

Best test options for the evaluation of suspected PIDD

Lisa Forbes Satter, MD Associate Professor, Dept of Pediatrics Baylor College of Medicine Immunology Allergy and Retrovirology William T. Shearer Texas Children's Hospital Center for Human Immunobiology

Baylor College of Medicine

Objectives

- Identify clinical presentations of deficiencies in major immune cell types
- Develop a systematic approach to diagnostic testing in the evaluation of immune mediated disease

Primary Immune disorders can present with a heterogenous phenotype

- Infection
- Autoimmunity
- Autoinflammation
- Allergy
- Lymphoproliferation
- Malignancy

How does the patient present?

- Primary Immunodeficiency
 - Severe infection
 - Sepsis
 - Pathologic Inflammation
- Secondary Immunodeficiency
 - Severe infection
 - Sepsis
 - Pathologic Inflammation
- How do we distinguish between the two???

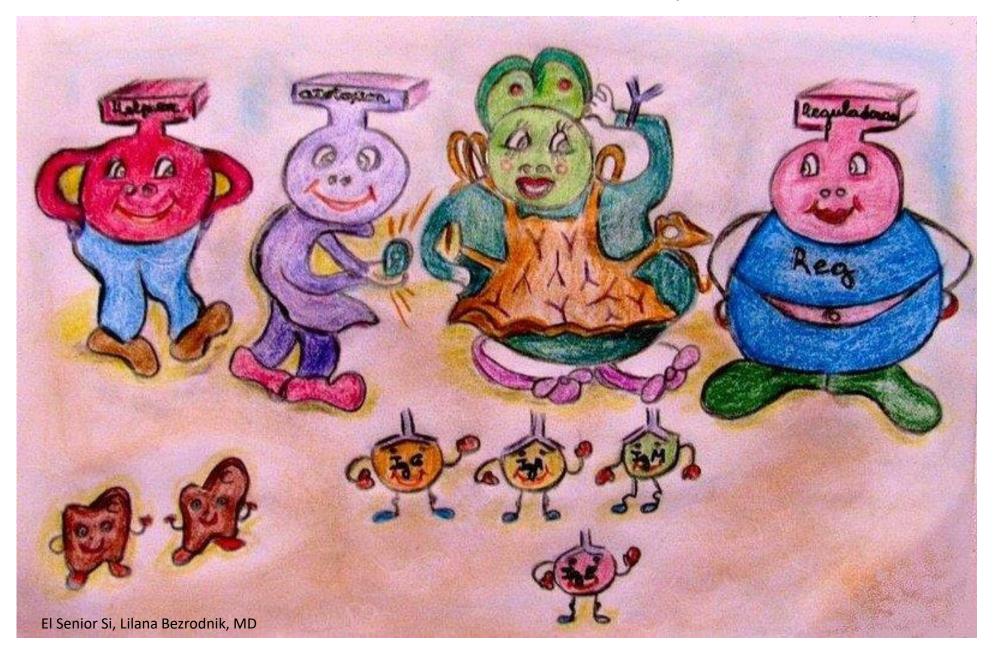
The Immunologist Thought Process

• Bug

- Opportunistic infections
- Recurrent common infections often refractory to treatment
- Frequency of infections and or non-infectious disease flares
- Severity
- Laboratory pattern

• Body Part

- Autoimmunity
- Autoinflammation
- Progression of disease
- Age
- Genetic Testing
- Sex
- Family History
- Medications


The Thought Process for Conner

- Bug
 - Opportunistic infections
 - Recurrent common infections often refractory to treatment
- Frequency of infections and or non-infectious disease flares
- Severity
- Laboratory pattern

• Body Part

- Autoimmunity
- Autoinflammation
- Progression of disease
- Age
- Genetic Testing
- Sex
- Family History
- Medications

Immune Deficiencies: many lessons

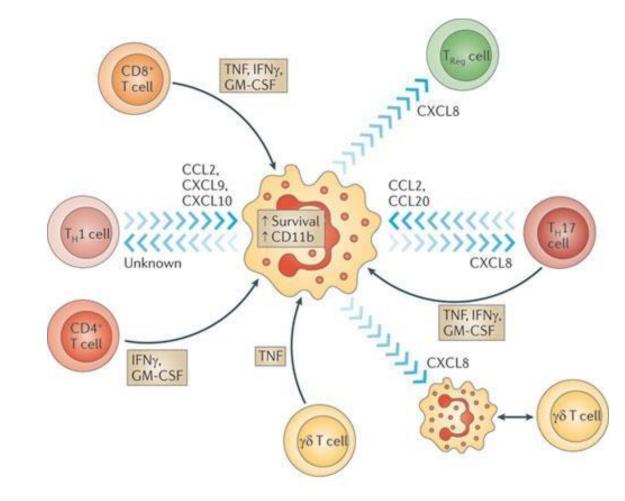
How do we know what cells are important?

- Neutrophils
- Lymphocytes
- Antibody
- Cell trafficking
- Neutrophil killing

- Congenital neutropenia (death 3-4m) 1950
- SCID (death 6-8m) 1950
- Agammaglobulinemia (death 8-25y) 1952
- Leukocyte adhesion deficiency (death 10-20y) 1984
- Chronic granulomatous disease (death 2-20y) 1950

These lessons extended to non-PIDD

- Neutrophils
- Lymphocytes
- Antibody


- Using G-CSF with chemotherapy
- Counts predict outcome in HIV
- Rituximab use for autoimmune disease- vulnerable

Let's start with infection

Infection category	Mechanism of defense
Conventional bacteria	Antibody, neutrophils, complement
Mycobacteria	Macrophages, T cells
Fungus	Macrophages, neutrophils, T cells
Candida	T cells, mucosal surface
Virus	T cells, NK cells

Characteristic infections in immunodeficiencies

- T cell
 - Opportunistic, prolonged viral infections (autoimmune)
- Phagocytic
 - Staphylococcal, Pseudomonas, fungal, mycobacteria
- Antibody
 - Usual organisms: recurrent respiratory/GI infections (autoimmune)
- Complement
 - Encapsulated organisms, Neisserial disease (SLE, aHUS)
- NK cells
 - Herpes family viruses, Human Papilloma Virus, ?influenza ?(autoimmune)

Neutrophils

Neutropenia

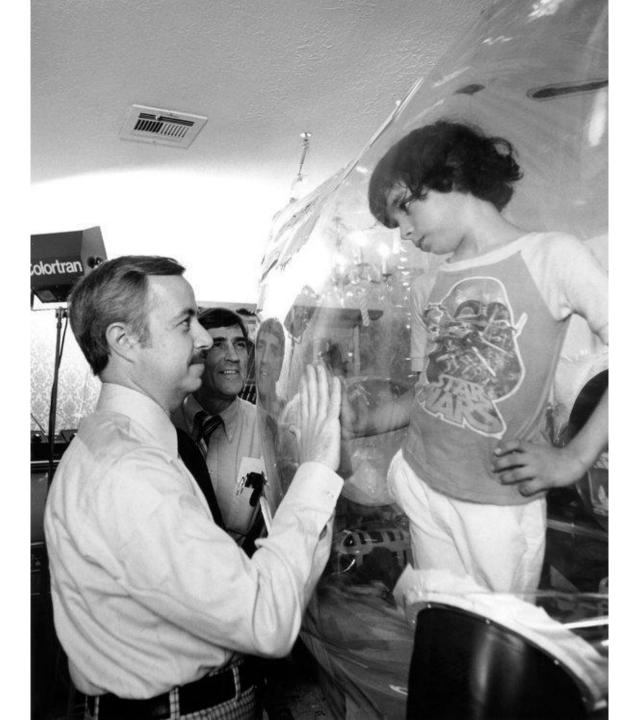
Compromised function

Referral Patterns

- Recurrent Bacterial infections
- Abscess formation
- Staph Susceptibility
- Fever
- Mucositis
- Recurrent ulcers
- Neutropenia or Neutrophilia on CBC

Clinical and Laboratory Features

- Level on CBC w diff
- Function DHR testing for CGD
- Physical Exam
 - Isolated
 - Anatomic abnormalities
 - Syndromic features


Neutrophil defects

- Defense against surfaces
 - Skin abscesses
 - Lung infections
 - Bacterial
 - Fungal
 - Sepsis
 - Gram negative organisms

Note these are **not** very typical infections Early onset Bacteria and fungi Fatal without therapy

T cell defects

- Not enough T cells
- Poor function

Reference intervals for lymphocyte subsets in preterm and term neonates without immune defects

George S. Amatuni, BS,^{a,b} Stanley Sciortino, PhD, MPH,^c Robert J. Currier, PhD,^a Stanley J. Naides, MD,^d Joseph A. Church, MD,^{e,f} and Jennifer M. Puck, MD^{a,g,h,i} San Francisco, Richmond, San Juan Capistrano, and Los Angeles, Calif, and Bronx, NY

- Effective gestational age of 22 to 52 weeks and birth weight were assessed.
- 338 infants studied by EGA and 301 by BW
- Reference intervals in preterm and term neonates
 - T cell counts
 - naive and memory markers
 - B Cell counts
 - NK cell counts

Severe combined immunodeficiency/T cell Deficiency

- Absent or very low T cells (<50 cells/µl)
- Poor antibody production (secondary to lack of T cells and/or B cells)
- Previously presented with severe infections
 - Pneumocystis
 - Respiratory viruses
 - Candida
- Today- identified by newborn screening
- Treatment is bone marrow transplant/gene therapy
- Many genetic causes

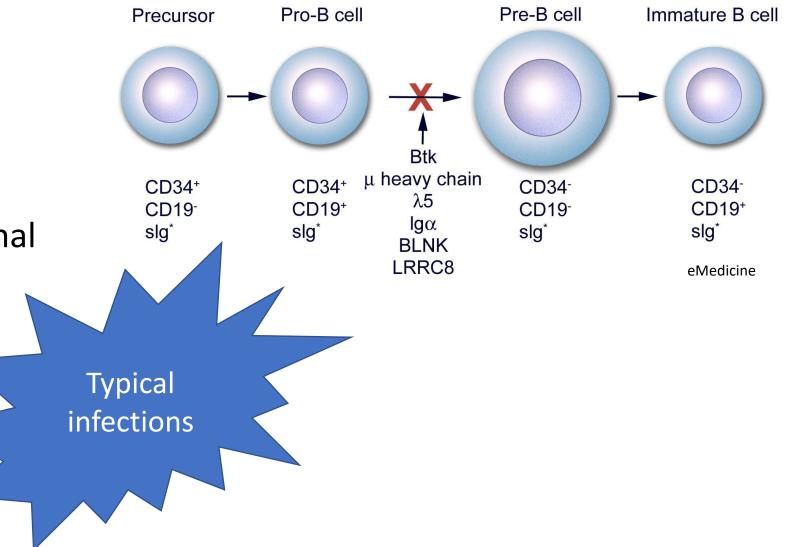
T cell functional defects

- This is the most complex category
- Infections
- Autoimmunity
- Usually have low T cells (but not always)
- Function is compromised but lab tests are limited for this finding
- Genetic testing is the best approach

Opportunistic infections Early onset Autoimmunity

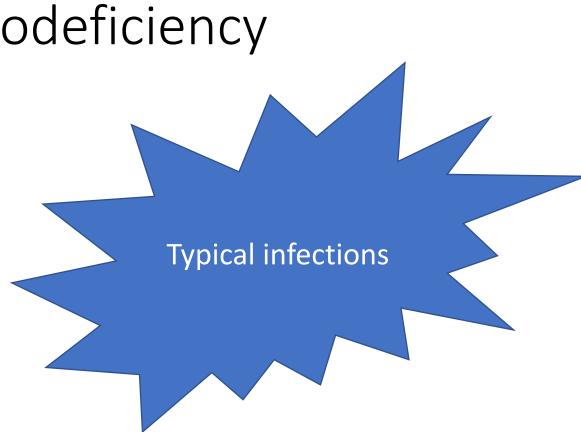
Antibody deficiencies

Lack of antibody Poor function


El Senior Si, Lilana Bezrodnik, MD

Antibody deficiencies

- Common types of infections
- Too many of them
- Both monogenic and polygenic
- Autoimmunity variable


X-linked agammaglobulinemia

- Block in B cell development
- No B cells
- BTK mutations
- No antibody
- Infections begin after maternal antibody wanes
 - Sinusitis
 - Bronchitis
 - Pneumonia

Common variable immunodeficiency

- Polygenic disorder
- Arises at any age
- Gradual loss of antibody production
- Recurrent infections
 - Sinusitis
 - Pneumonia
 - Bronchitis
 - Bronchiectasis
- Variable autoimmunity: autoimmune cytopenias, arthritis, granulomas, inflammatory bowel disease

Specific Antibody Deficiency

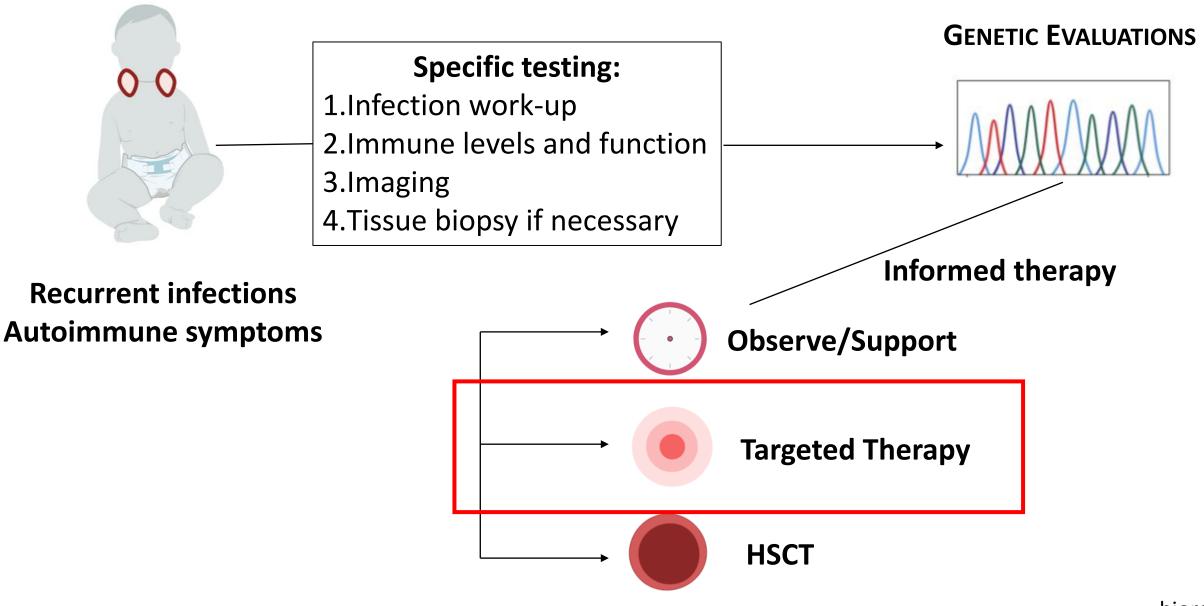
	SAD		
	ESID Criteria ³	US Practice Parameters ⁶	
Clinical presentation	Recurrent or severe bacterial infections	Recurrent respiratory tract infections	
Antibody levels	Normal IgG, IgA, and IgM and IgG subclasse	rmal IgG, IgA, and IgM and IgG subclasses	
Response to vaccines	Profound alteration of the antibody responses to polysaccharide vaccine	Impaired response to pneumococcal capsular polysaccharide	
B cells	Not considered	Normal B-cell levels	
T cells	Exclusion of T-cell defect	Not considered	
Other diagnostic criteria	None	Patients older than 2 y	

Perez and Ballow Immunology and Allergy Clinics of North America, 2020

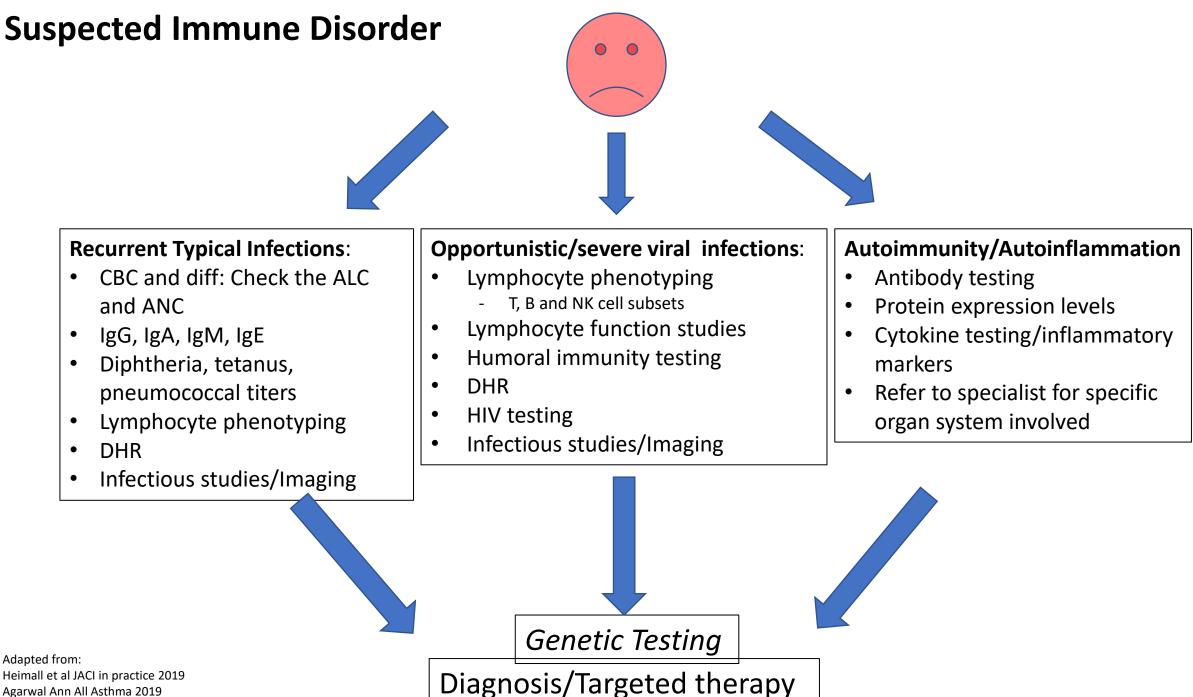
Specific Antibody Deficiency

	Phenotype a	Age >6 y	Age <6 y	Notes
	Severe	<2 protective titers	<2 protective titers	Protective titers present are low
	Moderate	<70% of serotypes protective	<50% of serotypes protective	Protective titers to >3 serotypes
	Mild	Failure to generate protective titers to multiple serotypes or failure of a 2- fold increase in 70% of serotypes	Failure to generate protective titers to multiple serotypes or failure of a 2- fold increase in 50% of serotypes	2-fold increases assume a prevaccination titer of <4.4– 10.3 µg/mL, depending on the pneumococcal serotype
	Memory	Loss of response within 6 mo	Loss of response within 6 mo	Adequate initial response to >50% of serotypes in children <6 y of age and >70% in those >6 y of
Perez and E	Perez and Ballow Immunology and Allergy Clinics of North America, 2020 age			

Specific antibody testing


- Immunoglobulin levels and antibody responses pre and post PPSV23 to assess humoral responses
- What are we going to do about PCV 20?
 - >65 years old
 - >19 with diabetes, asthma, COPD, chronic heart disease, or chronic kidney failure, non functional spleen, HIV

Manufacturer prescribing information


C)			
	PCV20	PPSV23	PCV20	PPSV23
	1	1	15B	15B
		2		17F
	3	3	18C	18C
t	4	4	19A	19A
	5	5	19F	19F
	6A			20
	6B	6B	22F	22F
	7F	7F	23F	23F
	8	8	33F	33F
		9N	Necentines	_
	9V	9V	Neoantigen	
	10A	10A	Saimonella	Typhi Vaccine

6B	6B
7F	7F
8	8
	9N
9V	9V
10A	10A
11A	11A
12F	12F
14	14

Evaluation of a patient with Primary Immunodeficiency or Primary Immune Regulation Disorder

biorender

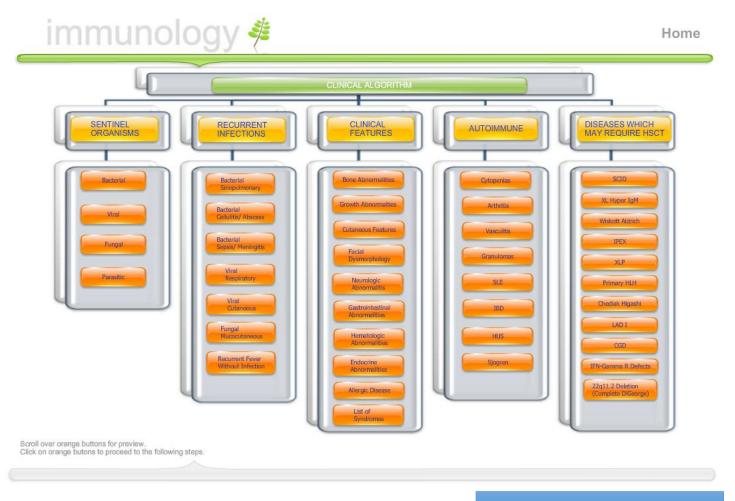
Heimall et al JACI in practice 2019 Agarwal Ann All Asthma 2019 Stray-Peterson et al JACI 2017

Autoimmune/Autoinflammatory/Lymphoproliferative features with recurrent infections

- Engage your colleagues in other specialties this is a team sport!
- Systemic Lupus features ANA panel, complement testing
- Interstitial Lung Disease pulmonary referral, lymphocyte subsets, antibody testing, genetic testing
- Inflammatory Bowel Disease DHR, antibody testing, Treg testing, lymphocyte subsets
- Lymphoproliferation lymph node biopsy, Transitional B cells, immunoglobulins, EBV
- Endocrinopathy Type 1 DM panel, thyroid, adrenal testing
- JIA/other arthritis serology, joint exam, systemic features?
- Psoriasis, severe eczema, neutrophilic dermatosis biopsy

The Immunologist Thought Process – for Conner

• Bug


Opportunistic infections

- Recurrent common infections often refractory to treatment
- Frequency of infections and or non-infectious disease flares
- Severity moderate
- Laboratory pattern meets criteria for Common Variable Immunodeficiency with autoimmunity

- Body Part sinopulmonary infections
 - Autoimmunity IBD
 - Autoinflammation
 - Progression of disease as he gets older
- Age started in childhood
- Genetic Testing yes send!
- Sex male
- Family History unremarkable
- Medications frequent antibiotics

Online algorithm for diagnosis

http://www.immunodeficiencysearch.com/

Soma Jyonouchi- CHOP

Cell phone app

Free

PID Phenotypical Diagnosis 17+ Amine Ahmmouch

iPhone Screenshots

Thank You!

William T. Shearer Center for Human Immunobiology Immunology Allergy Retrovirology Section

