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Adaptive optics (AO) has greatly improved retinal image resolution. However, even with AO, temporal and spatial
variations in image quality still occur due to wavefront fluctuations, intraframe focus shifts, and other factors. As a
result, aligning and averaging images can produce a mean image that has lower resolution or contrast than the best
images within a sequence. To address this, we propose an image postprocessing scheme called “lucky averaging,”
analogous to lucky imaging [J. Opt. Soc. Am. 68, 1651 (1978)] based on computing the best local contrast over time.
Results from eye data demonstrate improvements in image quality. © 2011 Optical Society of America
OCIS codes: 100.0100, 100.2000, 100.2980.

Adaptive optics scanning laser ophthalmoscopy
(AOSLO) provides high-resolution in vivo retinal images
and has become a reliable tool for studying the structure
and function of the retina [1]. AOSLO systems typically
provide real-time imaging and thus record images over
time. However, in almost all real-time image sequences,
image quality varies slightly over both space and time.
That is, local regions have higher contrast in one frame
than in another. Based on the point-scanning mechanism
of AOSLO, the variance can be attributed to both time-
related and space-related factors, most likely including
dynamic changes in human eye aberrations such as
the tear film, local retinal shape changes due to ocular
pulse, accommodative fluctuations, and variations in the
retinal shape that can interact with the above factors. In
addition, images from subjects who have retinal defects
such as detachments, drusen, and edema produce even
more pronounced variations in the retinal shape, which
interact to enhance these variations in image quality.
Conventionally, AOSLO raw images are postprocessed

to decrease the impact of noise. Typically this is achieved
by either manually or automatically choosing acceptable
frames, omitting those with very large eye movements or
blinks, then aligning to minimize the effect of both intra-
frame and interframe movements [2], and finally aver-
aging the aligned frames. The more frames used for the
averaging, the greater the increase in signal-to-noise ra-
tio. On the other hand, since the averaging is frame
based, the intraframe contrast variance is not altered.
Therefore, the calculation of the mean can degrade the
optimal image quality achieved from the image sequence.
That is, the frame averaging is not taking the best advan-
tage of the sequential nature of AOSLO imaging.
This problem is also true if recording views of the sky

from a ground-based telescope. By choosing only the
best frames, images are selected when the atmospheric
turbulence along the line of sight is minimal. That is, the
process takes advantage of lucky moments when turbu-
lence has a minimal effect and has therefore been called
“lucky imaging” [3]. In analogy, AOSLO is measuring the
retina point by point, and its high-frequency pixel clock

makes it well suited for this lucky imaging approach, but
now within a frame as well as between frames.

Thus, we propose a region-based averaging scheme we
call “lucky averaging.” Image acquisition and alignment
are performed in the normal manner described above.
However, before averaging, the image sequence is anal-
yzed region by region. Small areas in the image represent
short exposure times and small spatial scales, greatly
eliminating the intraregion variance in optical quality
and enabling the process to capture those “lucky mo-
ments” when a small region’s image quality is at its best.
The region quality is evaluated using an appropriate ob-
jective image quality metric and assigned to the central
pixel of the region. Each pixel becomes the center of a
region, and consequently, pixel quality maps are built up
in sequence. The final image is remapped by only includ-
ing the times when each pixel has the highest image qual-
ity as evaluated using the metric. The scheme is shown
in Fig. 1.

To test this approach, cone photoreceptor images
were acquired from different subjects and processed.
The AOSLO system has been described previously [4].
The pixel clock was 30MHz, and the frame rate was
30Hz. The adaptive optics control loop operated at
15Hz. Each image was 800 by 520 pixels, corresponding
to a 2:79° × 1:78° imaging field in the retina. Each image
series consisted of approximately 100 frames acquired
sequentially in ∼3 s. Once aligned, a window of 9 by 7
pixels was created and swept across the image pixel

Fig. 1. Schematic information flow for lucky averaging.
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by pixel to compute an image quality metric. A window of
this size represented 450 μs in time and about 70 μm2

in space.
While any appropriate image quality metric can be

used, for this Letter we implemented two examples—a
sharpness metric and a gray level co-occurrence matrix
(GLCM). The sharpness metric has been used for inco-
herent imaging in astronomy and synthetic radar image
reconstructions [5]. It represents a sum of a nonlinear
point transformation of the image and is generally
defined as

s ¼
X
ðx;yÞ

wðx; yÞIðx; yÞβ; ð1Þ

where x, y are pixel coordinates, β is the power of the
pixel intensity, wðx; yÞ is the weight for each pixel,
and Iðx; yÞ is the pixel intensity.
In practice, we set β as 2 and wðx; yÞ as 1. Normaliza-

tion is also considered, as [6] indicates. The metric is
finally defined as

sðx0;y0;indexÞ ¼

P
ðx0�Δx≤x≤x0þΔx;y0�Δy≤y≤y0þΔyÞ

I indexðx; yÞ2
� P

ðx0�Δx≤x≤x0þΔx;y0�Δy≤y≤y0þΔyÞ
I indexðx; yÞ

�
2 ;

ð2Þ
where x, y are pixel coordinates and x0 and y0 represent
the coordinates of central pixels of the sampling window.
Δx and Δy represent half the sampling window width
and height, respectively. The index represents the frame
index number of the analyzed image within the sequence.
The second image metric is the GLCM, measuring how

often different combinations of gray levels co-occur in an
image region [7], computed as in Eq. (3). For a given Δd,
which represents pixel separation between a pair of pix-
els, we compute GLCMΔd by examining pixel pairs along
eight different directions from 0° to 315° with 45° incre-
ments, where the element GLCMΔd ði; jÞ represents the
number of the pixel pairs with gray level pair ði; jÞ.
The parameter d represents the two-dimensional position
vector of the pixel in the image. We typically normalize
the GLCM by dividing the whole matrix with the sum of
all elements in the matrix. Once a GLCM has been con-
structed, several types of statistical analysis can be per-
formed. Local contrast is one of these measures, taking
the GLCM as contrast weights, computed as in Eq. (4),
where α is the power of the gray level difference between
a pixel pair, and β is the power of the GLCM. In practice,
for cone photoreceptor images, we calculated GLCM3 or
GLCM4. α and β are set as 2 and 1, respectively:

GLCMðΔdÞði; jÞ

¼
X

d≤Analyzed Region

�
1 if IðdÞ ¼ i; IðdþΔdÞ ¼ j
0; otherwise

;
ð3Þ

Contrastðα; βÞ ¼
X
i

X
j

ði� jÞαGLCMði; jÞβ: ð4Þ

The calculation result Sðx0; y0; frame indexÞ from
Eq. (2) or Eq. (4) is then assigned to the central pixel
(x0, y0). A quality metric Sðx; y; frame indexÞ is then gen-
erated for every pixel in the image sequence.

For either metric the final step is to set a threshold for
including a pixel. That is, for a given pixel position ðx; yÞ,
we can include (for instance) the 30% of the instances
within the sequence when those pixel instances have the
highest value of the image quality metric. The final image
is then the average of those pixels. This is computation-
ally fairly simple, taking about 3 min for 100 frames,
using a 2:8GHz PC with 8Gb of memory and implemen-
ted in MATLAB.

Figures 2 and 3 compare results from the different
averaging methods. Similar results were obtained on two
other subjects. In single-frame images, we observe noise
and contrast variance across the image [Fig. 2(a)]. The
average image is less noisy [Fig. 2(b)], and in an enlarge-
ment more details can be observed due to the decreased
noise [Fig. 3(b)]. However, some cones are dim, and
some regions are still blurry. For the lucky averaging
[Figs. 2(c), 2(d), 3(c), and 3(d)], the contrast reduction
is decreased. Cones are somewhat brighter and more

Fig. 2. Image comparison. Each image is 1:39° by 1:17°
cropped from original frames. (a) Single-frame image; (b) image
with normal averaging scheme; 20% frames are selected. (c) Im-
age after lucky averaging top 30% pixels from image sequence,
with GLCM contrast metric; (d) image after lucky averaging top
30% pixels from image sequence, with sharpness metric.

Fig. 3. Enlarged region location indicated in white box
as shown in Fig. 2. (a)–(d) correspond to the same region in
Figs. 2(a)–2(d).
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distinct, suggesting local contrast and resolution im-
provement. To quantify the difference between lucky
averaging and normal averaging, a power spectral analy-
sis was performed. We calculated the power ratio as a
function of frequency between lucky averaging and stan-
dard averaging (Fig. 4). Thus, a ratio greater than one in-
dicates a higher spectral power for lucky averaging at a
given frequency. The average increase in powers be-
tween either lucky averaging imaging metric and stan-
dard averaging is 20%, and the improvement extends
all the way to the optical cutoff frequency, which is about
0.4 cycles/pixels based on the system resolution 2:5 μm
[8] for this subject’s pupil size of 6mm. Beyond the cutoff
frequency, the ratio fluctuates around one, indicating

that the noise level is close between the two schemes.
The two metrics used for lucky averaging produced simi-
lar improvements for these images, but because the
scheme can be used with most local quality evaluation
metrics the approach is general and can be tuned to op-
timize extraction of the most appropriate information.

To investigate the role of the criterion for including
pixels, we processed the same region in Fig. 3 with varied
criteria to include the best 20%, 30%, and 40% of pixels
using the GLCM method (Fig. 5). As expected, the im-
provement is largest with the lowest percentage criter-
ion; however, there is a limit since, as the criterion uses
fewer samples, the impact of photon noise increases.
Thus, the choice of criterion will be a balance between
reducing random noise through averaging and improving
contrast by picking the best “moments.” One simple
solution to this trade-off is to collect more data for the
same region of interest. It is also possible to base the cri-
terion on the information itself, optimizing the signal-to-
noise ratio.

In summary, lucky averaging, analogous to lucky ima-
ging, has been applied to AOSLO image postprocessing.
The image sequence is evaluated based on small regions
instead of frames. The quality is enhanced by 20%, sug-
gesting a better use of the data by this processing
scheme. A larger data set is necessary, but collecting 3
or 4 s worth of data for each retinal region is realistic.
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Fig. 4. (Color online) Spectral power ratio between lucky and
conventional averaging. Dotted curve in red, ratio of Fig. 3(c) to
Fig. 3(b); dashed curve in blue, spectrum ratio of Fig. 3(d) to
Fig. 3(b).

Fig. 5. (Color online) Spectral power ratios for different inclu-
sion criteria. The baseline was based on conventional aver-
aging. The dotted–dashed line in purple, the dotted line in
light blue, and the dashed line in red represent inclusion criteria
for the best 40%, 30%, and 20% of pixels, respectively.
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