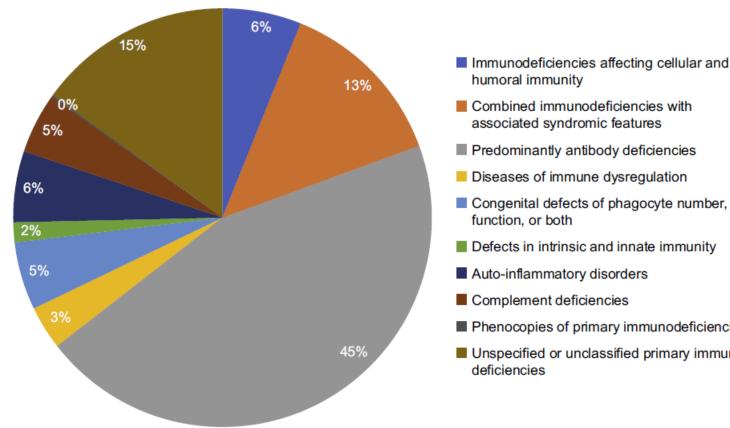
Update in the Diagnosis and Treatment of CVID

Jen Heimall, MD Children's Hospital of Philadelphia Elizabeth Paige Lavin Endowed Chair of Immunology Clinical Care and Research Associate Professor of Clinical Pediatrics Perelman School of Medicine at University of Pennsylvania



Upon completion of this learning activity, participants should be able to...

- Utilize CVID Clinical and Laboratory Diagnostic criteria to identify patients with the CVID umbrella diagnosis
- Recognize the importance of genetic testing to guide management of patients with CVID
- Choose the appropriate immunoglobulin replacement therapy for patients with CVID
- Plan for the use of immunomodulatory and definitive therapies for patients with CVID

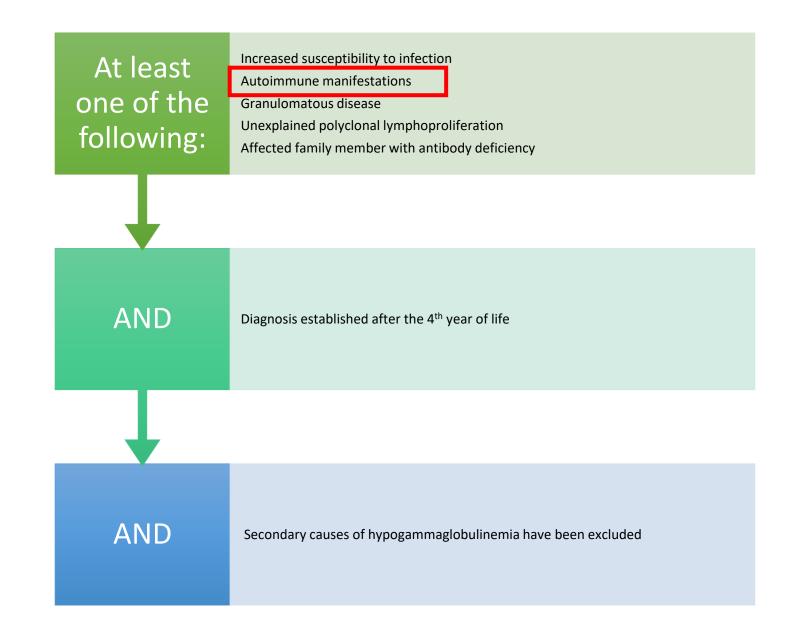
Primary Immunodeficiency= PID Inborn Errors of Immunity= IEI

- Congenital defects of phagocyte number,
- Phenocopies of primary immunodeficiencies
- Unspecified or unclassified primary immune

Immunodeficiency Algorithm

- Recurrent sinopulmonary infections with encapsulated organisms
- Chronic enteroviral meningioma encephalitis
- Unexplained Bronchiectasis
- Chronic/recurrent
 gastroenteritis
- Pneumocystis pneumonia
- fungal infections including mucocutaneous Candidiasis
- chronic viral infections (EBV, CMV, HPV , etc)
- Severe manifestations of common viral infections
- Failure to thrive
- Erythematous rash

Consider combined immunodeficiency if mixed features Assess for B cell deficiency with CBC w/differential Total IgG, IgA, IgM, IgE Vaccine specific titers B cell count Genetic Testing


Assess for T cell deficiency CBC w/differtial T cell count and assessment of naive T cells T cell proliferation to mitogens Genetic Testing

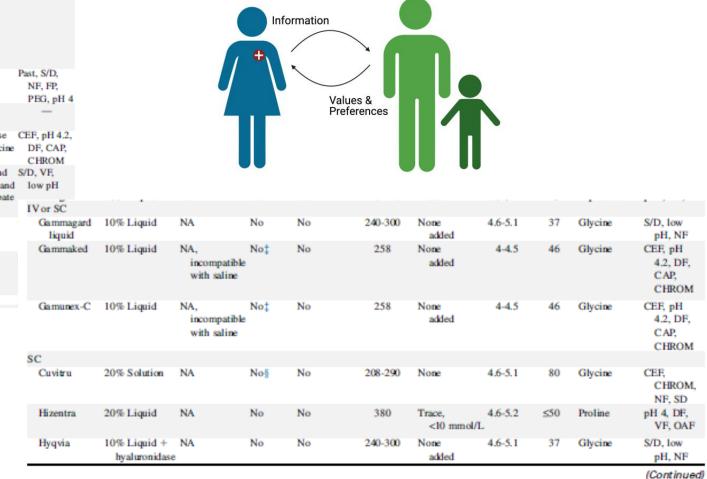
Test Name	Result (5y/o)
WBC	3.1
ANC (Normal >1500)	93
Hgb (Normal for age 10.9-15 g/dL)	9.5
Plt	307
CD3 (Normal for age 1400-3700)	1930
CD4 (Normal for age 700-2200)	694
CD8 (Normal for age 490-1300)	1153
NK (Normal for age 130-720)	157
CD19 (Normal for age 390-1400)	235
CD19+/CD27+/lgD- (Ideal percentage 5%)	1.1%
IgG (normal for age 490-1610)	450
IgA (normal for age 35-250)	30
IgM (normal for age 40-190)	137
# pneumococcal titers >=1.3	1/14
Tetanus titer	0.36

An Illustrative (Historical) Case

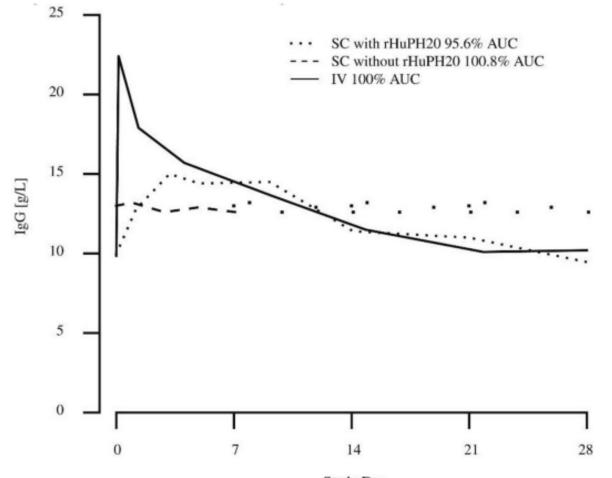
- 3y/o Caucasian male previously well and fully vaccinated, initially presented with persistent cervical adenopathy. Excisional biopsy demonstrated reactive hyperplasia.
- Failure to thrive developed
- 5y/o hospitalized with skin MSSA and Pseudomonas infection and Evans Syndrome.

CVID Umbrella CLINICAL Diagnostic criteria

CVID Umbrella LABORATORY DIAGNOSTIC CRITERIA Marked decrease of IgG and marked decrease of IgA with or without low IgM levels

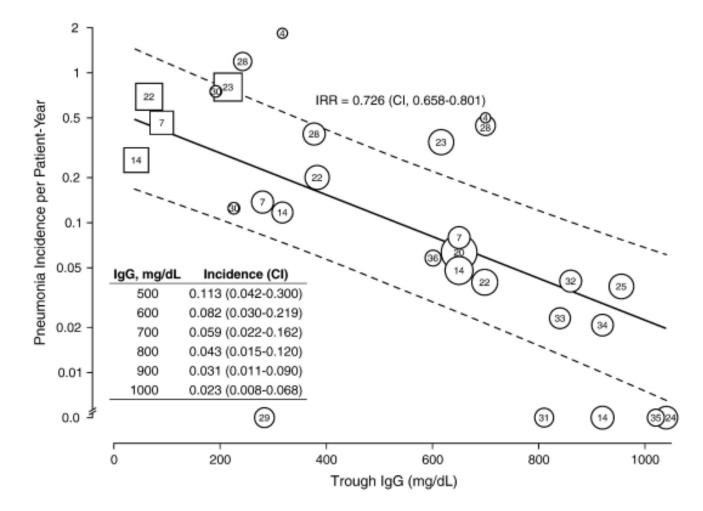

AND at least one of the following:

- poor antibody response to vaccines and/or absent isohemagglutinins
- low switched memory B cells


AND no evidence of profound T-cell deficiency

Route/product	Dosage formulation	Diluent	Refri- geration required?	Filtration required?	Osmolality (mOsm/L)	Sodium	pН	lgA (µg/mL)	Stabilizer or regulator	Pathogen inactivation/ removal*	lata	∼t⊔
IV											Lots	01 P
Bivigam	10% Liquid	NA	Yes	No	Not Available	0.100-0.140 mol/L	4.0-4.6	≤200	Glycine	FP, S/D, NF		
Carimune NF	Lyophilized	0.9% sodium chloride, sterile water, 5% dextrose		No	498 (3%), 690 (6%), 882 (9%), 1074 (12%) 192 (3%), 384 (6%), 576 (9%), 768 (12%) 444 (3%), 636 (6%), 828 (9%), 1020 (12%)	0.041 (12%) None None		720	Sucrose	DF, pH 4, pH 4/pepsin, NF	How right	do for
Flebogamma DIF 5%	5% Liquid	NA	No†	Optional	240-370	Trace	5-6	<50	D-sorbitol	Past, S/D, NF, FP, PEG, pH 4		
Flebogamma DIF 10%	10% Liquid	NA	No†	_	240-370	Trace	_	<100	D-sorbitol	-		
Gammagard 5% S/D	Lyophilized	Sterile water	No	Yes	636	8.5 mg/mL NaCl	6.8	<1	2% Glucose and glycine	CEF, pH 4.2, DF, CAP, CHROM		
Gammaplex	5% Liquid	NA	No	15-20 micron filter preferred	420-500	30-50 mmol/L	4.8-5	<10	Sorbitol and glycine and polysorbate 80	low pH		
Octagam 5%	5% Liquid	NA	No†	No	310-380	0.03 mEq/ml	5.1-6.0	<100	Maltose	Gammagard liquid	10% Liquid	NA
Octagam 10%	0 10% Liquid	NA	No†	No	310-380	<30mmol/L	4.5-5.0	106 µg/mL	Maltose	Gammaked	10% Liquid	NA, incompa with sal
Privigen	10% Liquid	NA	No	No	240-440	Trace	4.6-5	<25	L-proline	Gamunex-C	10% Liquid	NA, incompa with sale
										SC		
										Cuvitru	20% Solution	NA
										Hizentra	20% Liquid	NA

Lots of Products to Consider-How do you decide which one is right for the patient ???


Difference in IgG Levels IV vs. SC

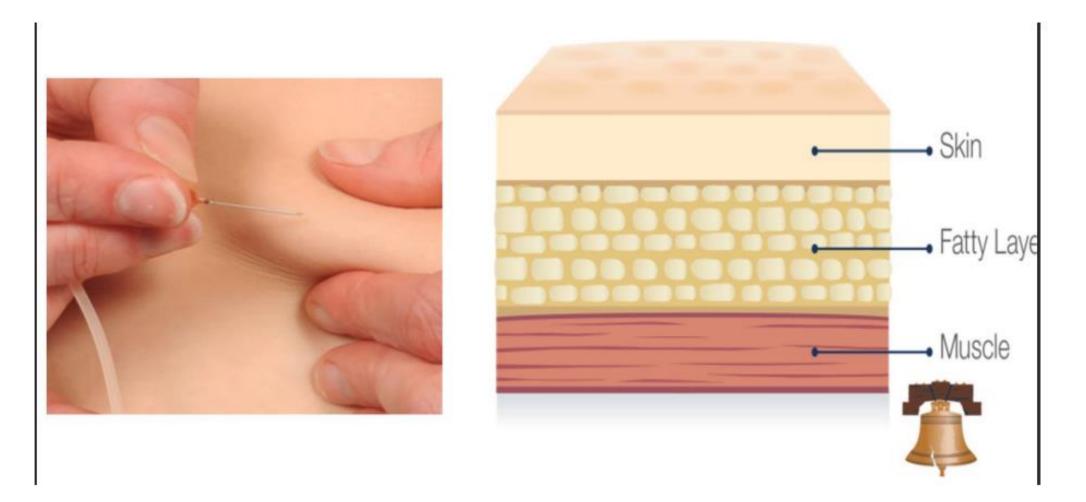
• Berger M CI 2004

Target levels

Pneumonia decreases with increasing IgG trough level

• Orange J Cl 2010

Ig Replacement Strategies


IVIG

- Needs nursing support, given at home or infusion center
- 400-600mg/kg
- Usually every 3-4 weeks
- Typically target trough 800mg/dl
- For every 100 mg/kg dose increase in IVIG, IgG trough increases by ~120 mg/dl

SCIG

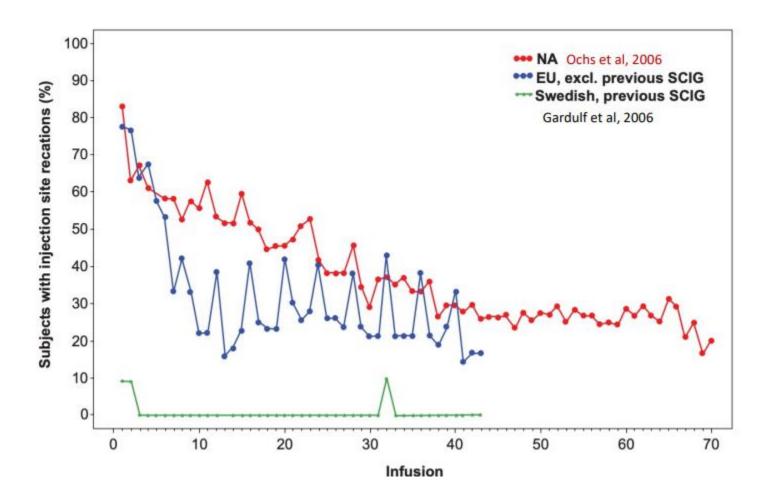
- Self administered
- 100-150mg/kg week
- Usually every 1-2 weeks
- Number of infusion sites is directed by volume of infusion
- Facilitated SC can be given every 4 weeks
- Typically Target Level 1000mg/dl

"ANYWHERE WHERE YOU CAN PINCH AN INCH"

Adverse Reactions

 IVIG Generally Associated with higher rates of Systemic reaction than SC therapy

Type of reaction	IVIg	SCIg
Mild: not requiring therapy		_
Pain at application site	0	35 (9)
Erythema at site	0	71 (11
Headache	15 (2)	2 (2)
Fatigue	13 (3)	2(1)
Rigors, minor	7 (3)	24 (2)
Hot flushes	3(1)	2 (2)
Urticaria-pruritis-eczema	3 (3)	7 (2)
Increase in pulse rate	2(1)	1
Dizziness	1	2 (2)
Nausea	1	2(1)
Others ^b	4 (3)	3 (3)
Moderate: hydrocortisone used		
for therapy		
Rigors, moderate	1	2(1)
Headache, persistent	1	0
Tremor	0	1
Muscle stiffness	0	1
Myalgia	0	1
Arthralgia	0	1
Loin pain	0	1
Cold hands	0	1

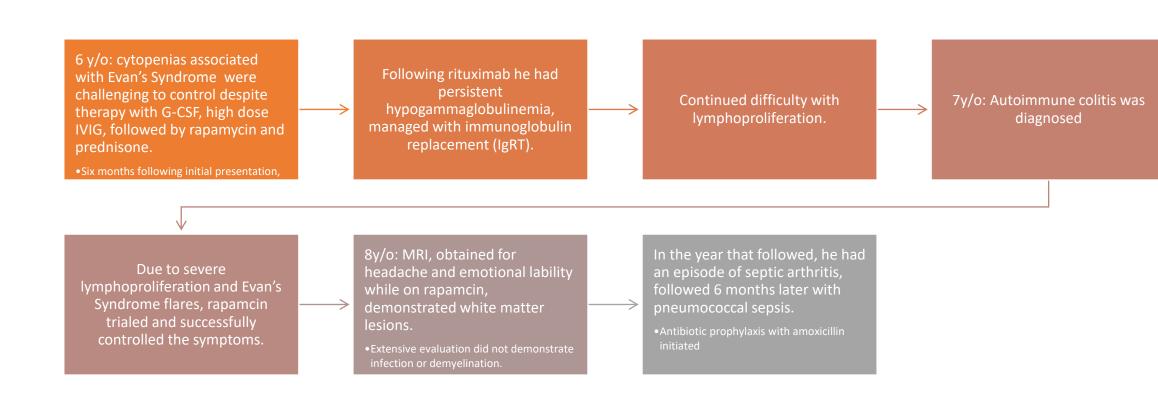

Table VI. Frequency and Types of Adverse Reactions (Number of Patients)^a

^a Some patients had more than one type of adverse reaction in a given infusion.

3

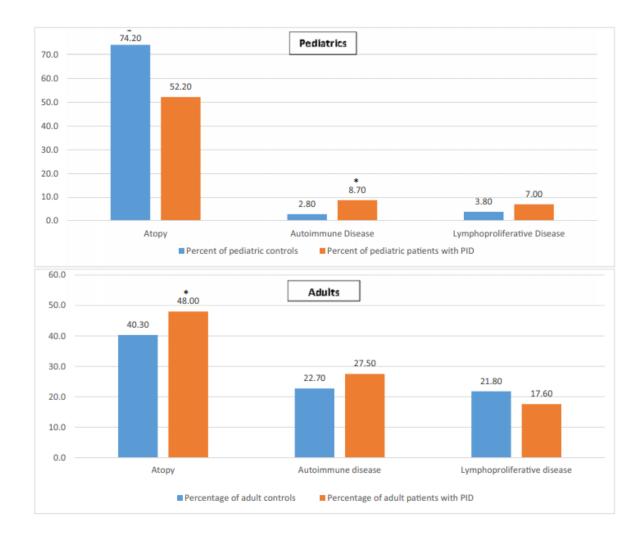
^b Including systemic pain, increase in blood pressure, vertigo, diarrhea, anxiety, cold, and abdominal pain.

SQIG and Site Reactions



Moderate

Evolution of Clinical Presentation



Updated Laboratory Findings

Test Name	Result (5y/o)	Result (8y/o)
WBC	3.1	8.9
ANC (Normal >1500)	93	6577
Hgb (Normal for age 10.9-15 g/dL)	9.5	12.7
Plt	307	205
CD3 (Normal for age 1400-3700)	1930	1075
CD4 (Normal for age 700-2200)	694	658
CD4/CD45RA	Not tested	29
CD4/CD45RO	Not tested	615
CD8 (Normal for age 490-1300)	1153	307
NK (Normal for age 130-720)	157	78
CD19 (Normal for age 390-1400)	235	441
CD19+/CD27+/lgD- (Ideal percentage 5%)	1.1%	0.2%
IgG (normal for age 490-1610)	450	821*
IgA (normal for age 35-250)	30	<6
IgM (normal for age 40-190)	137	102

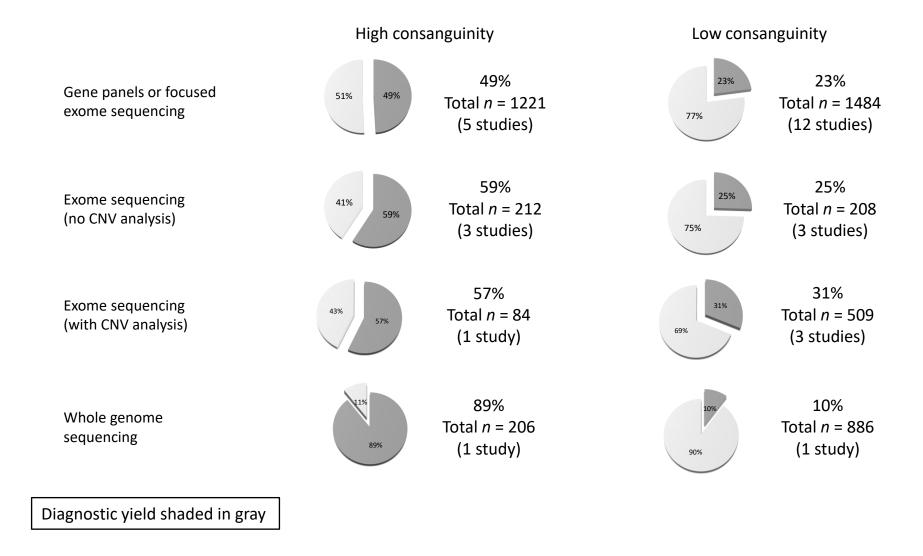
Differing Non-Infectious Symptoms

JOCI 2019

Impact of genetic testing on CVID Patient care

Prognostic value

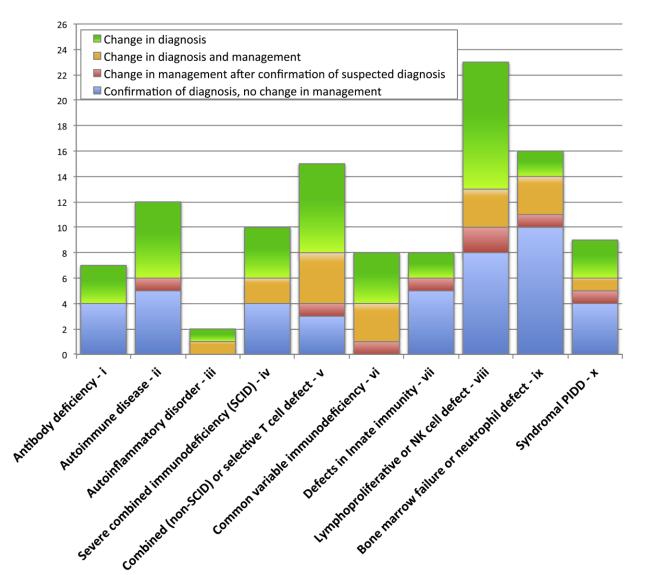
Personalized medicine with use of biologics


Consideration for HCT

- Likely to work?
- Is conditioning needed?

Gene therapy

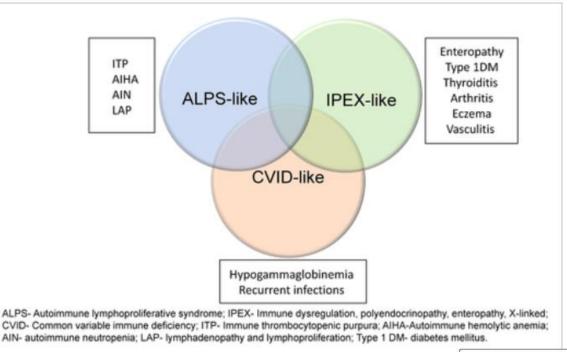
Gene editing


Genetic Testing: Molecular Defects are Not Rare

Chinn IK and Orange JS. Expert Rev Clin Immunol 2020;16(9):897-909

Genetic Testing Impact in Immunodeficiency

n=110 families



- 55% of 110 families with clinical diagnosis had diagnosis altered
- 25% of 110 families had change in management

Stray-Pedersen et al. J Allergy Clin Immunol 2017;139:232-45

Diagnosis- Finding the Spokes that lead to the CVID Umbrella Diagnosis

- Clinical syndromes of <u>early onset</u> marked lymphocyte driven autoimmune disease and/or lymphoproliferation in addition to infections
- Commonly affected organ systems include
 - Cytopenias
 - Enteropathy
 - Hepatosplenomegally
 - Endocrinopathy
- Type of infection varies by genotype
- Immune profile (lymphocyte subsets and immunoglobulin levels) vary by genotype
- Genetic testing typically necessary to make the diagnosis

Genetic testing Informs Application of Precision Medicine

Clinical Immunology 229 (2021) 108779 Contents lists available at ScienceDirect Clinical Immunology journal homepage: www.elsevier.com/locate/yclim

Abatacept for treatment-refractory pediatric CTLA4-haploinsufficiency

Anna-Lisa Lanz^a, Martin Riester^a, Philipp Peters^a, Tobias Schwerd^a, Eberhard Lurz^a, Mohammad Samer Hajji^a, Meino Rohlfs^a, Julia Ley-Zaporozhan^b, Christoph Walz^c, Daniel Kotlarz^a, Christoph Klein^{a,d,e}, Michael H. Albert^a, Fabian Hauck^{a,d,e,*}

- 9 y/o: panel-based sequencing was performed and demonstrated
 - Heterozygous frameshift mutation in CTLA-4, c.255_356delTG(p.A86fs)
- Abatacept initiated with initial clinical improvement
- Maintained on Ig RT

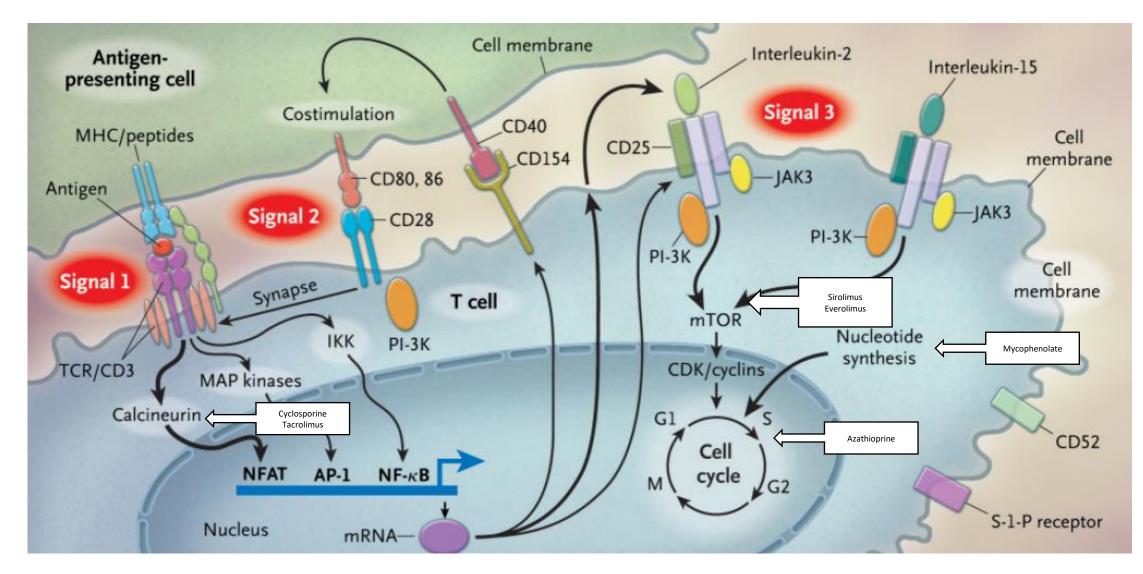
Clinical Case Presentation: Definitive Therapy (DT)

11y/o: severe flare of Evan's syndrome, with concomitant bacterial pneumonia

- HLA typing demonstrated sibling to be full match
- Received MSD BMT following conditioning with alemtuzumab, fludarabine and melphalan

Therapeutic options for CTLA-4 insufficiency

David Egg¹, Ina Caroline Rump¹, Noriko Mitsuiki¹, Jessica Rojas-Restrepo¹, Maria-Elena Maccari², Charlotte Schwab¹, Annemarie Gabrysch¹, Klaus Warnatz³, Sigune Goldacker³, Virginia Patiño⁴, Daniel Wolff⁵, Satoshi Okada⁶, Seiichi Hayakawa⁶, Yoshiaki Shikama ⁷, Kenji Kanda ⁸, Kohsuke Imai ⁹, Manabu Sotomatsu ¹⁰, Makoto Kuwashima ¹¹ Takahiro Kamiya¹², Tomohiro Morio¹³, Kazuaki Matsumoto¹³, Takeshi Mori¹⁴, Yuri Yoshimoto¹⁵, Ingunn Dybedal ¹⁶, Maria Kanariou ¹⁷, Zeynep Yesim Kucuk ¹⁸, Hugo Chapdelaine ¹⁹ Lenka Petruzelkova 20, Hanns-Martin Lorenz 21, Kathleen E Sullivan 22, Jennifer Heimall 22 Michel Moutschen²³, Jiri Litzman²⁴, Mike Recher²⁵, Michael H Albert²⁶, Fabian Hauck²⁶, Suranjith Seneviratne 27, Jana Pachlopnik Schmid 28, Antonios Kolios 29, Gary Unglik 30, Christian Klemann², Scott Snapper³¹, Lisa Giulino-Roth³², Michael Svaton³³, Craig D Platt³⁴ Sophie Hambleton ³⁵, Olaf Neth ³⁶, Geraldine Gosse ³⁷, Steffen Reinsch ³⁸, Dirk Holzinger ³⁹, Yae-Jean Kim⁴⁰, Shahrzad Bakhtiar⁴¹, Faranaz Atschekzei⁴², Reinhold Schmidt⁴² Georgios Sogkas ⁴², Shanmuganathan Chandrakasan ⁴³, William Rae ⁴⁴, Beata Derfalvi ⁴⁵, Hanne Vibeke Marguart ⁴⁶, Ahmet Ozen ⁴⁷, Ayca Kiykim ⁴⁷, Elif Karakoc-Aydiner ⁴⁷, Pavlína Králíčková 48, Godelieve de Bree 49, Dimitra Kiritsi 50, Markus G Seidel 51, Robin Kobbe 52 Jennifer Dantzer 53, Laia Alsina 54, Thais Armangue 55, Vassilios Lougaris 56, Philipp Agyeman 57, Sofia Nyström 58, David Buchbinder 59, Peter D Arkwright 60, Bodo Grimbacher 61


> J Allergy Clin Immunol. 2018 Dec;142(6):1932-1946. doi: 10.1016/j.jaci.2018.02.055. Epub 2018 May 4.

Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects

Charlotte Schwab¹, Annemarie Gabrysch¹, Peter Olbrich², Virginia Patiño³, Klaus Warnatz¹, Daniel Wolff⁴, Akihiro Hoshino⁵, Masao Kobayashi⁶, Kohsuke Imai⁷, Masatoshi Takagi⁷, Ingunn Dybedal⁸, Jamanda A Haddock⁹, David M Sansom¹⁰, Jose M Lucena¹¹ Maximilian Seidl ¹², Annette Schmitt-Graeff ¹³, Veronika Reiser ¹⁴, Florian Emmerich ¹⁵ Natalie Frede¹, Alla Bulashevska¹, Ulrich Salzer¹, Desirée Schubert¹⁶, Seiichi Hayakawa⁶, Satoshi Okada⁶, Maria Kanariou¹⁷, Zeynep Yesim Kucuk¹⁸, Hugo Chapdelaine¹⁹ Lenka Petruzelkova ²⁰, Zdenek Sumnik ²⁰, Anna Sediva ²¹, Mary Slatter ²², Peter D Arkwright ²³, Andrew Cant²², Hanns-Martin Lorenz²⁴, Thomas Giese²⁵, Vassilios Lougaris²⁶ Alessandro Plebani ²⁶, Christina Price ²⁷, Kathleen E Sullivan ²⁸, Michel Moutschen ²⁹ Jiri Litzman ³⁰, Tomas Freiberger ³¹, Frank L van de Veerdonk ³², Mike Recher ³³ Michael H Albert ³⁴, Fabian Hauck ³⁴, Suraniith Seneviratne ³⁵, Jana Pachlopnik Schmid ³⁶ Antonios Kolios ³⁷, Gary Unglik ³⁸, Christian Klemann ³⁹, Carsten Speckmann ⁴⁰, Stephan Ehl ¹ Alan Leichtner⁴¹, Richard Blumberg⁴², Andre Franke⁴³, Scott Snapper⁴⁴, Sebastian Zeissig⁴⁵ Charlotte Cunningham-Rundles⁴⁶, Lisa Giulino-Roth⁴⁷, Olivier Elemento⁴⁸, Gregor Dückers⁴⁹ Tim Niehues 49, Eva Fronkova 50, Veronika Kanderová 50, Craig D Platt 51, Janet Chou 51, Talal A Chatila ⁵¹, Raif Geha ⁵¹, Elizabeth McDermott ⁵², Su Bunn ⁵³, Monika Kurzai ⁵⁴, Ansgar Schulz 55, Laia Alsina 56, Ferran Casals 57, Angela Devà-Martinez 56, Sophie Hambleton 22,

Hematopoietic stem cell transplantation for CTLA4 deficiency

Three signal model of T cell immunosuppression

Halloran PF. N Engl J Med. 2004; 351: 2715-29.

Immune modulating therapy

Oral

- Tacrolimus \rightarrow IPEX
- Cyclosporine \rightarrow IPEX
- Sirolimus (mTOR inhibitor) → IPEX, STAT1 GOF, LRBA, CTLA4, DEF6 defects
- Ruxolitinib (JAK1/2 Inhibition)→ STAT1 GOF, STAT3 GOF, others

Infusion

- Rituximab (anti-CD20) → B cell mediated autoimmunity/immunedysregulation
- Abatacept (CTLA4 fusion protein) → LRBA, CTLA4, DEF6 defects
- Tocilizumab (anti-IL6R) → STAT3 GOF
- Siltuximab (anti-IL6) → STAT3 GOF

Toxicity of Oral T cell Immunosuppressants

	ТАС	CSA	m-TOR Inhibitors	MMF
Potency	+++ <u>+</u>	+++	++ <u>+</u>	++
Nephrotoxicity	++	++	-	-
Neurotoxicity (PRES)	++	+	-	-
Diabetogenic	++	+	-	-
GI intolerance	-	-	+	++
Hepatotoxicity	<u>+</u>	±	+	-
Marrow suppression	-	-	+	+

TAC= tacrolimus CSA= cyclosporine M-TOR inhibitors = sirolimus & everolimus MMF= Mycophenolate mofetil

Starting dose Guidance

Tacrolimus → Standard starting dose: 0.05-0.1 mg/kg/DOSE q12h

Cyclosporine→ Standard starting dose: 2-3 mg/kg/DOSE q12h

Mycophenolate→ Standard starting dose: 300 mg/m2/dose q12h (MAX 500 mg)

Sirolimus \rightarrow Standard starting dose:

- Children < 40 kg and pre-pubescent: consider loading dose: 3 mg/m² (day 1); followed by a maintenance dose of 1-5 mg/m²/day divided every 12 hours
- Adolescents > 40 kg and adults: 2 mg PO once daily

Clinical Pearls

- CVID is an Umbrella Diagnosis that can be made based on Clinical and Laboratory Criteria
- There are a broad range of monogenic inborn errors of immunity that can present under the CVID clinical diagnostic umbrella
- Knowing the underlying genetic defect can aid in choosing the correct precision therapy and inform prognosis counseling to patients, thus genetic testing should be considered for all patients with CVID
- If patients are initiated on B cell depleting agents for autoimmune disease, it is critically important to evaluate for humoral IEI prior to starting these therapeutic agents because this can be a presenting symptom of CVID
- IgG levels >800mg/dl for patients on IVIG and >1000mg/dl for those on SC are associated with reduced frequency of severe sinopulmonary infection
- Autoimmune manifestations are common in patients with CVID, and use of immunomodulation in conjunction with Ig replacement is needed to manage these symptoms