Non-infectious complications of Primarily Antibody Deficiencies ("The CVIDc phenotype")

Manish Butte, MD PhD

E. Richard Stiehm Endowed Chair Professor & Division Chief

June 2023

Learning Objectives

- What are the most common non-infectious complications for primarily antibody deficiencies?
- What are ways to monitor for lung diseases?
- What are ways to monitor for GI diseases?
- What is the role of IgA in the GI tract in reducing autoimmunity?

Connor: Unresolved issues

- "A 35-year-old man with recurrent pneumonia"
- You have diagnosed him with CVID and started him on Ig replacement
- Now what?
- What are his future risks?
- How often will you see him in follow-up?
- How will you monitor him?
- What tests will you routinely order, and how often?

Non-infectious complications of PADs are life-threatening

Figure 2. Kaplan-Meier curve for patients with and without noninfectious complications. Patients with noninfectious complications were significantly more likely to die than those with infections only (P < .0001).

Complicated PADs

- Pulmonary complications
- Gastrointestinal complications
- Autoimmune / inflammatory complications
- Cancers
- Mental health complications
- Lymphoproliferative complications

Lung diseases are the most common complication of IEI

- What kind of signs and symptoms does one look for?
- How do we test for lung diseases in IEI?

Covered today

- Inflammation
 - Asthma
 - Bronchiectasis
- Infections
- Autoimmunity
 - GLILD

Not covered today

- Pulmonary
 hypertension
- Pulmonary Alveolar
 Proteinosis
- Malignancy

Impact: Missed work and school

(despite immunoglobulin replacement)

Symptoms of lung disease

Ask about these in your History

- Missed school or work
- Decreased exercise ability
- Recurrent and prolonged infections
- Shortness of breath
- Cough (chronic)
- Low oxygen saturation
- Low energy
- Wheezing
- Tightness or pain with breaths
- Later stages: unintended weight loss

Diagnostic testing: Imaging

- X-ray
- CT scan
 - better views of the lungs and heart and vasculature
 - about 60 times as much radiation as X-ray
- Obtain HRCT initially to evaluate for
 - Bronchiectasis
 - Cavitary disease
 - Interstitial lung diseases
 - Lymphadenopathy
 - Nodules

Pulmonary Function Testing

70-80% of the air is exhaled in the first second (FEV1)

PAD patients lose lung function over time

Worse than heavy smokers!

Decline in Respiratory Function¹

Worse if the Ig replacement dose isn't adequate

Baumann U, et al. Front Immunol, 2018;9:1837

Diffusion of gasses (DLCO)

Asthma is common

Figure 3. Relative frequency of non-infectious pulmonary disease across all PIDDs. Asthma/reactive airways disease (RAD) was by far the most common complication (52%).

May not be IgE-mediated

Rubin et al, J Asthma 2021

Bronchiectasis

Affects 23% of CVID patients (up to 66% in some centers) Wall ... Frontiers in immunology 2020.

Bronchiectasis

Viscous cycle leading to bronchiectasis

Wall ... Sorensen. Frontiers in immunology 2020.

Bronchiectasis Lung function

Table 4.3Pulmonaryfunction test features ofpatients with bronchiectasis

Feature	%
Normal	22-38
Obstructive pattern	43-60
Restrictive pattern	7-8
Mixed obstructive/restrictive	11-24
Positive bronchodilator response	9-22
Reduced diffusion capacity (<80%))	24

low FEV1 low FEV1/FVC

In late stages, diffusion falls

Fig. 4.1 Pulmonary function testing and chest tomography of a 57-year-old man with bronchiectasis and Kartagener syndrome. Pulmonary function testing shows severe obstruction and air trapping. Chest tomography reveals dextrocardia and advanced cystic bronchiectasis

Vest therapy

To mobilize mucus: Add hypertonic saline while doing the vest therapy

> Consider also Tobi (if pseudomonas)₁₈

GLILD

- Granulomatous Lymphocytic interstitial lung disease
- Seen in PADs and CIDs (40% CTLA4, LRBA, Rag def)
- Often confused with sarcoidosis
 - But there are differences. In sarcoidosis:
 - no increase in infections
 - no enlargement of liver and spleen
 - IgG levels are high
 - More lung lymph adenopathy
- Biopsy is very important but sometimes is not definitive

GLILD

- patchy
- lower > upper
- ground glass

Recommendations to Monitor Chest CT PFTs with DLCO Surgical lung biopsy

Tam and Routes, Am J Rhinol Allergy 27, 260 –265, 2013

Combination Treatment for GLILD

- Definitely optimize Ig replacement (increase dose)
- 1st line: corticosteroids (2 mg/kg)
 - "Corticosteroids did not achieve a remission in any case."
 Jack Routes

Trial of steroids Move quickly to combination therapies with Rituximab

Sirolimus, azathioprine

Hurst et al, JACI 2017

GI Complications in PADs

- Inflammatory GI disease
 - Crohn-like disease
 - villous blunting / atrophy
- Chronic diarrhea
 - infections and non-infectious
- Nodular lymphoid hyperplasia
 - lymphoproliferative IEI phenotypes
- Biliary tract disease (PBC, Cryptosporidium)
- Structural bowel disease
 - Hirschprung (CHH), atresia (TTC7A, PI4KA)
- Malignancy

Take a good history

- Family history (many autosomal dominant diseases!)
 - consanguinity
- Food allergies (immediate-type reactions)
- Celiac disease (gliadin triggering)
- Necessity of TPN
- Gl autoimmunity
- perianal abscess or fistulas
- splenomegaly / hepatomegaly
- Diarrhea, mucus, blood in stool

Chronic diarrhea

- Eval for Infectious causes; Refer to GI
- Colonoscopy for
 - Crohn's-like disease
 - lymphocytic infiltration (autoimmune)
 - lymphoma
 - CMV, EBV

• Upper Endoscopy for

- villous blunting or loss
- lymphocytic infiltration
- sm. bowel biopsy for giardia
- H. Pylori and ulcer disease
- lymphoma
- enterovirus and CMV
- nodular lymphoid hyperplasia

Autoimmunity and tolerance

Microbiome regulates B-cell repertoire

gut bacteria

B cells primed by commensal antigens

start here polyreactive B cells

Clonal redemption

We are all born with auto-reactive B cells!

AIHA: Vh4-34 recognizes the I/i carbohydrate ag on RBCs

IgA bound to commensals helps us get rid of autoimmunity

Inflammation / IBD

Trends in Immunology

Berbers et al, Trends in Imm, 2017

Table 3. Percentage of patients with histopathological finding

Histopathological finding	Number of patients, n (%)
Increased IEL total	32 (60%)
Descending part of duodenum	23 (46%)
Reduced number of plasma cells	33 (62%)
Lymphoid hyperplasia	20 (38%)
Gastric metaplasia in duodenal bulb	13 (26%)
Fibrosis in the gastric mucosa	13 (26%)
Intestinal metaplasia in gastric mucosa	6 (12%)
Subacute inflammation	2 (4%)
Chronic/chronic active inflammation, total	24 (45%)
Stomacn	20 (40%)
Colon	11 (22%)
Atrophic gastritis	9 (18%)
GVHD-like	1 (2%)
Eosinophilic inflammation	4 (8%)
Lymphocytic enteritis/colitis	4 (8%)
Collagenous enteritis/colitis	3 (6%)
Granulomatous inflammation	3 (6%)

GVHD, graft-vs.-host disease; IEL, intraepithelial lymphocytes. Text in bold relates to percentage of patients at each anatomical site.

30 Jorgensen et al Am J Gastroent 2016

CVID

Control

Increased IEL

Jorgensen SF et al Am J Gastroent 2016

CVID

Decreased plasma cells

Control

Jorgensen et al Am J Gastroent 2016

Control

CVID

Lymphoid aggregates

Jorgensen et al Am J Gastroent 2016

Monogenic inflammatory diseases

Hyper-IgM synd	dromes (including	NEMO deficiency)				
Chronic granule	omatous disease				6	
SCID Combined Immunodeficiency						
		CVID				
	CTLA-4	leficiency				
LRBA deficience	Y					
Wiscott-Aldrich	n syndrome					
Mevalonate kir	ase deficiency					
XIAP deficiency	1					
IL-10(R) deficie	ncy					
IPEX syndrome						
						-
Neonatal	Infantile	Very-early-onset	Early-onset	Paediatric	Adult	-
IBD	IBD	IBD (VEOIBD)	IBD (EOIBD)	IBD	IBD	
28 da	ays 2 yea	ars 6 ye	ars 10 y	vears 18 y	ears	

Categories of monogenic IBD

- Epithelial barrier
- Phagocyte Defects
- Hyperinflammation and autoinflammation
- T & B cell defects
- Immunoregulation
- Others

Malignancy

Why malignancies in IEIs

- Chronic B cell activation (e.g., EBV)
 - leads to ROS damage
 - Somatic hypermutation (AID)
 - copy number changes
 - point mutations
 - Genomic instability is the result
- Stem cell developmental defects (e.g., GATA2)
- Defective telomere maintenance (e.g., DKC)
- Defective DNA repair (e.g., ATM)

- 17% of CVID its develop malignancy
 - mostly B cell lymphoma
 - watch for extra-nodal mucosal lymphoma
- H. pylori associated with 90% of these

Wootherspoon Lancet 1991

- 10% of Ataxia telangiectasia develop GI malignancy
 - average age 24 y

Baloh et al, JACI 2019

H pylori

All patients with IEI should be screened for H pylori and treated

Take home points

- Lung and GI diseases are common in CVID
- Order HRCT at least once
- Frequent pulmonary function testing
- Bronchiectasis needs daily treatment
- GLILD requires T and B cell suppression
- Endoscopy and colonoscopy help tremendously

Long Term Management Plan for Connor

- 35 y with recurrent pneumonias and CVID phenotype
 - Regular chest CT to monitor bronchiectasis and develop
 - How often?
 - Vest physiotherapy plus hypertonic saline
 - Sputum cultures during exacerbations to screen for Pseudomonas
- GI surveillance regular history and physical exam
 - Monitor weight
 - Check Albumin, LFTs

Thank you!

mbutte@mednet.ucla.edu