina could enable those structures to scatter longer 
distances before a second scattering. As we were limited in the number of larger vessels 
imaged in this study, further investigation into optimal aperture parameters should be 
investigated for larger vessels and vessels located in thicker retina. 
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successfully utilized. However, these data (not shown) did not further enhance imaging of the 
retinal vasculature although we did not explore the full range of possible parameters. In 
theory, any binary shape could be uploaded to the SLM and in the future, further specializing 
the aperture shape could enable better resolution or enhanced contrast of the structures 
presented here as well as other translucent bodies in the retina.  

4.4 Limitations  

While efficiency was improved using the electronic control of the SLM to change aperture 
parameters compared to conventional methods, we were still limited by the amount of time to 
enter the parameters into the GUI.  However, since imaging for most features is not highly 
sensitive to most of the parameters, it is feasible to present the operator with a subset of pre-
loaded conditions, chosen by mouse click to allow even more rapid interchange. When 
imaging a vessel with a half annulus, most vessels could be imaged with a fixed orientation, 
and when we were testing scattering distance by manipulating the half annulus parameters, we 
maintained a fixed orientation despite the vessels being at various orientations. Likewise, we 
used a half annulus of a fixed size with a moderate inner radius to investigate scattering 
direction by changing the orientation of the split annulus. It is possible that our parameter 
space did not include the optimal conditions for orientation and small distances and additional 
experiments could yield even better results. 

As mentioned previously, the mirror flipping that our SLM goes through causes lines 
through the image that we removed computationally in post-processing.  There are options for 
electronically suppressing these [26], as well as using more complex controller to avoid this 
problem. 

Lastly, as we change aperture sizes, the amount of light directed to the “ON” and “OFF” 
detectors varies markedly.   This required changing the voltage to the APD detectors between 
conditions.  While reasonable presets for these voltages were used and are under computer 
control, we also need to better calibrate the gain changes to provide calibrated contrast values.  
We do keep the temperatures of the APD’s controlled so gains are sufficiently stable to make 
this feasible. 

5. Conclusions 

An SLM placed at a retinal conjugate plane can effectively be used as a rapidly configurable 
aperture enabling efficient collection of multiply scattered light in various directions and 
distances of particular retinal features. The retinal microvascular network is complex in 
regards to vessel orientation and size. Utilizing an approach that automates through a series of 
configurations will be particularly useful when studying retinal vascular diseases such as 
diabetic retinopathy and understanding the changes that occur to the vessel wall structure.  
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