Is It Time for the A-I (Allergist-Immunologist) to Embrace AI (Artificial Intelligence) in DX and RX of the Inborn Errors of Immunity (IEIs)?

Friday, May 30, 2025

Joseph A. Bellanti, MD Professor of Pediatrics & Microbiology–Immunology and Director, International Center for Interdisciplinary Studies of Immunology (ICISI) Georgetown University Medical Center Washington, DC

Upon completion of this learning activity, participants should be able to:

Understand how artificial intelligence (AI) is transforming DX and RX of IEIs

Identify key applications of AI in DX and RX strategies for IEIs.

Describe how AI can enhance diagnostic precision, improve treatment efficacy, and optimize patient outcomes in IEIs

Lecture Outline

Introduction

- What is Artificial Intelligence (AI)?
- Phenotypes, Endotypes, and Genotypes in IEIs
- Applications/Challenges of AI in DX and RX of the IEIs
- Ways the A-I Can Use AI in DX and RX of the IEIs
- Practical Examples of AI in the DX and RX of IEIs
- Conclusions

Introduction

Dr. William B. Schwartz, in a prescient article published in the NEJM in 1970 (1), envisioned a future where computers would serve as a powerful extension of the physician's intellect, revolutionizing medical practice.

In a second NEJM article (2), by Dr. Schwartz, published 17 years later, he reaffirmed his foresight, acknowledging the formidable challenges in developing truly reliable AI-driven programs but maintaining his unwavering conviction that AI would one day transform the DX and RX of disease.

Now, more than fifty years after his initial vision, the extraordinary rise of AI in medicine stands as a testament to the brilliance and prophetic clarity of Schwartz's predictions.

- Schwartz WB. Medicine and the computer. The promise and problems of change. N Engl J Med. 1970; 283:1257-64.
- Schwartz WB, Patil RS, Szolovits P. Artificial intelligence in medicine. Where do we stand? N Engl J Med. 1987; 316:685-8.

INTRODUCTION

The IEIs are >500 genetic disorders of the immune system, most commonly associated with increased susceptibility to infections

It is increasingly recognized that AI has evolved from a theoretical concept into an essential tool in modern healthcare.

A review of the recent literature highlights AI's potential to enhance precision medicine in allergy-immunology, particularly in diagnosing and managing Inborn Errors of Immunity (IEIs)

The aim this presentation is to explore the evolving role of AI in the DX and RX of IEIs, highlighting its potential to advance precision medicine for the allergist-immunologist.

Tangye SG, et al. J Clin Immunol. 2022; 42:1473-1507.

What is Artificial Intelligence (AI)?

AI refers to algorithms that mimic human cognitive functions like reasoning and decision-making.

Machine Learning (ML): A subset of AI that improves with data input, divided into:

- Supervised Learning Learns from labeled datasets.
- Unsupervised Learning Identifies patterns in unstructured data.

AI's ability to process large datasets makes it valuable in healthcare applications.

Phenotypes, Endotypes, and Genotypes in Inborn Errors of Immunity (IEIs)

Characteristic	Definition	Example
Phenotype	An observable distinguishing feature of a disease, such as a morphologic, developmental, biochemical, or physiologic property, or behavior, without any implication of a mechanism.	Physical appearance of the patient, e.g., short stature, low-set ears in Di George syndrome; recurrent; warts in WHIM syndrome.
Endotype	A distinct functional or pathobiologic mechanism(s) that brings about the immune deficiency condition, e.g., history of recurrent infection, history of autoimmunity or autoinflammatory disease.	Abnormal oxidative metabolism in Chronic Granulomatous Disease (CGD).
Genotype	A genotype refers to the genetic constitution or genetic makeup of the affected host that will identify definitive genetic etiologic markers of the various forms of the inborn errors of immunity (IEIs)	Deficient Bruton Tyrosine Kinase (BTK) activity in X-linked Agammaglobulinemia (XLA).

Artificial Intelligence - Applications and Challenges in DX and RX of the IEIs?
DX IEI
AI can analyze complex clinical PHENOTYPIC. ENDOTYPIC and GENOMIC data for early DX and personalized RX of the IEIs.

AI-driven algorithms readily improves obtaining PHENOTYPIC. ENDOTYPIC and GENOMIC data and risk prediction, and disease identification of the IEIs.

Challenges include:

- Limited datasets for rare IEIs.
- Integration with Electronic Health Records (EHRs).
- Algorithmic bias and data privacy concerns.

Ethical considerations must be addressed for fair and accurate implementation.

Practical Examples of AI in the DX and RX of IEIs

Six sample of IEIs were created that the A-I is called upon to diagnose (DX) and treat (RX)

Each case using a clinical vignette that includes a brief history (HX) and pertinent laboratory findings.

The IEIs consisted of 5 of the more commonly seen IEIs consisting the following:

- 1) Severe Combined Immunodeficiency (SCID);
- 2) Common Variable Immunodeficiency (CVID);
- 3) Chronic Granulomatous Disease (CGD);
- 4) X-Linked Agammaglobulinemia (XLA):
- 5) Wiskott-Aldrich Syndrome (WAS);
- and a sixth recently described IEI,
- 6) Activated PI3K Delta Syndrome (APDS).

Practical Examples of AI in the DX of IEIs

Vignette 1	Vignette 2	Vignette 3	Vignette 4	Vignette 5	Vignette 6
SCID	CVID	CGD	XLA	WAS	APDS
J.D., a 6-mos-old °,	J.S is a 28-yr-old ^Q	M.B. is a 12-yr-old & with	A 9-mos-old ♂ with	E.D. is a 3-year-	G.R. is a 10-yr-old
with recurrent	with a 5 yr HX of	multiple recurrent skin	recurrent bacterial	old male with a HX	male with recurrent
infections since	recurrent respiratory	infections, persistent	infections starting at	of recurrent	URI, and chronic
birth, pneumonia,	infections, pneumonia,	lymphadenitis, and	6 mos, multiple	infections, eczema,	diarrhea with FTT.
OM, oral thrush, and	sinusitis, bronchitis,	recurrent pneumonia. He	OM, sinusitis, chronic	and prolonged	Over the past year,
chronic diarrhea.	fatigue and chronic	has also developed	diarrhea, G&D normal	bleeding and OM.	has developed
(FTT), Is	diarrhea. PX reveals	granulomatous lesions on his	PX small, infant in	A maternal uncle	persistent
malnourished, PXs	a tired, thin ^Q T	skin and in his GI tract. PX	mild respiratory	had a history of	lymphadenopathy and
generalized wasting,,	36.9°C HEENT: Clear	multiple healed scars from	Ht,Wt < 10th %.	easy bruisability.	hepatosplenomegaly PX
iritability, and pallor.	cardiac normal;	previous infections, several	HEENT: Bilateral ear	PX 3-year-old	bilateral large 3-4 cm
Absent thymic	abdomen: soft,, no	active granulomatous lesions	discharge, crackles in	male with pa llor	cervical lymph nodes,
shadow on X-ray.	organomegaly;	on the forearms.	lower lung fields	Ht, Wt < 10th %.	hepatomegaly> 4cm,
Lab findings Lymphopenia (ALC 800/µL) Markedly reduced T,B and NK cells.	Lab Findings Normal WBC with slight lymphopenia. • IgG: 450 mg/dL • IgA: 30 mg/dL • IgM: 20 mg/dL	Lab findings Elevated WBC, mild anemia, normal IG levels, NBT negative, DHR test abnormal, liver abscess, Staphylococcus aureus from skin lesion.	Lab findings Elevated WBC IgG, IgA, IgM levels Undetectable, absent CD19+ B cells Genetic testing revealed the diagnosis.	Lab findings Hb= 11.0 g/dL; WBC 4,500/µl; platelet 21,000/µL decreased IgM; elevated IgA and IgE; poor Ab response to vaccine.	Lab findings Lymphocytosis, mild anemia; Low IgG, normal IgA and IgM. Increased transitional B cells, activated T cells. Enlarged liver & spleen.

Six clinical vignettes of the following IEIs were created which the allergist-immunologist may be called upon to DX and RX each with a brief clinical HX and pertinent laboratory findings.

PHENOTYPIC Description

a. SCID)
b. CVID)
c. CGD)
d. XLA)
e. WAS
f. APDS)

A 9-mos-old male FTND HX of recurrent bacterial infections starting at 6 months of age. Multiple Severe OM, sinusitis, and requiring hospitalization and IV antibiotics. Chronic diarrhea for past 2 months. Growth and development normal until the recurrent infections began. No known family history of immunodeficiency disorders. PX reveals small. underdeveloped infant in mild respiratory distress Temp 38°C, heart rate 90/min, respiratory rate 30/min, BP 90/60. Height and weight < 10th %. HEENT: Bilateral ear discharge, erythematous tympanic membranes. Lymphatic System: Absence of palpable lymph nodes. Respiratory: Crackles in the right lower lobe with decreased breath abdominal Gastrointestinal System: Mild sounds distension, hyperactive bowel sounds. . Laboratory tests: CBC: elevated total WBC count, 12,000 mm3 with 80% neutrophils and 10% band forms. Immunoglobulin Levels:

- IgG: Undetectable
- IgA: Undetectable
- IgM: Undetectable

Flow Cytometry: Absence of CD19+ B cells in Genetic testing was performed which revealed the diagnosis.

Each clinical vignette was entered into ChatGPT with the prompt:

What is the most likely IEI that the vignette represents?

Following the correct diagnosis, a second query was introduced was entered into ChatGPT with the prompt:

Which is the mutation that may have led to this condition?

Following the correct diagnosis, a third query was entered into ChatGPT with the prompt:

What is the most appropriate treatment for XLA?

1

AI-Assisted Diagnostic Correlation with its Corresponding Phenotypic Clinical Vignette Description

Each of the other phenotypic descriptions of the clinical vignettes was entered into ChatGPT with the prompt 'What is the most likely IEI that the vignette represents? and ChatGPT consistently identified the correct diagnosis from the given list, demonstrating its potential as a diagnostic aid.

Clinical	AI-
Vignette	Assisted
	Diagnosis
SCID	SCID
CVID	CVID
CGD	CGD
XLA	XLA
WAS	WAS
APDS	APDS

AI-Assisted Genetic Correlation with its Corresponding Phenotypic Clinical Vignette Description

Following the correct diagnosis, a second query was posted for each of the other IEIs to assess AI's diagnostic utility, with the prompt '*What is the mutation that may have led to this condition?*' ChatGPT was able to accurately associate each condition with its corresponding genetic mutation.

Clinical	AI-	Genetic Mutation
Vignette	Assisted	
	Diagnosis	
SCID	SCID	Mutation in the X-linked gene
		IL2RG
CVID	CVID	TNFRSF13B (TACI) mutation
CGD	CGD	Gp91phox deficiency
XLA	XLA	BTK deficiency
WAS	WAS	WAS gene mutation
APDS	APDS	PIK3CD gene mutation

AI-Assisted Treatment Recommendations

Following the correct AI-assisted diagnosis, a third query was posted for each of the other IEIs to assess AI's therapeutic utility, with the prompt 'What is the most appropriate treatment for each of the six IEIs? 'ChatGPT correctly identified the standard treatment approaches for each disorder, reinforcing its potential as a clinical decision support tool

Clinical	AI-Assisted	AI-Assisted Treatment Recommendations
Vignette	Diagnosis	
SCID	SCID	Hematopoietic stem cell transplantation (HSCT), gene
		therapy, IVIG or SCIG replacement
CVID	CVID	Immunoglobulin replacement, antibiotics for infection control
CGD	CGD	Antimicrobial PX, interferon-¥ RX, HSCT in severe cases
XLA	XLA	Lifelong IVIG or SCIG replacement, infection management
WAS	WAS	HSCT, IG replacement, splenectomy in select cases
APDS	APDS	PI3K inhibitors [e.g., leniolisib (Joenja)], immunoglobulin
		replacement, immunosuppressants

SUMMARY of AI-Assisted Diagnosis, AI-Assisted Genetic Correlation and AI-Assisted Treatment Recommendations

- Each of the phenotypic descriptions of the 6 clinical vignettes was entered into ChatGPT with the prompt 'What is the most likely IEI that the vignette represents? and ChatGPT consistently identified the correct diagnosis from the given list, demonstrating its potential as a diagnostic aid.
- Following the correct diagnosis, a second query was posted for each of the other IEIs to assess AI's diagnostic utility, with the prompt 'What is the mutation that may have led to this condition?' ChatGPT was able to accurately associate each condition with its corresponding genetic mutation.
- To further assess AI's usefulness, a third query was posted for each of the other IEIs to assess AI's therapeutic utility with the prompt, What is the most appropriate treatment for each of the six IEIs? ChatGPT correctly identified the standard treatment approaches for each disorder, reinforcing its potential as a clinical decision support tool

Conclusions

- It has been said that AI won't replace physicians, but physicians who use AI will replace physicians who do not. As we navigate the evolving landscape of allergy-immunology and IEI, this quote serves as a powerful reminder: embracing AI as a tool for enhancing clinical decision-making is not about replacing the physician's expertise but about augmenting it.
- The future belongs to those who integrate AI into their practice to provide more precise, efficient, and personalized patient care.
- There will be challenges ahead in adopting AI for the A-I in the DX and RX of IEIs—but with thoughtful implementation, collaboration, and continued learning, we can
- look forward to a future where AI empowers us to care for our patients better than ever before.