Rohit Katial, MD, FAAAAI, FACAAI, FACP Professor of Medicine Associate Vice President of Education Director, Center for Clinical Immunology Irene J. & Dr. Abraham E. Goldminz, Chair in Immunology and Respiratory Medicine National Jewish Health & University of Colorado, Denver

National Jewish Health®

Breathing Science is Life.

Severe Asthma and the Role of the Upper Airway

A Comprehensive Approach to Chronic Inflammatory Airway Diseases

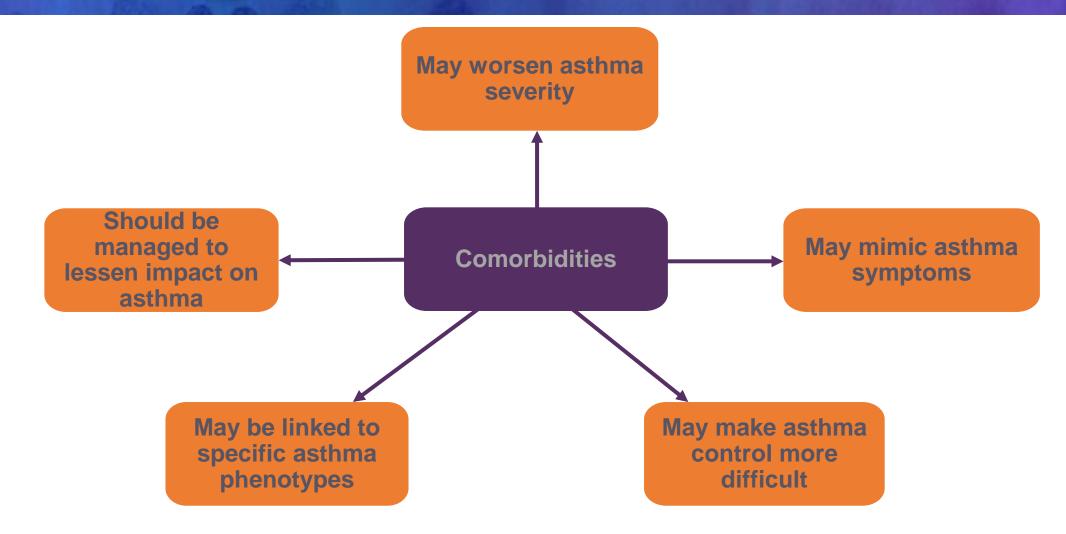
Learning Objectives

- Describe the major comorbidities that coexist with asthma
- Assess the role of type 2 cytokines in the inflammatory pathways in severe asthma and upper airway disease
- Identify appropriate biomarkers to guide treatment selection for severe asthma and upper airway chronic inflammatory disease
- Incorporate an understanding of the impact of comorbid upper airway diseases to personalize treatment strategies for severe asthma

How should an accurate diagnosis of severe uncontrolled asthma be made?

Check adherence/ inhaler technique

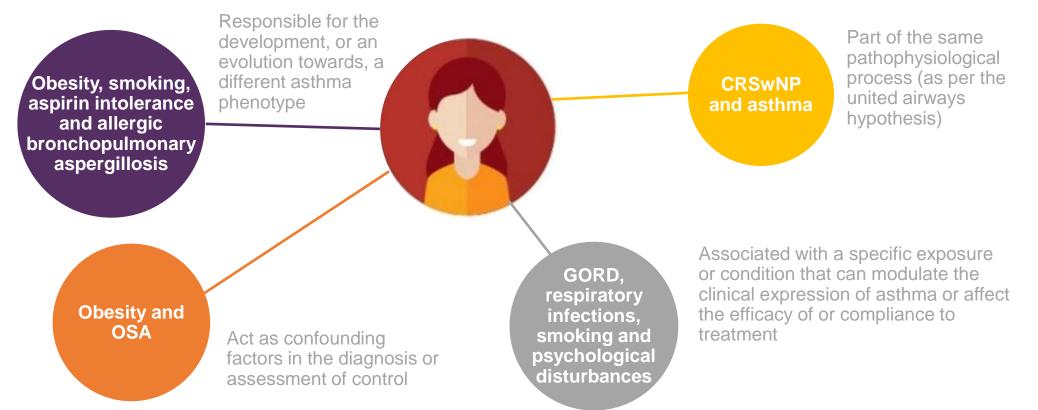
Screen for comorbidities



Rule out other potential diagnoses Check for triggers/irritant s

Assess asthma control

Comorbidities Have Significant Implications For Evaluation/ Assessment Of Asthma Control And Medication Needs



Why Are Comorbidities Important In The Management Of Severe Asthma?

Comorbidities Influence Disease Severity

Identification of comorbidities is an integral part of phenotyping and management of asthma, particularly in severe asthma

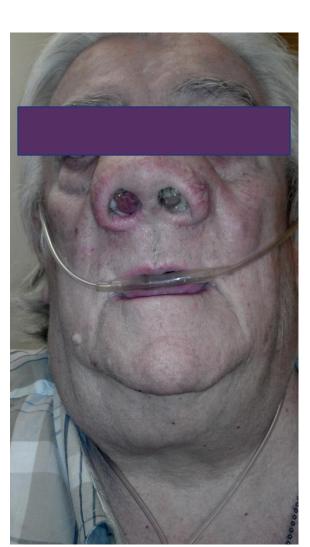
OSA, obstructive sleep apnoea; GORD, gastro-oesophageal reflux disease Boulet LP. *Eur Respir J.* 2009;33:897-906.

Eosinophilic Inflammation & Co-morbidities

- Eosinophilic inflammation characterizes the dysregulation of biological mechanisms involved in eosinophil recruitment and activation in disease
- Role of eos are well established in some atopic/respiratory disease, while others where eos role is less clear

Established Eos Diseases	Diseases where the role of eos is less clear, or may play a role in certain subgroups				
SEA	COPD				
ABPA?	BRx				
HES	CRSwNP				
EGPA	AD				
	CSU				
	BP				
	EoE? EG? EGE?				

ABPA, allergic bronchopulmonary aspergillosis; AD, atopic dermatitis; BP, bullous pemphigoid; BRx, bronchiectasis; COPD, chronic obstructive pulmonary disease; CRSwNP, chronic rhinosinusitis with nasal polyps; CSU, chronic spontaneous urticaria; EG, eosinophilic gastritis; EGE, eosinophilic gastroenteritis; EGPA, eosinophilic granulomatosis with polyangiitis; EID, eosinophilic immune dysfunction; EoE, eosinophilic esophagitis; HES, hypereosinophilic syndrome; SEA, severe eosinophilic asthma

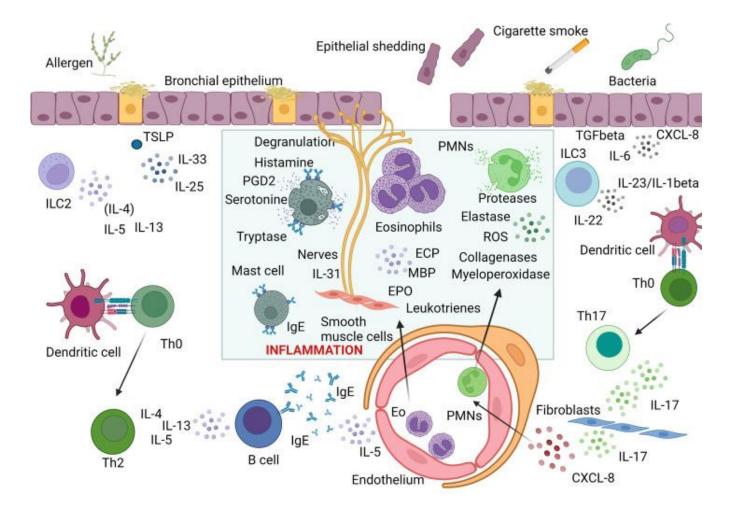

Quality of Life Impact

R	Health state	Health utility score
	Perfect health	1
	US norms	0.81
	COPD (mod)	0.73
	Parkinson disease (1st year)	0.67
	CAD requiring PCI	0.67
	CRS	0.65
	Asthma (mod)	0.64
	ESRD with HD	0.64
	HIV	0.52
	Death	0

CAD, coronary artery disease; COPD, chronic obstructive pulmonary disease; ESRD, end-stage renal disease; HD, hemodialysis; MOD, moderate; PCI, percutaneous coronary intervention. Adapted from DeConde AS, Soler ZM. Am J Rhinol Allergy. 2016;30(2):134-139.

The "Unified Airway"

Two anatomic "compartments" with overlapping disease and etiologies


Shared stimuli (allergens, infectious agents, inhaled agents) and shared anatomic, signaling and immune crosstalk

- Allergic rhinitis
- Chronic rhinosinusitis with nasal polyposis
- Chronic rhinosinusitis without nasal polyposis
- Nonallergic rhinitis
- Mixed rhinitis
- Otitis media
- AERD/NSAID-ERD

- Asthma
 - Type 2
 - Non Type 2
- Asthma COPD Overlap Syndrome
- Eosinophilic COPD

Severe Asthma: Multiple Pathways

Cellular and cytokine interactions involved in allergic (Type 2) and non-allergic (non-Type 2) asthma by Striz I, et al. in New insights into the pathophysiology and therapeutic targets of asthma and comorbid chronic rhinosinusitis with or without nasal polyposis. *Clin Sci (Lond)*. 2023;137(9): 727-753. doi:10.1042/CS20190281. Used under the Creative Commons Attribution License 4.0 (CC BY) https://creativecommons.org/licenses/by/4.0/

Severe Asthma: Treatment Options and Escalation

- High dose ICS/LABA with adherence
- LAMA
- Ongoing evaluation and treatment of comorbidities
- Consider biologic therapy
 - Anti-IgE
 - Anti-IL5
 - Anti-IL5R
 - Anti-IL4/13
 - Anti-alarmin therapy (currently anti-TSLP)
- Ongoing role for systemic corticosteroids?
- What about comorbid diseases of the upper airway that may share common molecular features and contribute to severity of asthma?

Personalized Approach: Initial Biologic Selection

- Phenotype/endotype with available biomarkers
- Co-morbidities (CRSwNP, EGPA, HES, atopic dermatitis, chronic urticaria, eosinophilic esophagitis)
- Shared-decision making with the patient
 - Set realistic expectations
 - Logistical considerations
 - In-office versus at-home administration
 - Frequency of dosing
 - Insurance coverage
 - Side effect profiles

Personalized Approach: Assessing Response to Therapy

- Continue for a minimum of 4-12 months, depending on the patient's situation
- Keep in mind the reason for starting the biologic
- Look for improvement in
 - Patient Reported Outcomes
 - Control (SNOT-22, ACT, ACQ, AIRQ)
 - Quality of life measures, impact on sleep
 - Exacerbation frequency
 - Chronic or recurrent OCS dose
 - Objective measures (Sinus CT scan, nasal endoscopy, lung function, exhaled nitric oxide)

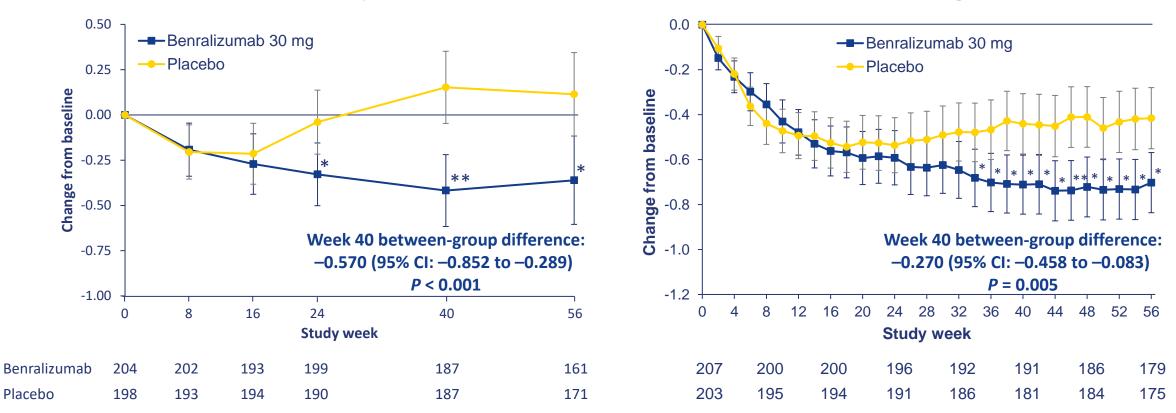
Personalized Approach: When to Switch Biologics

- Non-responder (or partial responder)
- Initial responder who has stopped responding
- Adverse effects
- Suspected non-adherence
- Development of new co-morbidities

Approved Biologics for CRSwNP

				Dosing and Frequency for CRSwNP			Phase 3 Clinical Trial Results		
Drug	Target	Approval in US	Age (years)			Route	Nasal Polyp Burden	Nasal Congestion	Reduced Need for Surgery
Dupilumab	IL-4Rα (blocks IL-4 and IL- 13)	2017 A.D. 2018: Asthma 2019: CRSwNP (add on) 2022: EoE	A.D.≥0.5; Asthma≥6; CRSwNP≥18; EoE≥12	300 mg	Q2W	s.q. prefilled auto-injector or syringe	\checkmark	\checkmark	√
Omalizumab	IgE	2003 Asthma 2016 CSU 2020: CRSwNP (add on)	Asthma≥6; CSU≥12; CRSwNP≥18	75-600 mg (based upon weight, IgE level)	Q2W Q4W	s.q. prefilled syringe	√	V	Not done
Mepolizumab	IL-5	2015 Asthma 2019 EGPA 2020 HES 2021: CRSwNP (add on)	Asthma≥6; EGPA≥18; HES≥12 CRSwNP≥18 ⁰∘ №	100 mg lot Distribute	Q4W	s.q. prefilled auto-injector or syringe	√	√	√

Phase III studies in NP: Results


* not significant **Pooled SINUS-52 and -24 Darker shaded cells are primary endpoints

	Dupilumab SINUS-52 ^{1,2,}		Dupilumab SINUS-24 ^{3,4}		Omalizumab POLYP-1 ⁵		Omalizumab POLYP-2 ⁶		Mepolizumab SYNAPSE ^{7,8}
	DUPI (n=295)	PBO (n=153)	DUPI (n=143)	PBO (n=133)	OMA (n=72)	PBO (n=66)	OMA (n=62)	PBO (n=65)	
NPS	-1.71	0.10	-1.89	0.17	-1.08	0.06	-0.90	-0.31	-0.73 median change from BL
NFS	@week 24 P<0.0001		P<0.0001		P<0.0001		P=0.0	140	(p<0.001)
Lund-Mackay	-5.21	-0.09	-8.18	-0.74	NL/	٨	N1//	\	
CT score	@week 24	1 P<0.0001	P<0.0001		N/A		N/A		
NCS (or OS	-1.25	-0.38	-1.34	-0.45	-0.89	-0.35	-0.70	-0.20	Nasal obstruction visual analogue score (median)
for DUPI)	@week 24 p<0.0001		p<0.00	01	P=0.0	0004	P=0.00	017	P<0.001
Loss/Sense of	-1.21	-0.23	-1.41	-0.29	-0.56	-0.23	-0.58	-0.13	
smell			P<0.0001		P=0.0161		0.002	24	
Post Rhinorrhea	N/A N,		NI/A		-0.72	-0.16	-0.55	0	
Score			N/A		P=0.0001		P=0.0001		
Ant Rhinorrhea	N/A		NI / A		-0.77	-0.34	-0.7	-0.08	
Score	IN	/ A	N/A		P=0.0023		p<0.0001		
SNOT-22	-27.77	-10.40	-30.43	-9.31	-24.7	-8.58	-21.59	-6.55	
3101-22	@week 24	4 p<0.0001	p<0.0001		P<0.0	0001	p<0.0	001	
Rescue Tx (CS or NP Surgery)	POOLED** DUPI (n=438) 42 (10%) PBO (n=286) 97 (34%)			2 (2.8%)*	3 (4.5%)*	1 (1.6%)*	5 (7.7%)*		
		p·	<0.0001						
Surgery for NP					0*	1.5%*		1.5%*	57% (p=0.003) reduction in time to first surgery
TNSS					-2.97	-1.06	-2.53	-0.44	
					P=0.0	0001	p<0.0	001	
UPSIT	9.71	-0.81	11.26	0.70	4.44	0.63	4.31	0.44	
<u></u>	@week 24	4 p<0.0001	p<0.00	01	(p=0.0	024)	P=0.00)11	

OSTRO: Co-Primary Endpoint Results

Nasal Polyp Score

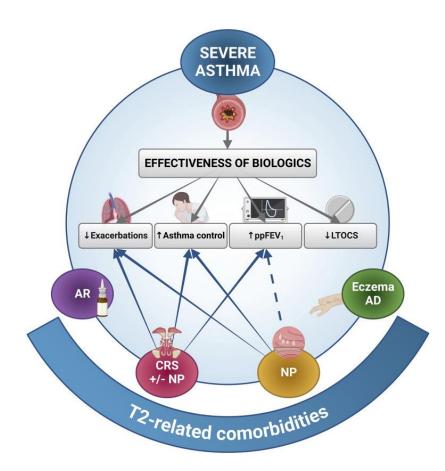
Nasal Blockage Score

Data are least-squares means \pm 95% confidence intervals (CIs) for the full analysis set. Nasal Polyp Score range: 0-8. Nasal Blockage Score range: 0-3. **P* < .05; ***P* < .001 for the comparison of benralizumab and placebo.

Published Randomized Controlled Trials of Biologic Therapies in CRSwNP

Biologic	Study name	Nasal Polyp Score (NPS)	Nasal Obstruction (Nasal Congestion Score or VAS)	SNOT-22	Smell Score	Time to OCS or surgery
Dupilumab ¹	SINUS-24 SINUS-52	Improved	Improved	Improved	Improved	Prolonged
Omalizumab ²	POLYP 1 POLYP 2	Improved	Improved	Improved	Improved	Prolonged
Mepolizumab ³	SYNAPSE	Improved	Improved	Improved	Improved	Prolonged
Benralizumab ⁴	OSTRO	Improved	Improved	Not statistically different	Improved	Not statistically different

1. Bauchert et al. Lancet 2019; 394: 1638–50.


2. Gevaert et al. JACI 2020;146:595-605.

3. Bauchert et al. JACI 2022; 141(5): 1711-21.

4. Bauchert et al. JACI 2022; 149(4): 1309-17.

Comorbidities Can Impact Degree of Asthma Improvement with Biologics

Pelaia C, et al. In Do Comorbidities Influence the Response to Biologics in Severe Asthma? Am J Respir Crit Care Med. 2024;209(3):233-235 doi:10.1164/rccm.202311-2103ED. Used under the Creative Commons Attribution License https://creativecommons.org/licenses/by-nc-nd/4.0/

- International Severe Asthma Registry (ISAR)
- 1765 patients started on biologics, most on anti-IL-5 therapy
- Compared to those without, those with co-morbid CRS with or without NPs:
 - 23% fewer exacerbations per year
 - 59% higher odds of better asthma control after starting biologics
 - Additional FEV1% predicted improvement of 3.2%
 - No difference in weaning OCS doses
- No effect of co-morbid AR or AD
- Corroborates findings of individual biologic agents in subanalysis studies of RTCs & real-world trials

Wechsler ME, et al. Respir Crit Care Med. 2024;209(3):262-272.

Comparisons

EVEREST (NCT04998604): phase 4 RCT, dupilumab vs omalizumab, N=422

- First head-to-head trial comparing 2 biologics in patients with CRSwNP and comorbid asthma
- Primary objective: evaluate efficacy of dupilumab compared to omalizumab in reducing polyp size and improving sense of smell

Meta-analyses:

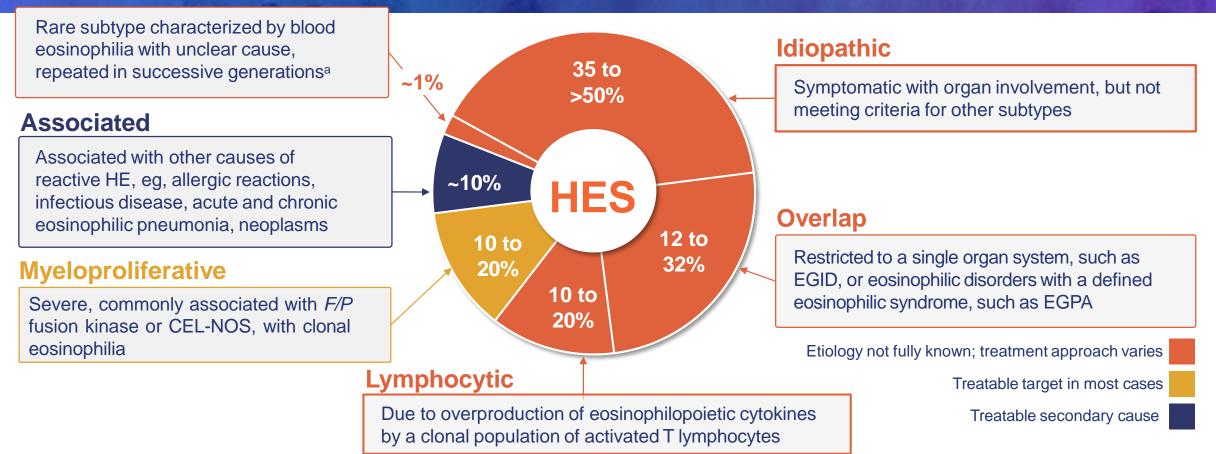
- Cai S, et al: 7 RCTs involving 1913 patients, 4 biologics (benralizumab, dupilumab, mepolizumab, omalizumab)
 - Dupilumab better effects in decreasing NPS and nasal congestion severity
 - Benralizumab least effective in reducing nasal congestion severity and SNOT-22
 - No significant differences between effects of the other biologics
- Oykhman P, et al: 29 RCTs involving 3461 patients
 - Moderate to high certainty: dupilumab ranks among most beneficial for 7 of 7 outcomes, omalizumab 2 of 7, mepolizumab 1 of 7 and aspirin therapy after desensitization 1 of 7

De Prado Gomez L, et al. *Am J Rhinol Allergy*. 2022;36(6):788-795; Cai S, et al. *J Allergy Clin Immunol Pract*. 2022;10(7):1876-1886.e7; Oykhman P, et al. *J Allergy Clin Immunol*. 2022;149(4):1286-1295; https://clinicaltrials.gov/study/NCT04998604

HES is a heterogenous group of rare disorders characterized by eosinophilia and end-organ damage

Q		
HES is defined by: Persistent hypereosinophilia (≥1500 cells/µL) + No evidence for secondary/reactive eosinophilia (eg parasitic infection	There are multiple variants of HES, which vary in terms of aetiology and clinical features ^{3,4}	Incidence: 0.2–0.4 per 100,000 person-years ⁴ Prevalence: 0.3–6.3 per 100,000 individuals ⁴ Male-to-female ratio: 1.4 ^{1,5}
or allergic reactions) + Signs of organ involvement ^{1,2}		Incidence and prevalence were estimated for the US population ⁴ Limited other population-based data exist ⁴

1. Gotlib J. *Am J Hematol* 2017;92:1243–59; 2. Cogan E, Roufosse F. *Expert Rev Hematol* 2012;5:275–90; 3. Valent P *et al. J Allergy Clin Immunol* 2012;130:607–12; 4. Crane MM *et al. J Allergy Clin Immunol* 2010;126:179–81; 5. Ogbogu PU *et al. JACI* 2009;124:1319

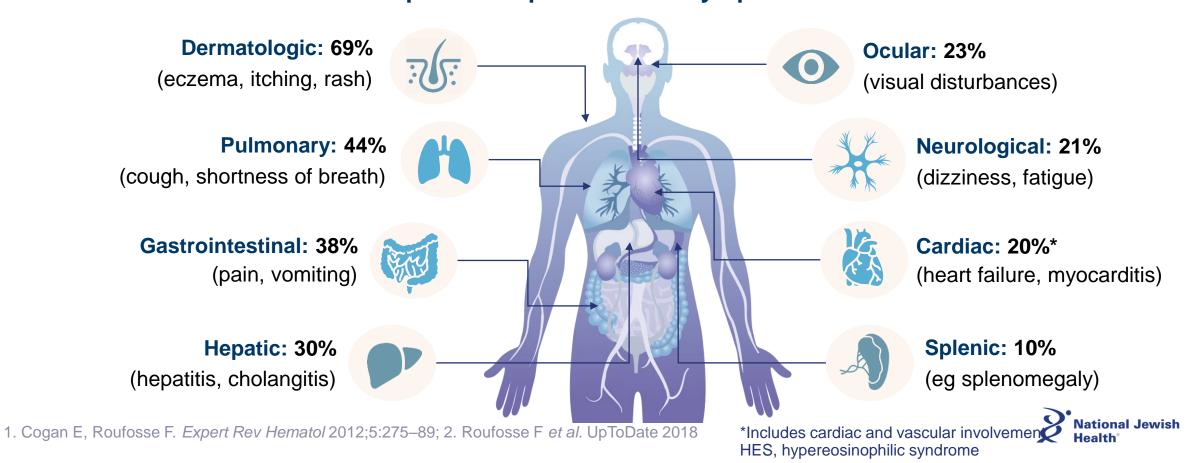

HES, hypereosinophilic syndrome

HES Subtypes

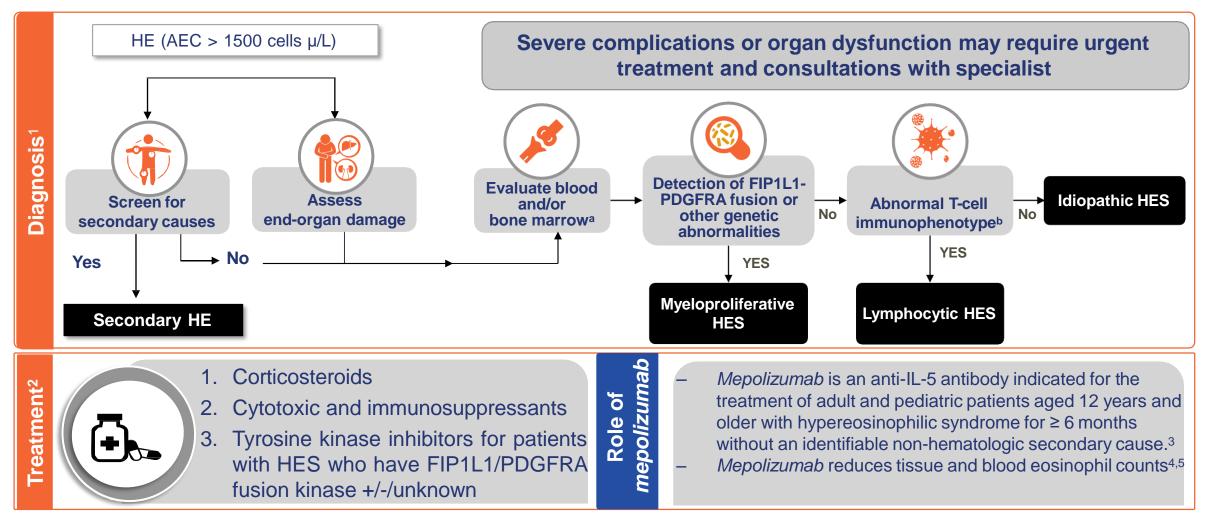
Classification of HES by the International Eosinophil Society HES Working Group^{1,2}

Familial

^aMost affected individuals are asymptomatic and therefore would qualify as HE and not HES.


CEL-NOS = chronic eosinophilic leukemia-not otherwise specified; EGID = eosinophilic gastrointestinal disorders; EGPA = eosinophilic granulomatosis with polyangiitis; F/P = FIP1-like-1 platelet-derived growth factor receptor alpha; HE = hypereosinophilia; HES = hypereosinophilic syndrome.

1. Klion A. Hematology Am Soc Hematol Educ Prog. 2018(1):326-331; 2. Kuang FL, Klion AD, J Allergy Clin Immunol Pract. 2017;5(6):1502-1509; 3. Williams KW, et al. J Allergy Clin Immunol Pract. 2016;4(5):941-947e1; 4. Klion A. Blood. 2015;126(9):1069-1077.; 5. Kahn JE, et al. Front Med. 2017;4:216; 6. Ogbogu PU, et al. J Allergy Clin Immunol. 2009;124(6):1319-1325e3; 7. Klion A et al. J Allergy Clin Immunol. 2006;117(6):1292-1302; 2. Valent P, et al. J Allergy Clin Immunol. 130(3):607-612.e9; 9. Klion A, et al. Annu Rev Pathol Mech Dis. 2020;15:179-209.



HES is a potentially fatal disease that can cause damage to multiple organs and systems

HES can manifest as tissue-specific or widespread organ damage, resulting in diverse symptoms¹ HES-related worsening of clinical signs, or flares, can occur during treatment or upon withdrawal² Proportion of patients with symptoms of HES

HES Diagnosis and Treatment

^aserum B12, tryptase, IgE, FIP1L1-PDGFRA, and T cell receptor arrangement, etc; ^bT cell receptor rearrangement, etc.

AEC = absolute eosinophil count; FGFR1 = fibroblast growth factor receptor 1; FIP1L1/PDGFRA = FIP1-like-1 platelet-derived growth factor receptor alpha; HES = hypereosinophilic syndrome; NOS = not otherwise specified; OCS = oral corticosteroids.

1. Shomali W, et al. Am J Hematol. 2019;94:1149-1167; 2. Ogbogu PU, et al. J Allergy Clin Immunol. 2009;124:1319-1325; 3. Prescribing Information for Nucala; 4. Ortega HG, et al. N Engl J Med 2014;371:1198-1207; 5. Flood-Page PT, et al. Am J Respir Crit Care Med. 2003;167:199-204.

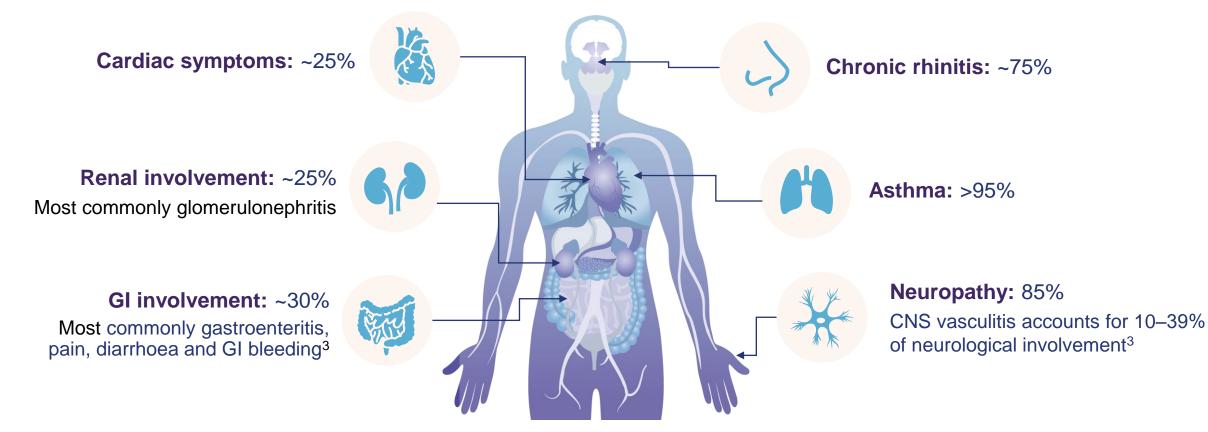
SUMMARY: Mepolizumab in HES

- On September 25, 2020, the US Food and Drug Administration approved mepolizumab for the treatment of adults and children aged 12 years and older with HES for ≥6 months without an identifiable non-hematologic secondary cause of the disease.¹
- Approval based on results of a randomized, multicenter, double-blind, placebo-controlled, Phase III trial in patients with HES^{1,2}
- Results showed:²
 - 50% relative reduction in HES flares with mepo vs placebo (15/54 [28%] vs 30/54 [56%]; p=0.002
 - 66% lower risk of experiencing a first flare during the treatment period with mepo vs placebo (HR: 0.34; 95% CI: 0.18, 0.67; p=0.002)
 - fewer flares or study withdrawals with mepo vs placebo during study weeks 20-32 (17% vs 35%, respectively, p=0.02).

National Jewish

1. US Food and Drug Admininstration website. 2. Roufosse et al. J Allergy Clin Immunol. 2020. Accessed, April , 2024.

SUMMARY: Benralizumab in HES


- Phase II study: evaluated the efficacy and safety of benralizumab 30 mg administered subcutaneously (SC) every 4 weeks (Q4W) for 3 doses in addition to stable background therapy in 20 adult patients who had a symptomatic HES without the platelet-derived growth factor receptor-α (PDGFRA) mutation.¹
 - 90% of patients in the benralizumab group versus 30% of patients in the placebo group experienced a reduction in their absolute eosinophil count (AEC) of at least 50% (primary endpoint).
- NATRON, a Phase III randomized, double blind, placebo-controlled, 24-week study evaluating the efficacy and safety of benralizumab SC Q4W in approximately 120 patients with HES, is currently ongoing with an estimated completion date of July 2022.²

EGPA is a complex, multisystem disease

EGPA predominantly affects the airways, peripheral nerves, heart, kidney and GI tract¹

Proportion of patients with clinical signs of EGPA²

1. Comarmond C *et al. Arthritis Rheum* 2013;65:270–81; 2. Chakraborty RK *et al.* Churg Strauss Syndrome (Allergic Granulomatosis); StatPearls Publishing 2019; 3. Gioffredi A *et al. Front Immunol* 2014;5:549

CNS, central nervous system; EGPA, eosinophilic granulomatosis with polyangiitis; GI, gastrointestinal; OCS, oral corticosteroids

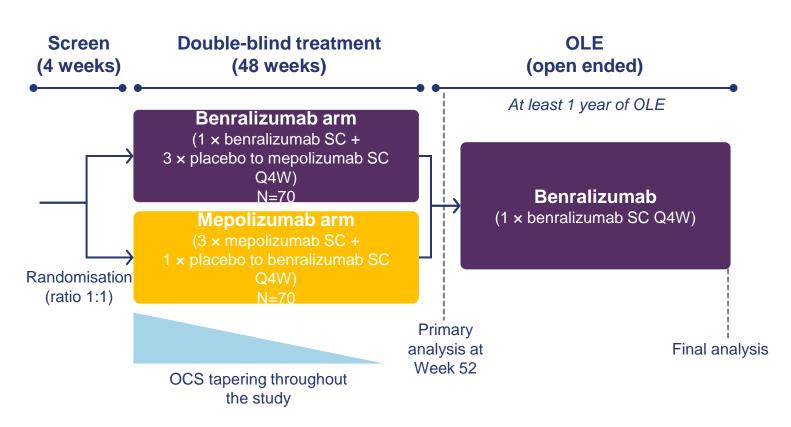
Diagnosis of EGPA is a complex clinical challenge

Delayed or missed diagnoses are frequent (mean time from onset to diagnosis is ~50 months)¹

The ACR criteria (1990) were created to enable the **classification** of vasculitides; the presence of **four of the six features below** identify EGPA with a sensitivity of 85% and a specificity of 99.7%^{3,4}

Eosinophilia	Asthma	Extravascular	Neuropathy	Paranasal	Non-fixed
(>10% total white		eosinophilic		sinus	pulmonary
blood cells)		infiltration		abnormalities	infiltrates

- ANCA positivity is observed in ~40% of patients and is also suggestive of EGPA⁵
- While ACR criteria were developed before ANCA testing became widespread,² the European Respiratory
 Society recommends biochemical and immunohistochemical ANCA testing in patients with suspected EGPA⁶


Results

- Co-primary Endpoints
 - Subjects receiving 300 mg of mepolizumab achieved a significantly greater accrued time in remission compared with placebo.
 - A significantly higher proportion of subjects receiving 300 mg of mepolizumab achieved remission at both Week 36 and Week 48 compared with placebo.
- Secondary Endpoints
 - Significantly more subjects receiving 300 mg of mepolizumab achieved remission within the first 24 weeks and remained in remission for the remainder of the 52-week study treatment period compared with placebo (19% for 300 mg of mepolizumab versus 1% for placebo; OR 19.7; 95% CI: 2.3, 167.9).
 - Additionally, a statistically significant benefit for the co-primary endpoints and additional endpoint was demonstrated using remission defined as BVAS = 0 plus prednisolone/prednisone ≤7.5 mg/day.

MANDARA study design

MANDARA (NCT03010436): non-inferiority study of benralizumab versus mepolizumab

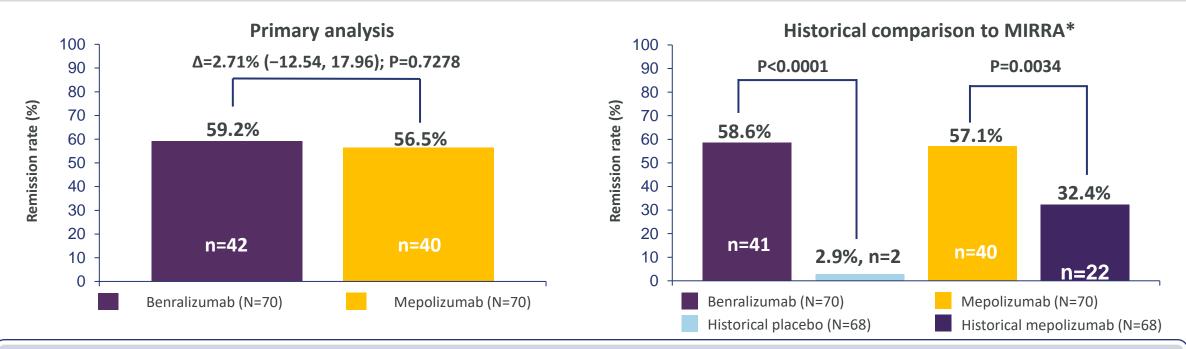
Primary endpoint

Proportion of patients with relapsing or refractory EGPA achieving remission at both Weeks 36 and 48*

Key inclusion criteria

- Males/females aged ≥18 years
- EGPA diagnosis: history or presence of asthma and eosinophilia[†] and ≥ 2 other predefined criteria[‡]
- History of relapsing OR refractory disease
- Stable dose of oral prednisolone or prednisone ≥7.5 mg/day (but not >50 mg/day) for \geq 4 weeks prior to randomisation

*Remission defined as a BVAS of 0 and OCS dose <4 mg/day; +>1.0x10⁹/L and/or >10% of leucocytes; +biopsy with eosinophilic vasculitis or perivascular/granulomatous inflammation; mono-or polyneuropathy,


non-fixed pulmonary infiltrates, sinonasal abnormality; cardiomyopathy; glomerulonephritis; alveolar haemorrhage; palpable purpura; anti-neutrophil cytoplasmic antibody (ANCA) positivity (Mveloperoxidase or proteinase 3)

Wechsler ME, et al. NEJM 2024:390;911-21.

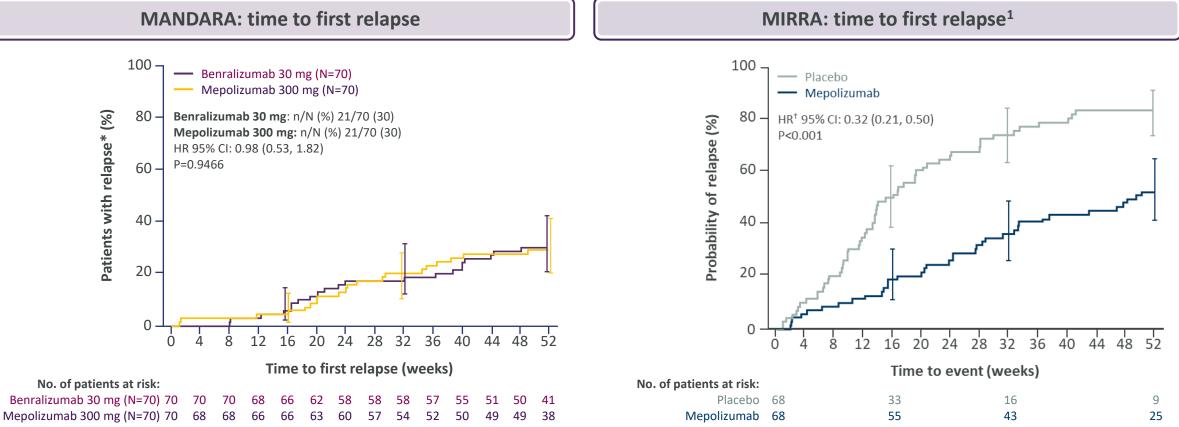
Primary outcome measures demonstrated non-inferiority versus mepolizumab

Remission (BVAS=0 and OCS ≤4mg/day) at Weeks 36 and 48

The remission rates were not significantly different between benralizumab and mepolizumab groups

• Non-inferiority demonstrated: lower 95% CI is well above NI margin of -25%

• Indirect treatment comparison demonstrated a highly significant improvement in remission for benralizumab vs historical placebo


Mepolizumab remission rate in MANDARA is higher than in MIRRA

*Historical comparison for validation

Primary analysis results (%, Δ, 95% CI, p-value) are model adjusted rates from logistic regression, adjusting for baseline OCS, BVAS and region. Historic comparison to MIRRA are unadjusted for baseline covariates

Time to relapse was similar between treatment groups

Three patients receiving mepolizumab in MANDARA had major relapse versus 0 patients receiving benralizumab

Relapse was defined as any organ or life-threatening EGPA event; OR BVAS ≥6 (involving at least two organ systems in addition to any general symptoms where present [myalgia, arthralgia/arthritis, fever >38°C or weight loss >2 kg]); OR an asthma relapse requiring hospitalisation; OR sinonasal relapse requiring hospitalisation

*Error bars represent 95% CI; [†]A hazard ratio <1 favours mepolizumab

1. Wechsler ME, et al. N Engl J Med 2017;376:1921–1932; Wechsler ME, et al. NEJM 2024:390;911-21.

MANDARA SUMMARY

- The MANDARA study demonstrated non-inferiority of benralizumab vs mepolizumab over 52 weeks in patients with relapsing/refractory EGPA receiving SoC
- More benralizumab-treated patients were fully tapered off OGCs
- Blood eosinophil depletion was greater with benralizumab than mepolizumab at all timepoints
- Benralizumab was well tolerated, and the safety profile was similar to known safety profiles from studies in asthma
 - No clinically meaningful differences in safety profiles of benralizumab and mepolizumab were seen
- This study provides evidence for the efficacy and utility of benralizumab in this population, confirming that eosinophil-targeting treatments are beneficial for patients with EGPA

Conclusion

- CRSwNP has significant burden on QOL, high direct and indirect costs
- Patient education: chronic inflammatory condition without curative treatment
- Goals of treatment to control inflammation and improve QOL
- Treatment options include nasal saline irrigation, topical and systemic corticosteroids, surgical intervention, and biologic therapies
- Biologics, such as dupilumab, omalizumab, and mepolizumab, have been shown to reduce nasal polyp size and improve nasal symptoms in the treatment of CRSwNP