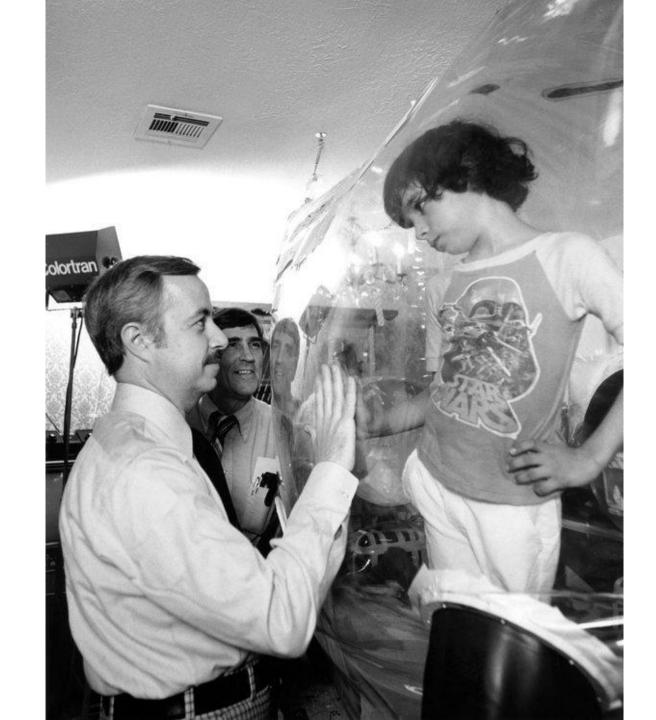


An allergist's guide to using genetic testing in the diagnosis and management of immunodeficiency

Lisa Forbes Satter, MD

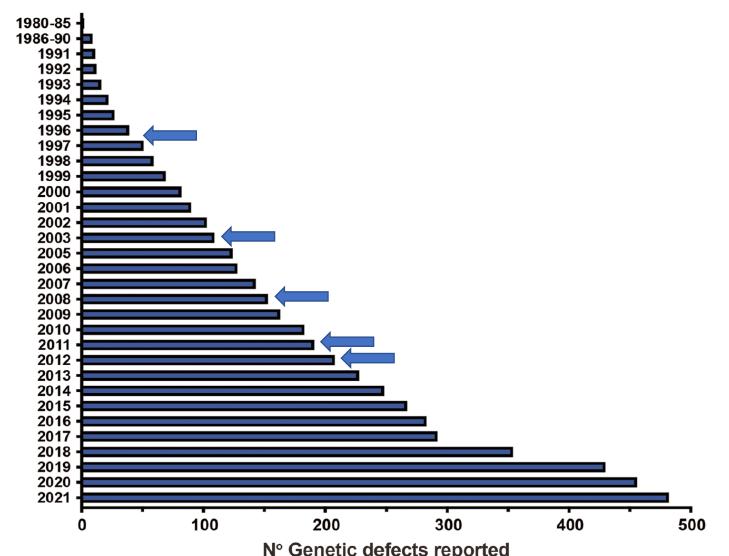

Associate Professor, Dept of Pediatrics Baylor College of Medicine Immunology Allergy and Retrovirology William T. Shearer Texas Children's Hospital Center for Human Immunobiology Baylor College of Medicine

Objectives

- Identify clinical presentations of deficiencies that would benefit from genetic testing
- Develop a systematic approach to genetic testing in the evaluation of immune mediated disease
- Discuss how to analyze variants of uncertain significance and the limitations of genetic testing

We have come a long way.....

- Witnessed a scientific revolution with memorable breakthroughs in the field of immunology
- "People often ask what's the measure of someone's life, but very few people stood as tall as David," Dr. Shearer said in a 2009 article in the Houston Chronicle "More than any scientist, he taught us by his life."

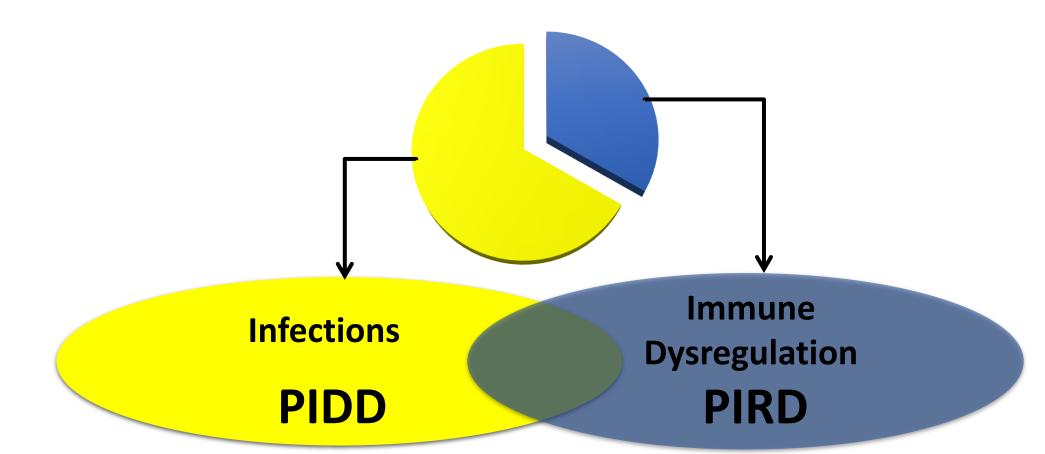

Immunodeficiency Pathogen susceptibility

Autoimmunity/Allergy Antigen-dependent inflammation

Autoinflammation Antigen-independent inflammation

Nigrovic, Lee, Hoffman JACI 2020

Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies (IUIS) Expert Committee



Tangye et al J clin Immunol 2022

IUIS Phenotypical Classification

Table	Category
Table I	Immunodeficiency Affecting Cellular and Humoral Immunity
Table II	CID with syndromic features
Table III	Predominately Antibody Deficiencies
Table IV	Diseases of Immune Dysregulation
Table V	Congenital Defects of Phagocyte Number, Function or Both
Table VI	Defects in Intrinsic and Innate Immunity
Table VII	Auto-Inflammatory Disorder
Table VIII	Complement Deficiencies
Table IX	Bone Marrow Failure
Table X	Phenocopies of Primary Immunodeficiency (somatic mutations or associated with autoantibodies

PIDD vs. PIRD

Primary Immune Deficiency Disorders

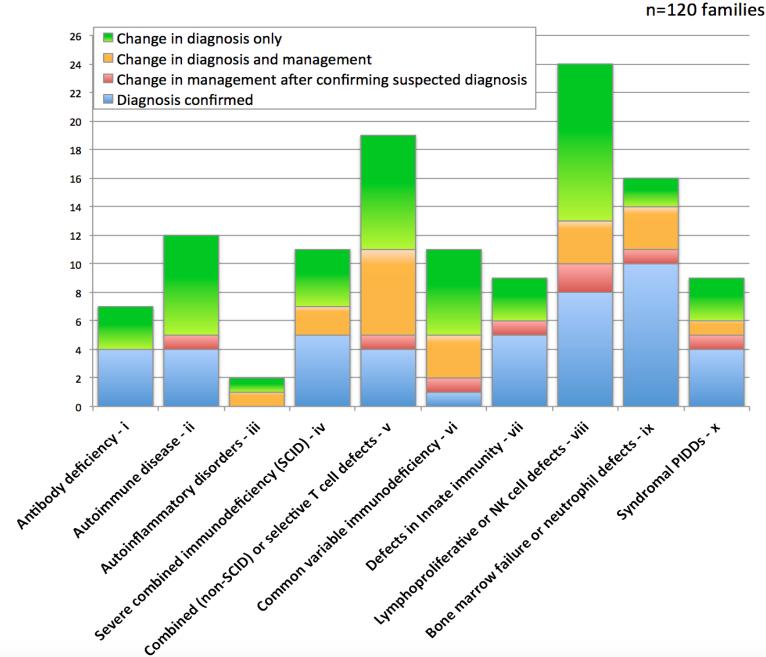
- Infections Dominant
- May have autoimmunity/autoinflammation
 - CVID Bowel, Lungs, Liver, Skin, etc.
 - CGD Bowel, etc.
 - WAS Vasculitis, etc.

Primary Immune Regulatory Disorders

- Immune Pathology Dominant (Autoimmune, Autoinflammatory, etc.)
- May have infections
 - STAT1-GOF CMC, Mycobacteria
 - PIK3CD EBV, etc.

Genetic diagnosis of PIDD – does it matter? How would it matter for our PBL case, Connor?

- Applies a spectrum of natural history to patients
- Many newly discovered inborn errors of immunity share pathognomonic features
- Age of atypical presentations of known diseases
 - Is the atypical the typical?
- Can help justify/advocate for patient benefits
- Implications for undiagnosed family members
- Genetic counselling
- Prenatal Genetic Diagnosis

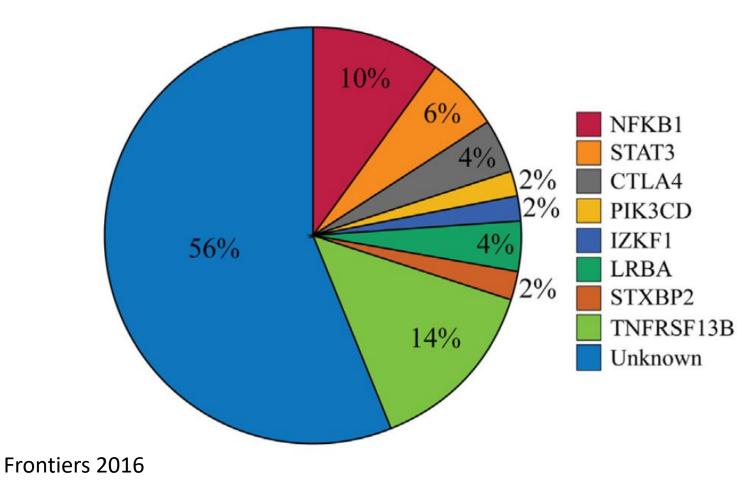

Important implications on prognosis and treatment

Genetic diagnosis of PIDD – does it matter?

- Applies a spectrum of natural history to patients
- Many newly discovered inborn errors of immunity share pathognomonic features
- Age of atypical presentations of known diseases
 - Is the atypical the typical?
- Can help justify/advocate for patient benefits
- Implications for undiagnosed family members
- Genetic counselling
- Prenatal Genetic Diagnosis

Important implications on prognosis and treatment

Houston Project: Diagnostic Implications



- 25% of cases (26 families, 32 affected individuals) WES directed a change in management
- 10 underwent Bone marrow transplant as a result of WES findings
- 25% of findings were genes reported as disease causing in the 5 years prior to publication

Genetic Diagnosis Using Whole Exome Sequencing in Common Variable Immunodeficiency

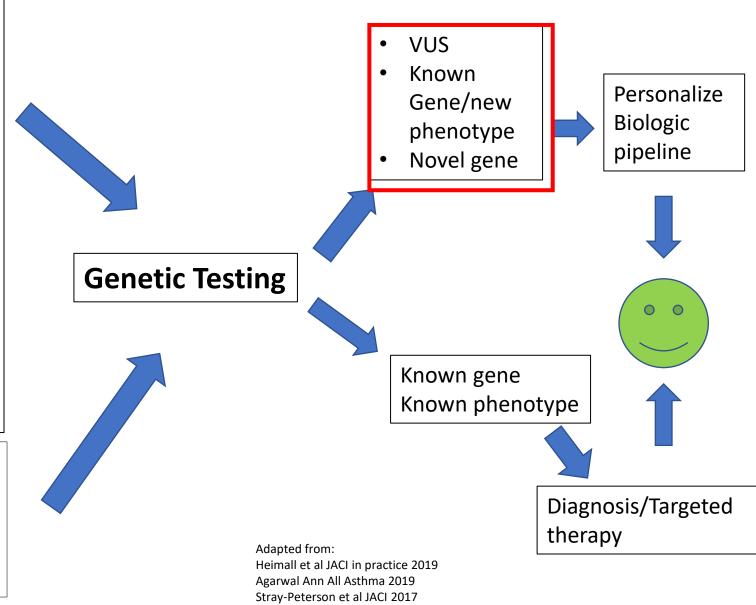
Patrick Maffucci^{1,2†}, Charles A. Filion^{2†}, Bertrand Boisson^{3,4,5}, Yuval Itan³, Lei Shang³, Jean-Laurent Casanova^{3,4,5,6,7} and Charlotte Cunningham-Rundles^{1,2*}

50 subjects with CVID sequenced if they met the following criteria:

- early onset
- autoimmune/inflammatory manifestations
- low B lymphocytes
- and/or familial history of hypogammaglobulinemia
- 17 mutations found in 15 patients
- 30%

Types of genetic analyses available

- Sanger "direct" sequencing individual genes
- "next gen" massively parallel sequencing panels
- Whole exome sequencing
 - Varying coverage, varying analysis,
- Whole genome sequencing
- Copy number variation (also important)
 - Karyotype, FISH, Chromosomal microarray (CMA, SNPchip)


Suspected Immune Deficiency or Immune Regulation Disorder

Recurrent Typical Infections:

- CBC and diff: Check the ALC and ANC
- IgG, IgA, IgM, IgE
- Diphtheria, tetanus, pneumococcal titers
- DHR
- Infectious studies/Imaging
 Opportunistic infections:
- Lymphocyte phenotyping
 T, B and NK cell subsets
- Lymphocyte function studies
- Humoral immunity testing
- DHR
- HIV testing
- Infectious studies/Imaging

Autoimmunity/Autoinflammation

- Antibody testing
- Cytokine testing
- Refer to specialist for specific organ system involved

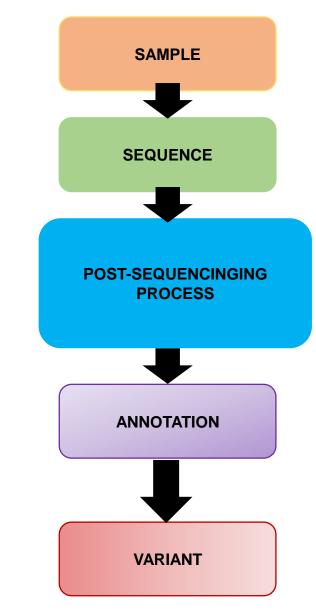
The Dreaded VUS

GENE	VARIANT	ZYGOSITY	VARIANT CLASSIFICATION
C3	c.763A>G (p.Ile255Val)	heterozygous	Uncertain Significance
CIITA	c.2117T>G (p.Leu706Arg)	heterozygous	Uncertain Significance
DGAT1	c.443T>G (p.Phe148Cys)	heterozygous	Uncertain Significance
DTNBP1	c.1019_1020del (p.Glu340Glyfs*7)	heterozygous	Uncertain Significance
ERCC6L2	c.4123A>C (p.Thr1375Pro)	heterozygous	Uncertain Significance
IFNGR1	c.1087C>T (p.Pro363Ser)	heterozygous	Uncertain Significance
IL17RA	c.142C>A (p.Leu48lle)	heterozygous	Uncertain Significance
NBAS	c.5724+13A>G (Intronic)	heterozygous	Uncertain Significance
TMC8	c.1435G>A (p.Val479Met)	heterozygous	Uncertain Significance
UNC45A	c.250+3delinsCC (Intronic)	heterozygous	Uncertain Significance

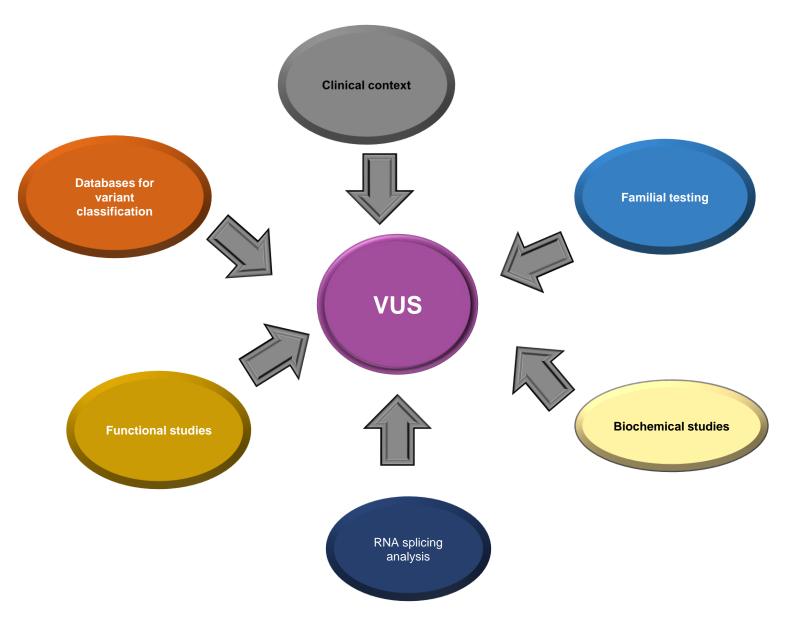
Variant classification is driven by American College of Medical Genetics and Genomics (ACMG) guidelines

	← Benign		Pathogenic			
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data		
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

Richards et al. Genet Med 2015;17:405-24


NOW YOU HAVE GENETIC DATA: WHAT NEXT?

A few things to keep in mind:


• Just because you have done genetic testing does not mean you will get a conclusive answer right away

• You may need to move from a targeted panel to exome or genome sequencing

- Consider the pros and cons of each
- Need for confirmatory testing such as sanger candidate genes
- You may need to do a SNP array to assess for copy number variations
- Disease may not be monogenic
 - complex trait or a syndromic diagnosis
 - a variation missed by the current methods of NGS and may require other molecular approaches

TEASING OUT THE SIGNIFICANCE OF VUSs

Forbes, Abraham, Butte AAAAI 2022

ACMG codes amenable to practical review and modification

- PM2: penetrance
- PP4: phenotype/expressivity
- PS3: functional modeling
- PM1: hotspot/domain
- PP1: familial segregation
- PS2/PM6: *de novo*/AD proband counting
- PM3: *trans*/AR proband counting

Case Example

- 4 month-old term girl
- Difficulty with thrush at 1 month no other infections
- Initially presented with encephalopathy: positive influenza test
- Developed seizures followed by cardiac arrest
- Placed on ECMO and weaned off
- In PICU: pseudomonal sepsis and HLH
- Candidal esophagitis
- Ecthyma gangrenosum (*Pseudomonas*-positive) and bilateral necrosis of nasal and basilar skull bones with erosion extending through middle ear to tympanic membranes: *E. coli, E. faecalis,* and enteric organisms
- Found to be neutropenic and placed on G-CSF

Genetic Results

GENE	VARIANT	ZYGOSITY	VARIANT CLASSIFICATION
C5	c.1680G>A (p.Trp560*)	heterozygous	PATHOGENIC
ELANE	c.639del (p.His213Glnfs*27)	heterozygous	Uncertain Significance ???
G6PD	c.376A>G (p.Asn126Asp)	heterozygous	Uncertain Significance
GUCY2C	c.1024A>C (p.Asn342His)	heterozygous	Uncertain Significance
HYOU1	c.1647C>T (Silent)	heterozygous	Uncertain Significance
RTEL1	c.2600C>T (p.Pro867Leu)	heterozygous	Uncertain Significance
ТОР2В	c.113A>T (p.Asn38Ile)	heterozygous	Uncertain Significance

Variant Summary

ELANE, Exon 5, c.639del (p.His213Glnfs*27), heterozygous, Uncertain Significance

- This sequence change creates a premature translational stop signal (p.His213Glnfs*27) in the ELANE gene. While this is not anticipated to result in nonsense mediated decay, it is expected to disrupt the last 55 amino acid(s) of the ELANE protein.
- This variant is not present in population databases (gnomAD no frequency).
- This variant has not been reported in the literature in individuals affected with ELANE-related conditions.
- In summary, the available evidence is currently insufficient to determine the role of this variant in disease. Therefore, it has been classified as a Variant of Uncertain Significance.

Parental Results

• Father

GENE	VARIANT	ZYGOSITY	VARIANT CLASSIFICATION	RESULT
ТОР2В	c.113A>T (p.Asn38Ile)	heterozygous	Uncertain Significance	Detected
C5	c.1680G>A (p.Trp560*)	N/A	PATHOGENIC	Not detected
ELANE	c.639del (p.His213Glnfs*27)	N/A	Uncertain Significance	Not detected
GUCY2C	c.1024A>C (p.Asn342His)	N/A	Uncertain Significance	Not detected

• Mother

	20%				
GENE	VARIANT	ZYGOSITY	VARIANT CLASSIFICATION	RESULT	
C5	c.1680G>A (p.Trp560*)	heterozygous	PATHOGENIC	Detected	
ELANE	c.639del (p.His213Glnfs*27)	possibly mosaic	Uncertain Significance	Detected	
GUCY2C	c.1024A>C (p.Asn342His)	heterozygous	Uncertain Significance	Detected	
TOP2B	c.113A>T (p.Asn38lle)	N/A	Uncertain Significance	Not detected	

Courtesy: Howard Rosenblatt, M.D, Ph.D.

Parental mosaicism is well-known in this disease

Two paternal mosaicism of mutation in *ELANE* causing severe congenital neutropenia exhibit normal neutrophil morphology and ROS production

Qiao Liu^a, Liang Zhang^a, Zhou Shu^b, Yuan Ding^b, Xue-Mei Tang^b, Xiao-Dong Zhao^{a,b,c,*}

^a Chong Qing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, China ^b Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China

^c Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China

Clinical Immunology 203 (2019) 53-58

Mosaicism of an ELANE Mutation in an Asymptomatic Mother

Tomonari Shigemura¹ · Norimoto Kobayashi¹ · Kazunaga Agematsu² · Osamu Ohara³ · Yozo Nakazawa¹ Journal of Clinical Immunology (2019) 39:106–111

Paternal Somatic Mosaicism of a Novel Frameshift Mutation in ELANE Causing Severe Congenital Neutropenia

Hee-Jung Kim, MD, PhD,¹* Min-Jung Song,¹ Ki-O Lee,² Sun-Hee Kim,¹ and Hee-Jin Kim¹ Pediatr Blood Cancer 2015;62:2229–2231

Mosaicism of an *ELANE* Mutation in an Asymptomatic Mother in a Familial Case of Cyclic Neutropenia

Osamu Hirata¹ • Satoshi Okada¹ • Miyuki Tsumura¹ • Shuhei Karakawa¹ • Itaru Matsumura² • Yujiro Kimura³ • Toshiro Maihara⁴ • Shin'ichiro Yasunaga⁵ • Yoshihiro Takihara⁵ • Osamu Ohara⁶ • Masao Kobayashi¹

J Clin Immunol (2015) 35:512-516

Paternal mosaicism proves the pathogenic nature of mutations in neutrophil elastase in severe congenital neutropenia

Phil J. Ancliff, Rosemary E. Gale, Michael J. Watts, Ri Liesner, Ian M. Hann, Stephan Strobel, and David C. Linch

BLOOD, 15 JULY 2002 • VOLUME 100, NUMBER 2

Mechanism:

- De novo event in the parent very early in embryogenesis
- Negative selection pressure during myelopoiesis

Case 2

1 week of age Hospitalized: severe fungal diaper infection and oral thrush

At 9 months of age hospitalized Osteomyelitis and treated with IV antibiotics for 2 weeks 12-14 months of age: fevers and papular erythematous rash Biopsy revealed neutrophilic dermatosis

Continued Failure to thrive, poor weight gain

Cenetic testing: GS PIDD panel: negative Trio WES: negative

6 months of age: diagnosed with influenza and treated with Tamiflu 10 months of age: antibiotics were discontinued then he developed cellulitis :treated with cephalexin for three more months then put on amoxicillin for prophylaxis Referred to Allergy and Immunology for further evaluation: immunologic testing which revealed hypogammaglobulinemia, poor specific antibody responses, lymphopenia, anemia.

Forbes, Abraham, Butte AAAAI 2022

Case 2: The story evolves.....

Around the time of genetic testing: lost his hair and it it was thin/wiry. Teeth started to erupt - conical shape

Concern for Immunodeficiency and ectodermal dysplasia: the team sent a specific panel to sequence IKBKG

His mutation is a VUS predicted to be deleterious in the IKBKG gene c.836_838delAGG (p.E279del). Diagnosed with Immunodeficiency with Ectodermal Dysplasia caused by NEMO deficiency

Why did the team have to send a specific panel to look at IKBKG? NEMO has a pseudogene and is will not be identified with conventional sequencing techniques

Forbes, Abraham, Butte AAAAI 2022

CONSIDER GENE-SPECIFIC ISSUES

DISORDER	GENE	ISSUE
SCID	CORO1A, DCLRE1C	Del/dups prevalent
Fanconi anemia	FANCA	Deletions prevalent
Cartilage Hair Hypoplasia	RMRP	Promoter insertions
NEMO deficiency	IKBKG	Pseudogene
AR-CGD	NCF1	Pseudogene
Shwachman Diamond syndrome	SBDS	Pseudogene

"Scientists at the Human Genome Project have identified a gene that makes us want to constantly look for our name on search engines."

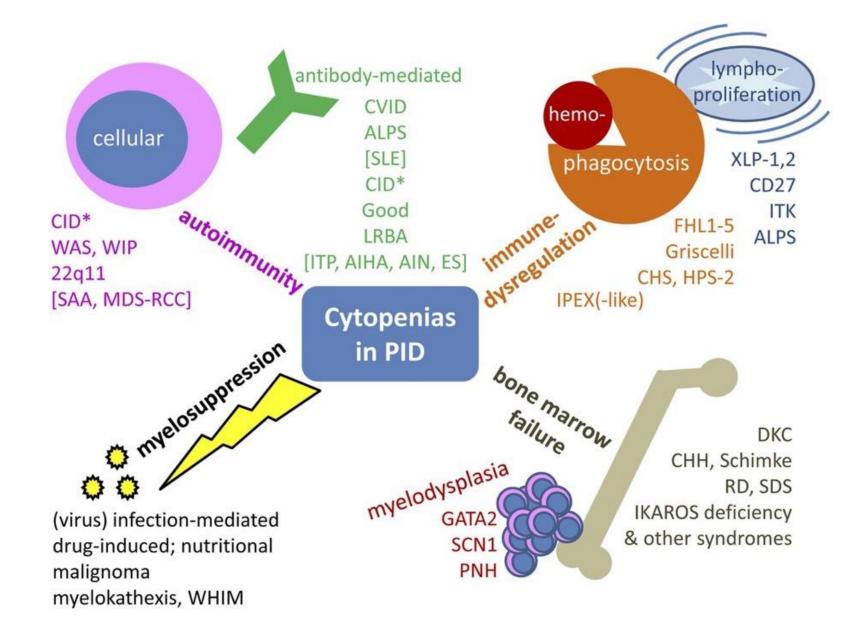
Our classification:

- PM2
- PVS1_Strong
- PM1
- PS2
- PP4

2 Strong + 2 Moderate + 1 Supporting =

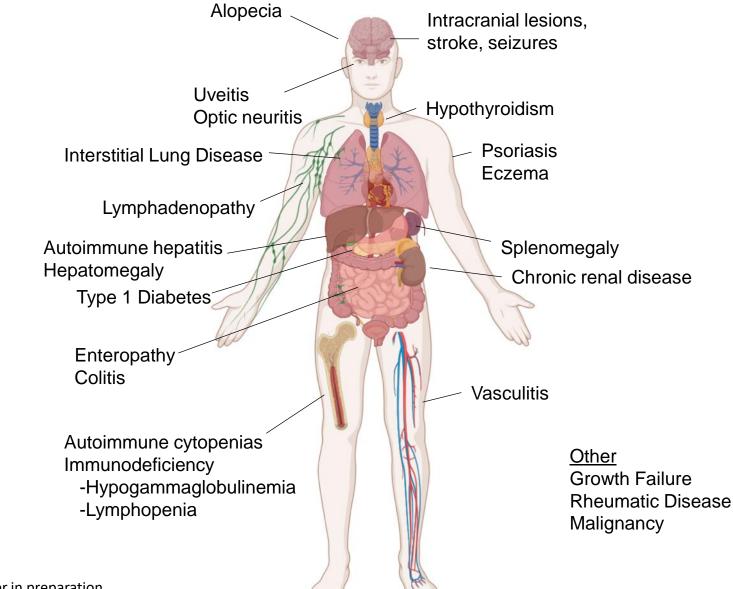
Pathogenic

	Kenign		Pathogenic			>
	Strong	Supporting	Supporting	MOCIONEL	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	\rightarrow	
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
Other database		Reputable source w/out shared data = benign BP6	Reputable source = hamogenic PP5			
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			


A negative genetic test does not mean the end of the diagnostic journey

- Reanalysis by the commercial genetics laboratory can sometimes increase diagnostic yield
- It may or may not be offered free of charge
- What the laboratory prioritizes may not be what you prioritize
- Reanalysis yields diagnosis as new genes are discovered
- Functional testing to understand immune pathway disruptions can still inform targeted therapies

What do you do?....When



- When the diagnosis won't occur fast enough to treat the patient?
- What if you never have a diagnosis?
- What if the diagnosis doesn't help you treat the patient?

Seidel Blood 2014

Clinical Manifestations of Immune Dysregulation

Leiding, Vogel, Cooper, Forbes-Satter in preparation

PIRD Disorders

Treg-Opathies • IPEX (FOXP3) • IPEX-Like

• IL10R1/2 • Etc.

• CD25

• STAT5B

• hCTLA4

• STAT1-GOF

• STAT3-GOF

• LRBA

IBD Infant Onset-IBD

- VEO-IBD
- EO-IBD

Rheumatologic Dz

- JIA, SoJIA, Etc.
- Lupus
- Scleroderma

Debris Defects

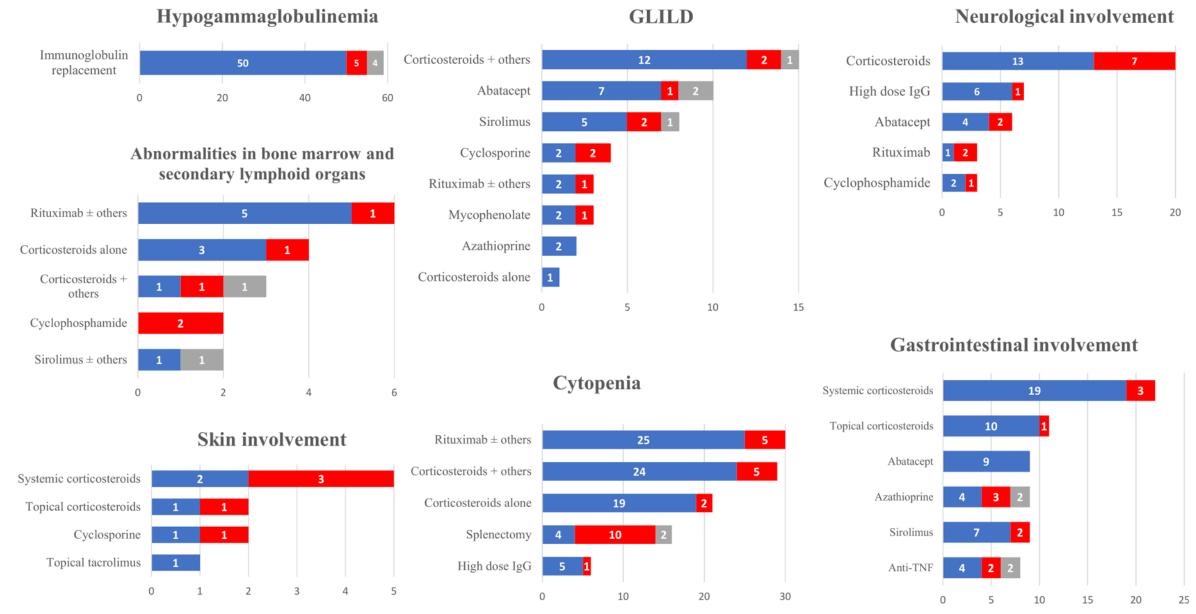
- Complement deficiency
- Phagocyte Defects
- Interferonopathies
 - DNAse I
 - TREX1 Complex
 - IFIH1/MDA5
 - STING

Autoinflammatory

- TRAPS (TNFRSF1A, TNFRSF11A)
- CAPS (NLRP3)
- FMF (MEFV)
- CANDLE Proteosome-opathies
- DADA2
- DIRA IL-1 opathies

Congenital Hypersensitivity Syndromes

- **PGM3**
- STAT5-GOF
- JAK1-GOF

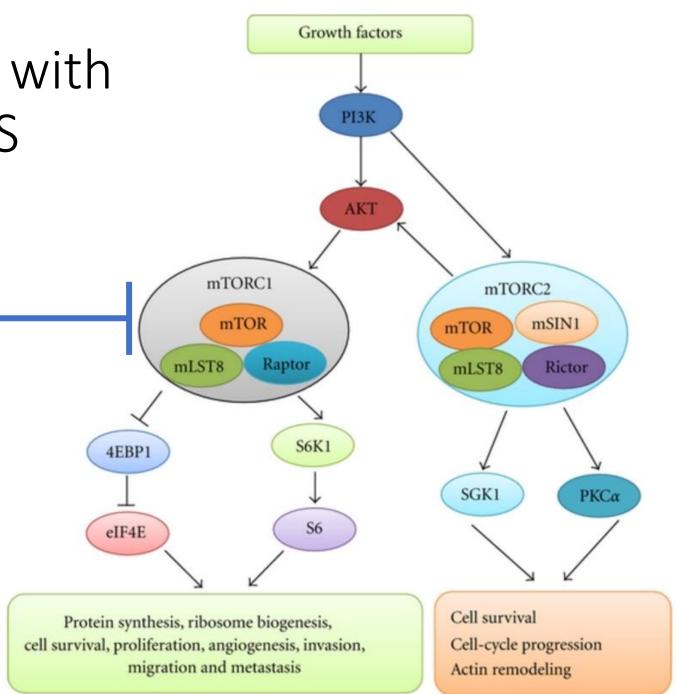

HLH

- SH2D1A, XIAP
- **PRF1**
- Degranulation Defects
 - MUNC13-4
 - RAB27A
 - LYST
- Signaling
 - ITK
 - MAGT1
 - STAT1-GOF

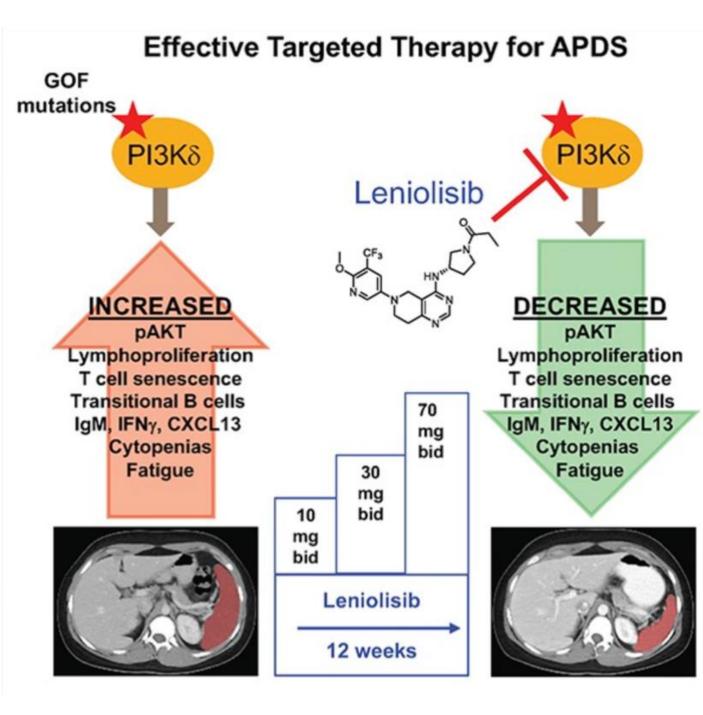
Non-Malignant Lymphoproliferation

- ALPS (FAS, FASL, etc.)
- ALPS-Like/ALPS-U
 - STAT3-GOF
 - hCTLA4
 - PIK3CD/PIK3R1, etc.
 - RALD

Therapeutic options for CTLA-4 Insufficiency

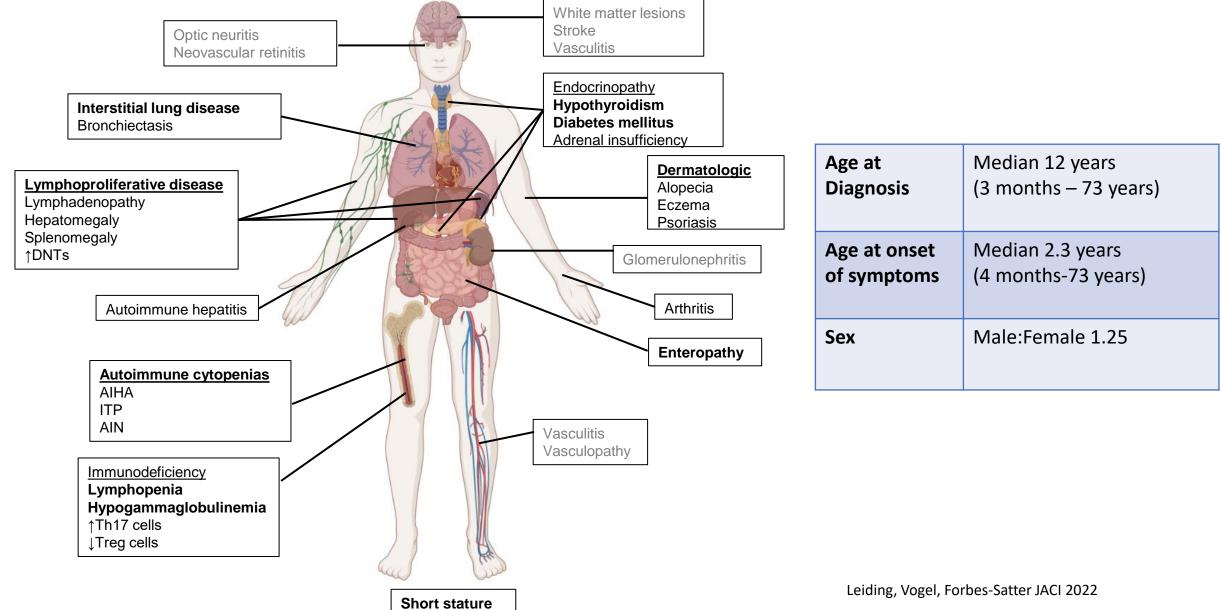

■ Response ■ No response ■ No data

Egg....Grimbacher epub June 7, 2021 JACI

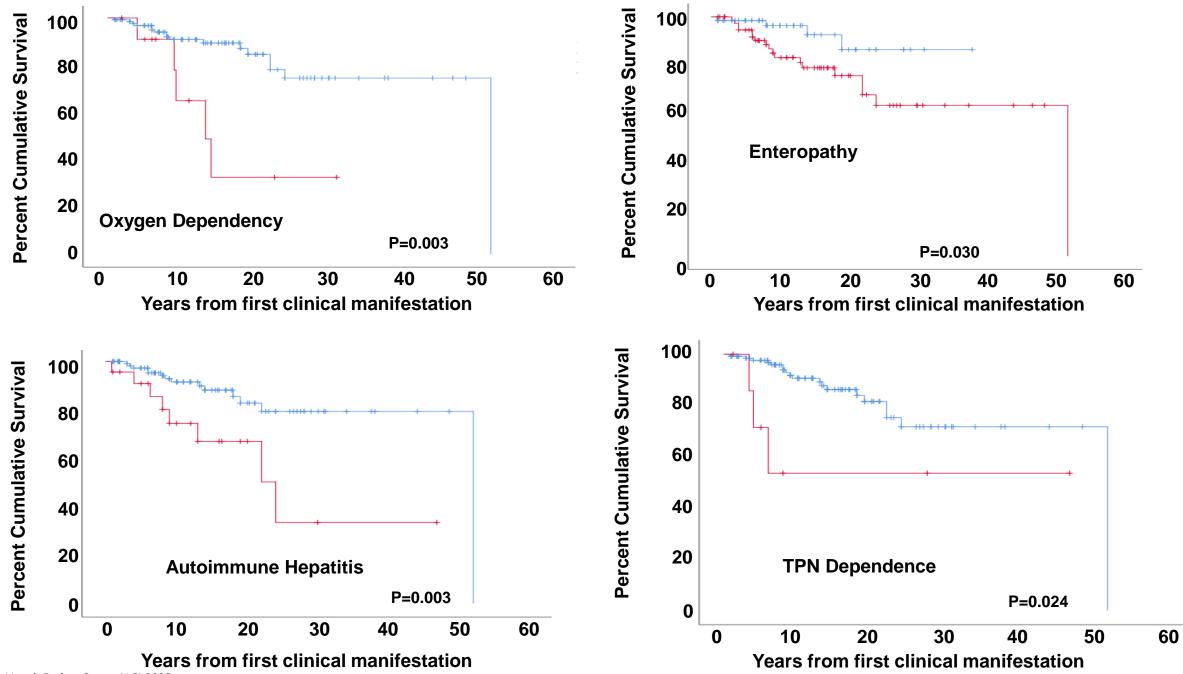


Rapamycin (sirolimus)

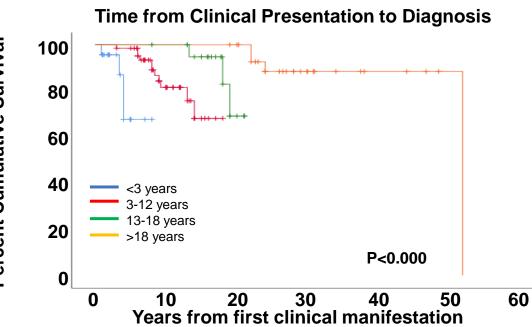
- Significant benefit in the treatment of non-neoplastic lymphoproliferative disease
- Less benefit in treating APDS related-cytopenias and gastrointestinal disease


adapted from research gate.net

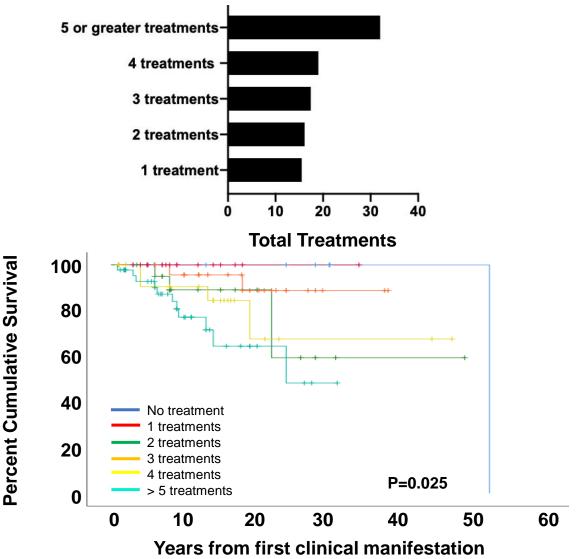
Treatment with Leniolisib


- reduction in the frequency of elevated transitional B cells
- normalization of naive B-cell frequencies.
- CD27+CD38+ plasmablasts was also drastically reduced in 4 of 6 patients
- PD-1+CD4+ (reflecting either chronic activation/exhaustion or increased circulating follicular helper T cells) were reduced
- CD57+CD4- T cells (usually associated with senescence) were markedly reduced
- Normalization of IgM
- Discontinuation of IgG replacement
- Lymphoproliferation and cytopenias improved Bao Blood 2017

Clinical Manifestations of STAT3 GOF disease


Leiding, Vogel, Cooper, Forbes-Satter Frontiers in Pediatrics Accepted December 2022

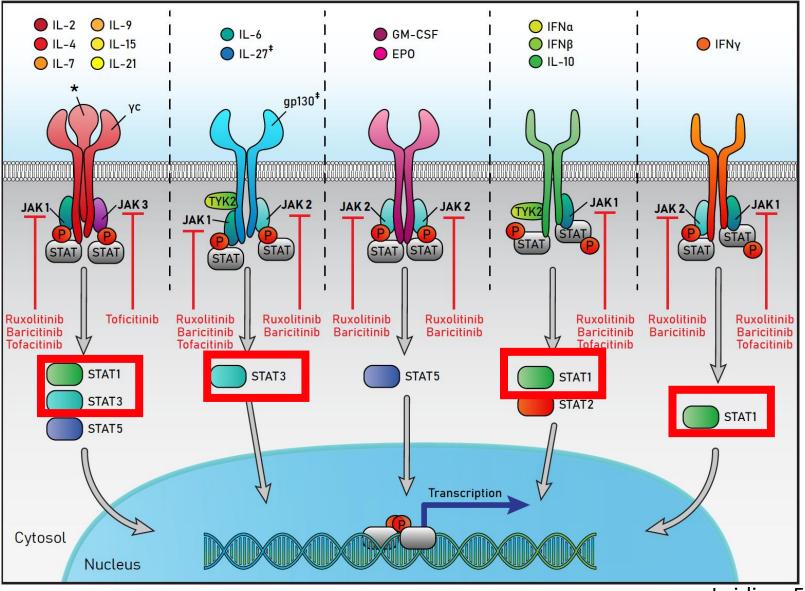
Survival based on Clinical Manifestations



Leiding, Vogel, Forbes-Satter JACI 2022

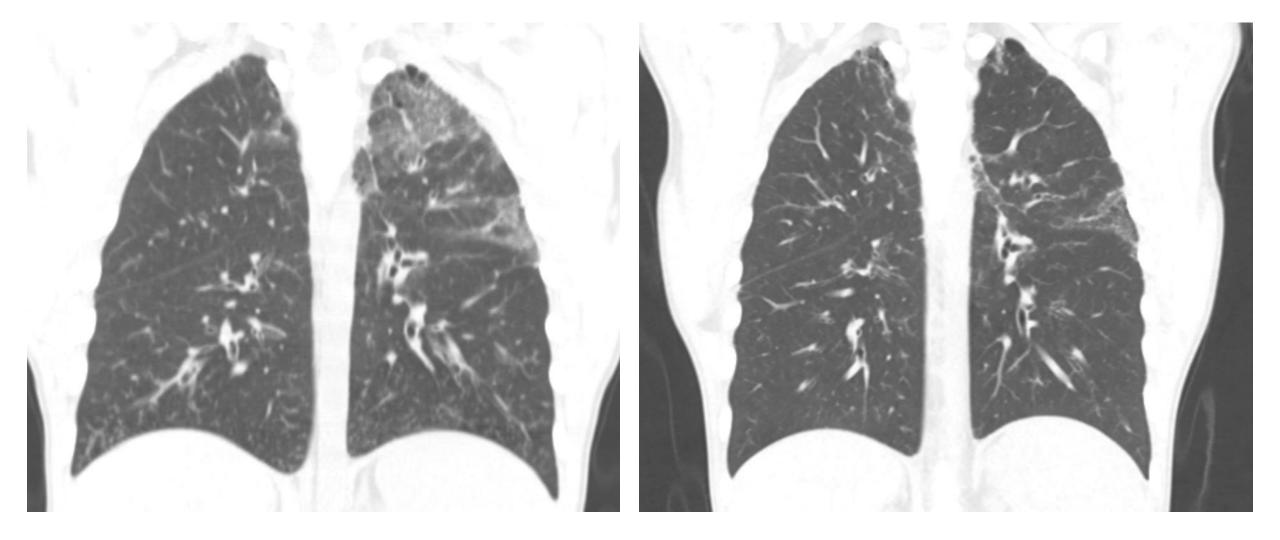
Case for Early Diagnosis and Targeted therapy

Number of Treatments Received per Patient

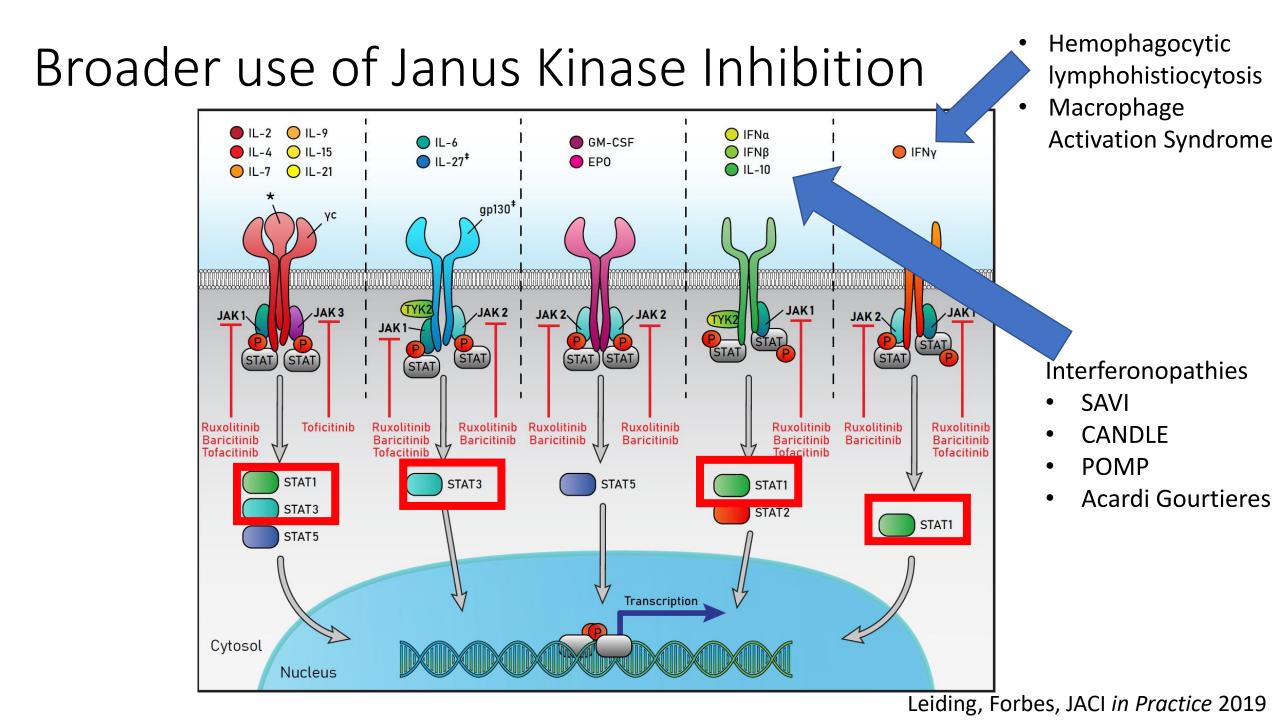


Leiding, Vogel, Forbes-Satter JACI 2022

Back to Conner.....


- Let's say Conner gets better on immunoglobulin replacement for 4-5 years..
- Then he develops signs of inflammatory bowel disease later confirmed by endoscopy/colonoscopy
- Non-infectious complications and multi-organ disease should prompt genetic testing
- You send a targeted >500 gene clinically available panel and he has a pathogenic variant in *CTLA4*:c.410C>T, p.Pro137Leu
- You may consider targeted therapy: abatacept rather than infliximab.

Janus Kinase Inhibition



Leiding, Forbes, JACI in Practice 2019

Clinical Images of STAT3 GOF Patient

6 months after Jakinib

Targeted therapy beyond HLH-1994/2004 protocols

- Monoclonal antibody against IFN- g in primary and MAS-HLH
 - Emapalumab treatment of pediatric and adult patients with primary haemophagocytic lymphohistiocytosis (HLH)
 - refractory, recurrent, or progressive disease or intolerance to conventional HLH therapy
- A phase I trial evaluating ruxolitinib for patients with HLH NCT02400463
- Phase 1b ELA026 IgG1 SIRP-directed mAB (NCT05416307) treat secondary HLH by targeting an activation marker on activated macrophages and lymphocytes

Thank You!

Baylor College of Medicine

William T. Shearer Center for Human Immunobiology Ivan Chinn, MD **Tiphanie Vogel, MD PhD** Nick Rider, DO Joud Hajjar, MD Cecilia Poli, MD PhD Sarah Nicholas, MD Carl Allen, MD PhD Josh Milner, MD Manny Silva, MD Lina Karam, MD **Bo Yuan, PhD** Carla Davis, MD Emily Mace, PhD Kristy Murray, DVM, PhD Steve Holland, MD Natalia Chaimowitz, M.D., Ph.D. Amanda Salih, M.D. Natalia Fernandez, MD

Lynn Des Prez **Carol Ann Demaret** Immunology Allergy Retrovirology Section **Forbes-Satter Lab** Alexander Vargas-Hernandez, PhD Madison Smith, BS Alejandro Nieto, PhD S. Andrea Salinas, PhD Daria Vakula, MD Jennifer Leiding, MD Megan Cooper, MD Jordan Orange, MD PhD Alexandra Freeman, MD Troy Torgerson, MD PhD Alice Chan, MD PhD Sarah Henrickson, MD PhD Andrea Mauracher

Research Staff Betty Hernandez Supriya Parikh

Clinical Staff Ashley Reiland, MS, RN, Le'Andrea Resendez, RN Jackie Kuna, RN

Jim Lupski, MD PhD Lupski Lab Richard A. Gibbs, Ph.D.

