WEIGHING THE RISKS/BENEFITS OF: FESS ASA DESENSITIZATON &/or BIOLOGICS to treat Pam's CRSwNP

Dana V. Wallace, MD Nova Southeastern University

ASPIRIN EXACERBATED

RESPIRATORY

Learning objectives

At the end of this educational activity, the participant should be able to:

- **1.** List the advantages and disadvantages of ASA desensitization and therapy
- **2.** Describe if and when is the best time for a patient with CRSwNP and asthma to have FESS
- **3.** Discuss when to start, add, or switch biologics for asthma and CRSwP

PAM – Age 45 Current Diagnosis & Treatment choices

Diagnosis

O AERD

- Asthma, severe, controlled with mepolizumab
- O CRSwNP- uncontrolled

Treatment options

- **FESS**
- ATAD (ASA treatment after ASA desensitization)
- O Add new biologic
- **O** Switch to new biologic

Pam's visit with with a prior allergist 10 years ago

- O History of life-long asthma, getting progressively worse
- O 2 ED visits/year for asthma exacerbation and acute sinusitis- Rx oral corticosteroids and antibiotics
- **1** PCP visit acute sinusitis—Rx antibiotics and oral corticosteroids
- On low-dose LABD/SABA + PRN SABA bid but frequently forgets
- O ENT did CT 3 months ago- bilateral ethmoidal and maxillary polyps
- Recently developed wheeze with ingestion of ibuprofen ASA and naproxen
- **O** Scheduled for labs and PFT
- Wants to avoid surgery
- **O** Patient did not return- decided to just use urgent care when sick

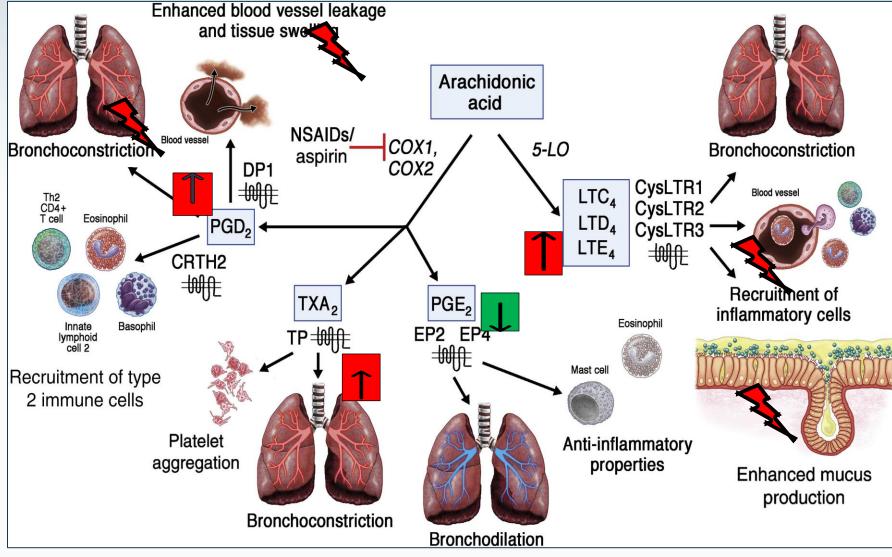
PAM – Age 35 Diagnosis & Treatment choices

Diagnosis

- O AERD
- Asthma, mild persistent with frequent exacerbationsuncontrolled
- O CRSwNP
- **O** Non-adherent patient

Treatment options

- **FESS**
- **O** Nasal steroids in exhalation device
- **O** Sinus irrigation with steroids
- ATAD (ASA treatment after ASA desensitization)
- **O** Consider SMART therapy
- **O** Enroll in biologic trial


Clinical Characteristics of AERD

- O Chronic eosinophilic rhinosinusitis with polyposis
- O Asthma (often severe)
- Respiratory (and extra-respiratory) reactions to ASA/NSAIDS
- O Adult onset
- **O** 50% following "URI"
- No prior sensitization, occurs on first exposure

- **O** Alcohol reactivity
- O Coronary vasospasm
- **O** Esophageal eosinophilia
- Reactions to all COX1 inhibitors
- O Highly selective COX-2 inhibitors typically tolerated
- Acetaminophen tolerated up to 1000 mg

Stevens, W. W., et al. (2017). <u>J Allergy Clin Immunol Pract</u> **5**(4): 1061-1070 e1063. Vanselow, N. A. et al. (1967). <u>Ann Intern Med</u> **66**(3): 568-572. Samter, M. et al. (1968). Ann Intern Med **68**(5): 975-983.

Arachidonic acid metabolism dysfunction in AERD

Roca-Ferrer, J., et al.(2011). <u>J Allergy Clin Immunol</u> **128**(1): 66-72 e61. Stevens, W. W., et al., (2021). "<u>J Allergy Clin Immunol</u> **147**(3): 827-844.

Provocative ASA challenge for dx of AERD

- **0** 85% of patients can be diagnosed clinically without a challenge
- **15% of patients will require a challenge**
 - **O** Patients who have not used NSAIDS recently
 - **O** Patients on a leukotriene-modifying drug (without a good history)
 - **O** Patients who are less perceptive of symptoms
 - **O** Patients already on low-dose ASA

Szczeklik, A., E., et. al. (2000). Eur Respir J 16(3): 432-436.

AERD patients are unique

- **O** High nasal polyp disease severity
- **O** Rapid polyp recurrence after surgery
- **O** Worse QOL
- **O** Polyps rarely respond to conservative medical treatment
- O The only patients that will benefit from ASA desensitization/high dose maintenance therapy
- **O** There are new treatment options with approval of biologics

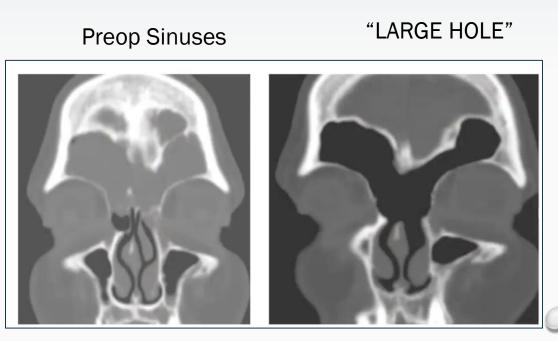
Laidlaw, T. M. et al. (2024). J Allergy Clin Immunol Pract 12(1): 79-84. Rajan, J. P., et al. (2015). "J Allergy Clin Immunol 135(3): 676-681 e671. Stevens, W. W., et al. (2017). J Allergy Clin Immunol Pract 5(4): 1061-1070 e1063.

AERD affects: 7-15% of asthmatics 10-16% of CRSwNP

ENDOSCOPIC SINUS SURGERY

FESS : Should it be the <u>Only</u> or the <u>1st</u> Treatment for CRSwNP & AERD?

Contraindications for ESS for CRSwNP


- O Patient is a poor medical risk for general anesthesia and sinus surgery, e.g.,
 - O Poorly controlled asthma
 - **O** Severe COPD
 - **O** Severe cardiac disease
 - **O** Bleeding disorder/requires anticoagulants
- **O** Unfavorable anatomy
- O Patient inability/unwillingness to obtain appropriate postoperative follow-up care and treatment
- **O** Patient refusal

0

ESS Procedure, Goals, and Extent of Intervention

- Remove polys through the nostrils and suction out mucous/fungal elements while preserving mucosa
- Open drainage pathways, create large ostia, and connect small spaces to create a larger space
- Open all sinuses—"full house" to allow for improved medication delivery and drainage & reduce need for repeated surgeries¹
- When frontal sinuses openings are extremely narrow & there is widespread disease, remove bone to form one large cavity—"Large Hole"
- Extent of surgery does not significantly affect overall complication rate but can increase orbital injury

1. Ramkumar, S. P., et al (2023). Front Allergy 4: 1137907. 2. Suzuki, S., H. et al. (2015). Laryngoscope 125(8): 1785-1791.

ESS complication rate based upon large studies

Source	CSF leak %	Orbital injury %	Hemorrhage %	# of patients	Setting
May et al ¹ (1994)	0.47	0.05	0.19	2.108	Academic, multicenter
Keerl et al ² (1999)	0.53%	0.45%		1,500	Academic, multicenter
Dalziel et al ³ (2006)	0.3%	2.6%	0.2%	12,239	Meta-analysis
Ramakrishnan et al ⁴ (2012)	0.17%	0.07%	0.76%	62823	Nationwide database
Suzuki et al ⁵ (2015)	0.10%	0.09%	0.10%	50,734	Japanese database

Note: Orbital injury and hemorrhage are variably defined within the studies

May, M., H. et al. (1994). Laryngoscope 104(9): 1080-1083.
 Keerl, R., J. et al. (1999). Laryngoscope 109(4): 546-550.
 Dalziel, K., K. (2006). Am J Rhinol 20(5): 506-519.
 Ramakrishnan, V. R., et al. (2012). Int Forum Allergy 2(1):34-9.
 S., H. et al. (2015). Laryngoscope 125(8): 1785-1791.

ESS Complication rate based upon type of surgery and/or Image guided surgery (IGS)

- \bigcirc 2005-2008 payor data base¹:
 - **O** Primary ESS 78,944 patients- major complications 0.36%
 - O Revision ESS 4151 patients- major complications 0.46% (p=.34)
 - **O** Complication rates higher in sphenoid (0.45%) and frontal (0.53%) sinus surgery
 - **IGS**, used in 7% of patients, had a higher complication rate (0.65%)
 - O Likely more complex cases using IGS
 - Possibly overconfidence and false sense of security with IGS
- Prospective non-R case-control study (222 pts) trend to less major complications with IGS²
- Ramakirishnan 2012 study compared with (5568-8639 pts)/without (35,070-50,113) IGS³
 - **IGS: CSF** leak (0.14%); orbital injury (0.14%); hemorrhage (0.61%)
 - O No IGS: CSF leak (0.17%); orbital injury (0.06%); hemorrhage (0.76%)
 - Orbital injury p=0.0043 favoring "No IGS"

1. Krings, J. G., et al. (2014). Laryngoscope 124(4): 838-845.2. Tschopp, K. P. et al. (2008). Rhinology 46(2): 116-120. 3. Ramakrishnan, V. R., et al. (2012). Int Forum Allergy 2(1):34-9.

Balloon vs. Conventional FESS

Chaaban 2011-2014 administrative commercial database 16,400 patients¹

- O Conventional ESS: 11,955 pts.
 - O Complication rate 7.35% (orbital 3.4%, bleeding 3.26%, skull base/CNS 0.39%)
 - **O** Revision 16.85%
- Balloon surgery: 2851 pts.
 - O Complication rate 5.26% (Orbital 2.95%, bleeding 2.03%, Skull base/CNS 0.35%)
 - **O** Revision: 7.89%
 - Likely less complex disease
- O Hybrid (balloon + conventional) 1234 patients
 - **O** Revision 15.5%

1. Chaaban, M. R., et al. (2018). Am J Rhinol Allergy 32(5): 388-396.

Surgical success using JESREC scoring system Factors in scoring: CRS +/- comorbid asthma Peripheral eosinophil level Criterion (Table 4) Degree of CT involvement JESREC score < 11 JESREC score ≥ 11 ASA/NSAID intolerance <Factor A> * Eosinophils of peripheral blood > 5% CT shadow: ethmoid ≥ maxillary (+)Highest success in <Factor B> ** <Factor B> ** Comorbid of bronchial asthma Comorbid of bronchial asthma non-Aspirin intolerance Aspirin intolerance NSAIDs intolerance NSAIDs intolerance eosinophilic CRS (+)(+)Lowest

Moderate ECRS

N = 386

(24.9%)

success in

severe

eosinophilic

CRS

Severe ECRS N = 197

(12.7%)

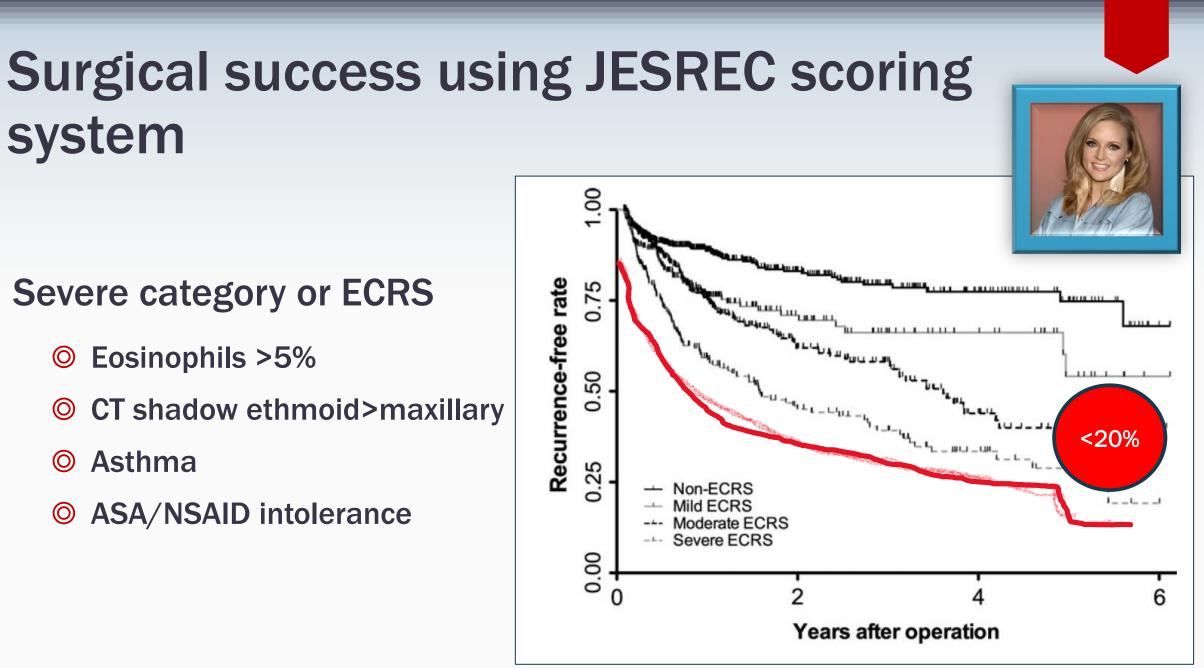
* Factor A (+): all of 2 factors are applied; (-): at lease one factor is applied

Mild ECRS

N = 265

(17.1%)

Non-ECRS

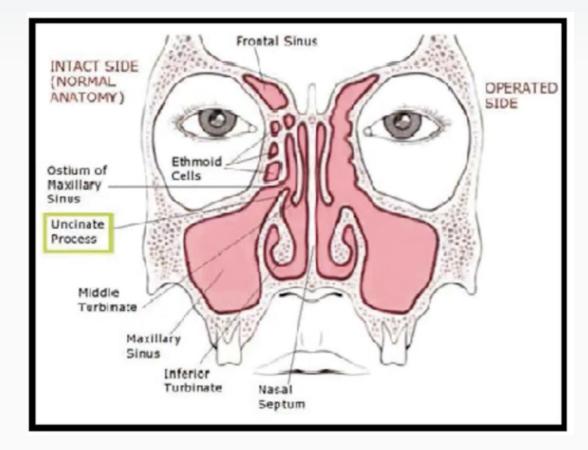

N = 700

(45.2%)

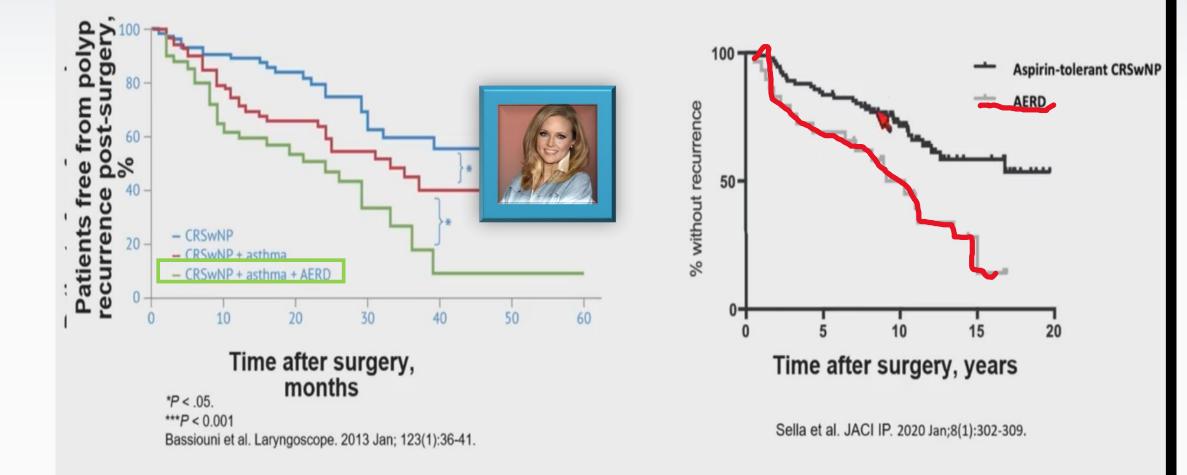
** Factor B (+): at least 1 factor is applied; (-) all 3 factors are not applied

JESREC: Japanese Epidemiological Survey of Refractory Eosinophilic Chronic Rhinosinusitis

Tokunaga, T., M. et al. (2015). Allergy 70(8): 995-1003.


Tokunaga, T., M. et al. (2015). Allergy 70(8): 995-1003.

 \bigcirc

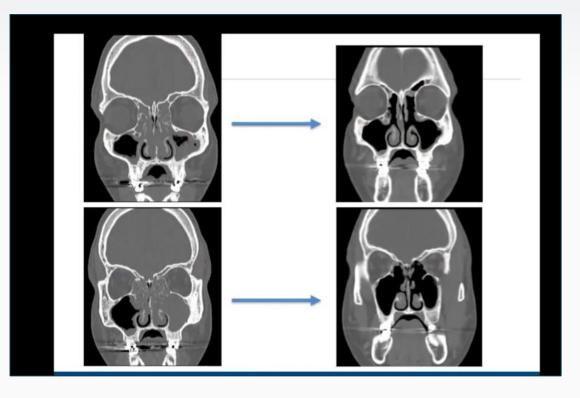

 \bigcirc

Ethmoid and Sphenoid disease is worse prognosis

- Increased ratio urokinase plasminogen activator (u-PA)/tissue plasminogen activator (t-PA) in nasal polyps=inflammation.
- Reduced t-PA means reduced fibrinolysis
- Both u-PA and t-PA lower in unincate compared to inferior turbinate

NP recurrence after ESS in CRSwNP and AERD patients

Defining Surgical Success


- **O** Patient's subjective feeling on a daily basis
- **O** Fewer number of oral steroids courses
- Isolated polyp return without significant symptoms does not mean surgical failure or need for repeat surgery or more aggressive treatment
- Solution Following appropriate, "good" surgery, with return of nasal polyp disease, biologics may be the treatment of choice.

Indications for Endoscopic Sinus Surgery [EES] in CRSwNP

- **O** Need for improvement in symptoms
 - **O** Congestion
 - O Anosmia, hyposmia
- **O** For improved topical medication delivery
- O Pt has failed conservative medical treatment topical/oral steroids and has extensive disease
- **O** Patient who is sinus surgery naïve
- O Pt has no contraindications for surgery
- Patient agrees following a shared-decision making discussion
- When above criteria are fulfilled, efficacy and cost-analysis support EES

Pre and Post ESS

ATAD

ASA Treatment after ASA desensitization

ASA Desensitization and Maintenance for AERD

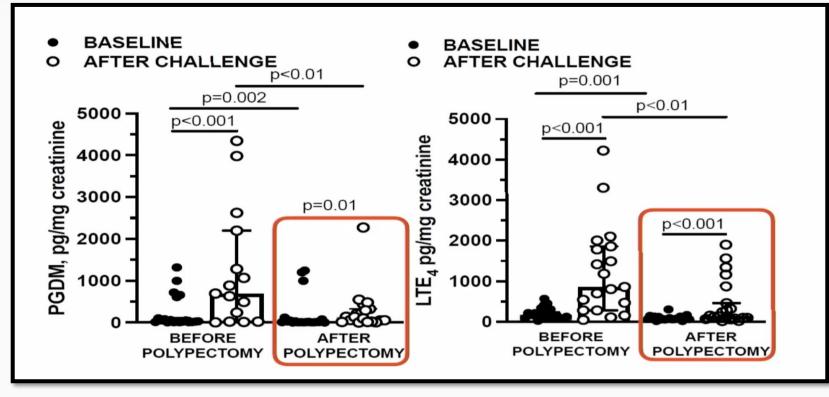
Candidate

- Reoccurrence of nasal polyps shortly after sinus surgery
- **O** Uncontrolled CRSwNP
- Frequent bursts of oral corticosteroids
 Corticosteroid
- Need for ASA for cardiovascular prevention/treatment
- Need for NSAIDS for other medical issues
- Patient agrees with daily ASA administration ??

Not a candidate

- O Poorly controlled asthma
- **O** Significant polyp burden at time of desensitization
- Pregnancy (?? In near future)
- O History of EoE
- **O** History of gastric and/or peptic ulcer
- **O** History of bleed disorder or coagulopathy
- **O** Renal impairment
- Mistory of medication nonadherence
- **O** Caution with history of NSAID anaphylaxis
- O Caution with patients >70 years & <13 yrs.—limited studies</p>

2021 INTERNATIONAL CONSENSUS STATEMENT ON ALLERGY AND RHINOLOGY: RHINOSINUSITIS 2021.


- **O** Grade of Evidence: A for ATAD
- O Benefit: Reduced polyp formation, increased QoL, reduced systemic corticosteroids and surgery
- **O** Harm: Gastrointestinal bleeding, renal and coagulation issues
- O Cost: Initial cost of desensitization, minimal direct costs of ASA, decreased cost from reduced surgery
- **O** Benefits-Harm assessment: Clear benefit over harm
- O Value Judgements: ASA desensitization followed by daily ASA therapy is 1 of the very few disease-modifying medical treatment options available for patients with AERD
- **O** Policy Level: Recommendation
- Intervention: ASA desensitization should be considered in AERD patients <u>after surgical</u> <u>removal of NPs to prevent recurrence</u>

Orlandi, R. R., et al. (2021). "International consensus statement on allergy and rhinology: rhinosinusitis 2021." Int Forum Allergy Rhinol 11(3): 213-739.

When to conduct ASA Desensitization

- O Levels of PGD2 and LTE4 depend upon level of nasal polyp presence¹
- **O** 3-4 wks. after NP surgery, ideal time for safety & tolerability²
- **O** ASA desensitization/therapy does cause regression of NPs

1. Jerschow, E., et al. (2019). J Allergy Clin Immunol Pract 7(5): 1580-1588. Han, J. K., et al. (2021). Int Forum Allergy Rhinol.

Effectiveness of ATAD

O Quality of evidence^{1,2}

- **1** meta-analysis
- **5 RDBPC trials**
- **O** 14 case series (918 pts)

		Surrogate outcomes						
	HRQoL SNOT-22 (0-110) [‡]	Symptoms VAS (0-10 cm)	Smell UPSIT (0-40) [†]	Rescue OCS	Rescue polyp	Adverse events	Nasal polyp size	CT score LMK (0-24)
Standard care*	50.11	6.84	14.04	31.96%	21.05%	73.78%	(0-8) 5.94	18.35
ASA	-10.61	-2.74	2.72		-16.00	209.21	-0.95	-0.31
Desensitization	(-14.51, -6.71)	(-3.92, -1.57)	(-1.17, 6.61)		(-19.79, 0.21) RR 0.24	(8.30,901.87) RR 3.84	(-2.44, 0.55)	(-3.50, 2.88)
					(0.06, 1.01)	(1.11,12.22)		
Classification of intervention (colour) ²⁴ Certainty (shading) ^{24, 29}								
Among most beneficial Among		g intermediate beneficial		Among least beneficial/not		No data	High/moderate (solid)	
Among most harmful Among intermediate		e harmful	clearly different from placebo		(blank)	Low/very low (shaded)		

1. Oykhman, P., et al. (2022). J Allergy Clin Immunol. 149 (4):1286-1295. 2. Stevens, W. W., (2021). J Allergy Clin Immunol 147(3): 827-844. 3. Jerschow, E., et al. (2019). J Allergy Clin Immunol Pract 7(5): 1580-1588.

Effectiveness of ATAD

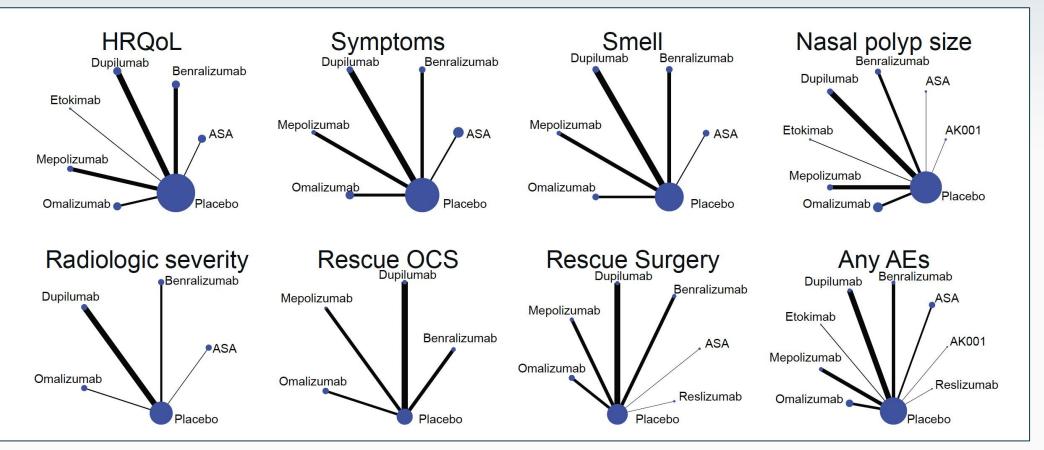
- **Quality of evidence**^{1,2}
 - **1** meta-analysis
 - **O 5 RDBPC trials**
 - **O** 14 case series (918 pts)
- Onset of improvement within 4 wks.³
- Improvement in TNSS, reduced systemic steroids & revision surgery and improved QoL⁴
- Asthma symptoms reduced and improved FEV1, but to limited degree⁵
- O Dose dependent effect up to 650 mg bid
- Inflammatory markers vary
 - **O** Reduced PGE-M, PGD-M, & PGD2
 - **O** LTE4 remains elevated or increases
 - O Increase in blood eosinophils

1. Oykhman, P., et al. (2021). J Allergy Clin Immunol. 149 (4):1286-1295. 2. Stevens, W. W., (2021). J Allergy Clin Immunol 147(3): 827-844. 3. Jerschow, E., et al. (2019). J Allergy Clin Immunol Pract 7(5): 1580-1588. 4. Orlandi, R. R., et al. (2021). Int Forum Allergy Rhinol 11(3): 213-739. 5. Mortazavi, N., H. Esmaeilzadeh, M. Abbasinazari, D. Babaie, S. Alyasin, H. Nabavizadeh and

ATAD Patient-reported benefits

- **10-year survey 62% remained on ATAD with benefit¹**
 - **38% discontinued ATAD**
 - O Lack of clinical benefit (26%)
 - **O** Adverse reactions (26%)
 - **O** Need for repeat surgery (23%)
 - Of those remaining on ATD, 85% report good control upper/lower airway symptoms, however:
 - **O** No reduction in # of additional surgeries
 - **O** No delay in first surgery after starting ATAD
- **O** Tertiary care center 67% reported subjective improvement at 5 years²
- **O** Some studies have shown reduced poly growth and reduced **#** of surgeries ^{3,4,5}
- **O BDPC trial (20 pts) on 6 months ATAD⁶**
 - **Symptom improvement asthma, upper airway, smell**
 - Reduced inhaled corticosteroids

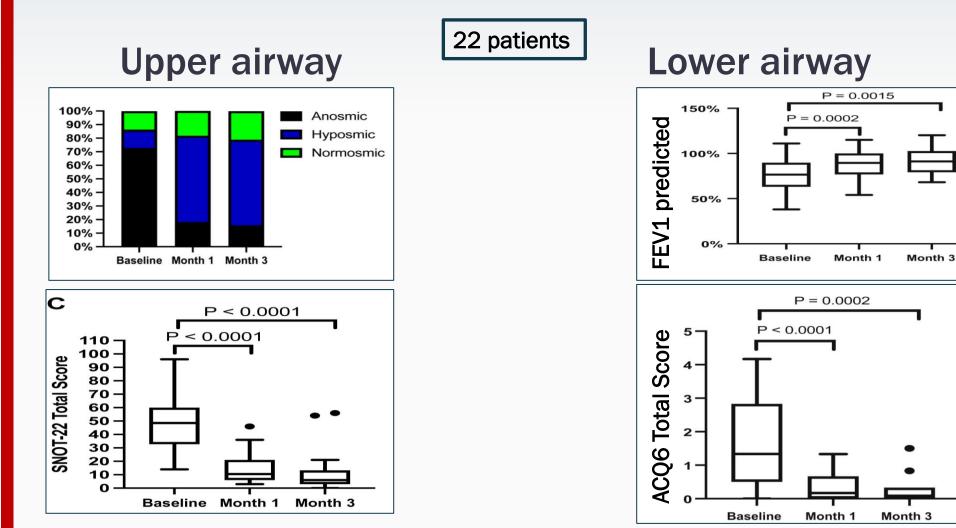
1. Berges-Gimeno, M. P., et al. (2003). Ann Allergy Asthma Immunol 90(3): 338-341. 2. Walters, K. M., et al. (2018). Am J Rhinol Allergy 32(4): 280-286. 3. McMains, K. C. et al. (2006). Am J Rhinol 20(6): 573-576. 4. Rozsasi, A., D. et al. (2008). Allergy 63(9): 1228-1234. 5. Levy, J. M., et al. (2016). Int Forum Allergy Rhinol 6(12): 1273-1283. 6.Swierczynska-Krepa, M., M. et al. (2014). J Allergy Clin Immunol 134(4): 883-890.


ATAD in the biologic era

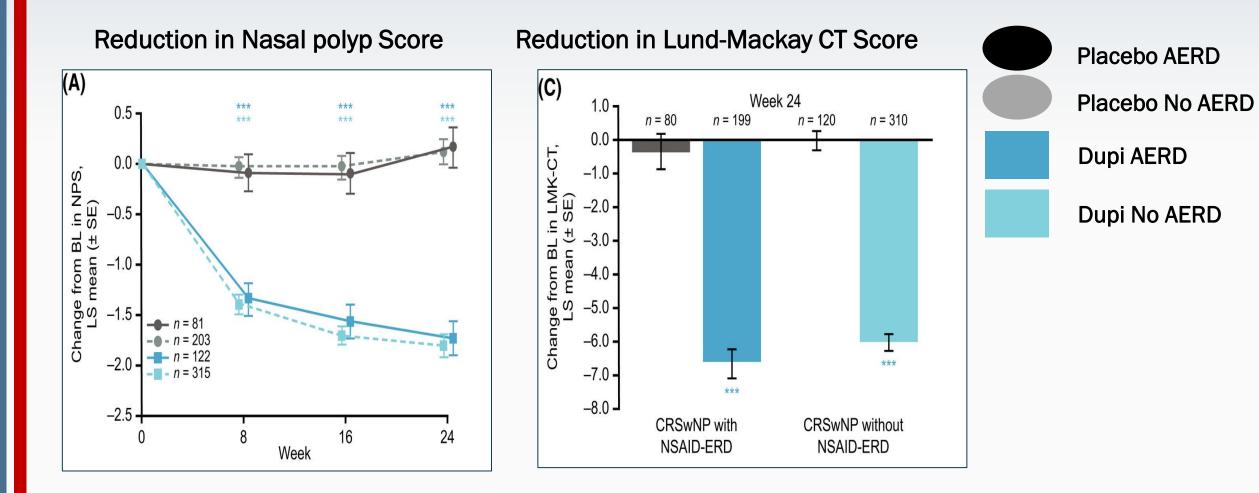
- **O** 103 AERD patients had surgery followed by ATAD
 - **6**-month follow-up: 2/103 on biologics¹
- ◎ Real-world cross-sectional study (98 pts)²
 - O 76% (n=59) of ATAD treated patients (n=78) reported effectiveness and continued use for a mean of 46 ± 40.5 months (range 1-240 months)
 - **24.4% used ATAD + biologic (older, more severe group)**
 - O Dupilumab most successful biologic agent
 - SNOT-22, ACT, # of lifetime sinus surgeries— <u>no sign. difference in</u>
 - O ATAD
 - **O** Biologic
 - O ATAD + biologic
 - **O** No ATAD or biologic

BIOLOGICS

Meta-analysis of Current Therapies for CRSwNP

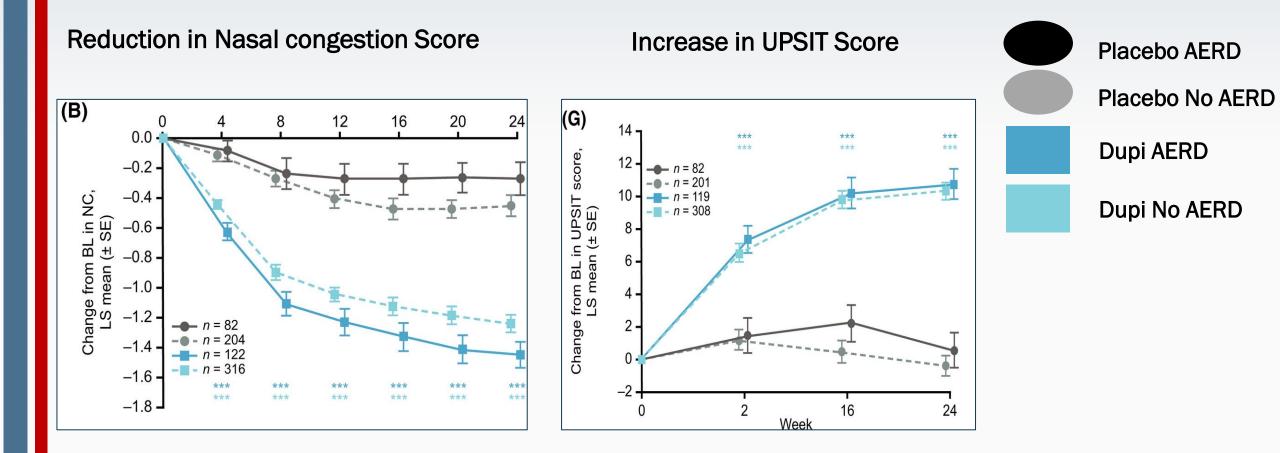


Nodes are weighted proportional to the number of studies evaluating each treatment Spokes are weighted proportional to degree of improvement or adverse effect (AE) ** Only 1/3 of total patients had AERD


Oykhman, P., et al. (2022). J Allergy Clin Immunol. 149 (4):1286-1295.

Dupilumab for AERD improves Upper & Lower airway symptoms

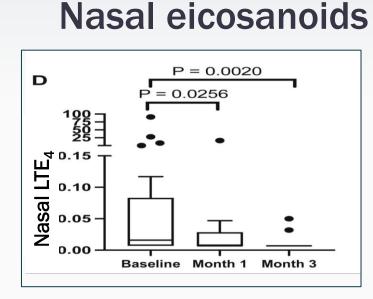
Buchheit, K. M., et al. (2022). J Allergy Clin Immunol 150(2): 415-424.

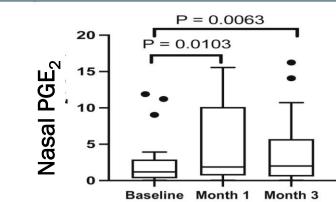


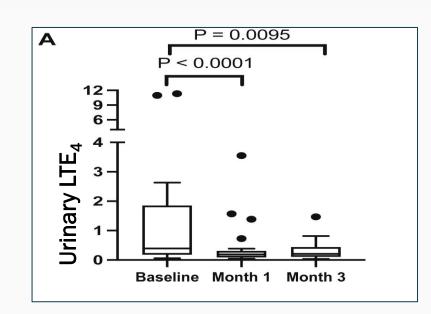
Dupilumab in CRSwNP in AERD 204 patients from 2 phase 3 trials at 24 wks

Allergy, Volume: 77, Issue: 4, Pages: 1231-1244, First published: 30 August 2021, DOI: (10.1111/all.15067)

Dupilumab in CRSwNP in AERD 204 patients from 2 phase 3 trials at 24 wks

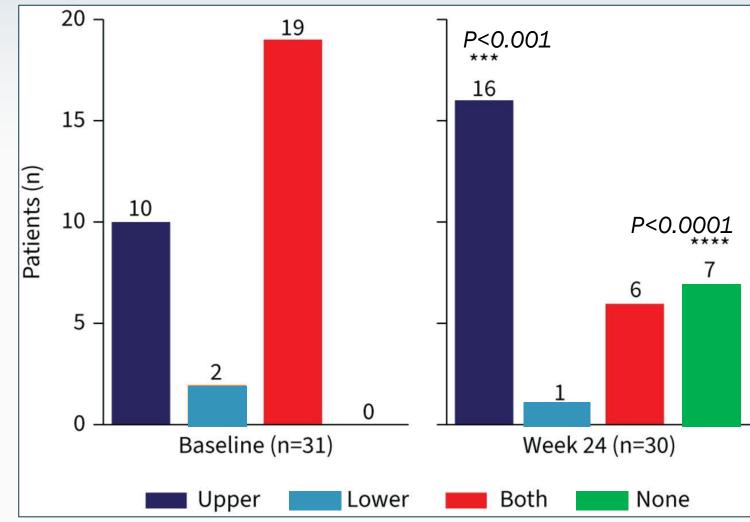



Allergy, Volume: 77, Issue: 4, Pages: 1231-1244, First published: 30 August 2021, DOI: (10.1111/all.15067)


Dupilumab improves Nasal & Urinary eicosanoids

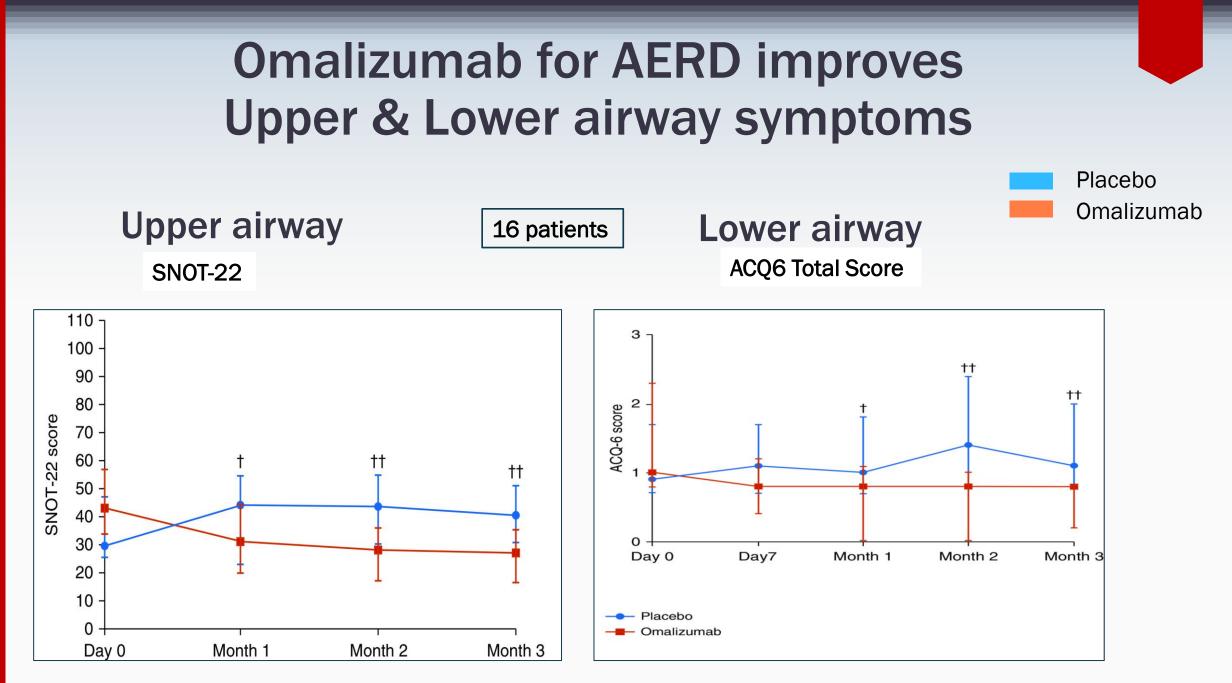
Buchheit, K. M., et al. (2022). J Allergy Clin Immunol 150(2): 415-424.

22 patients

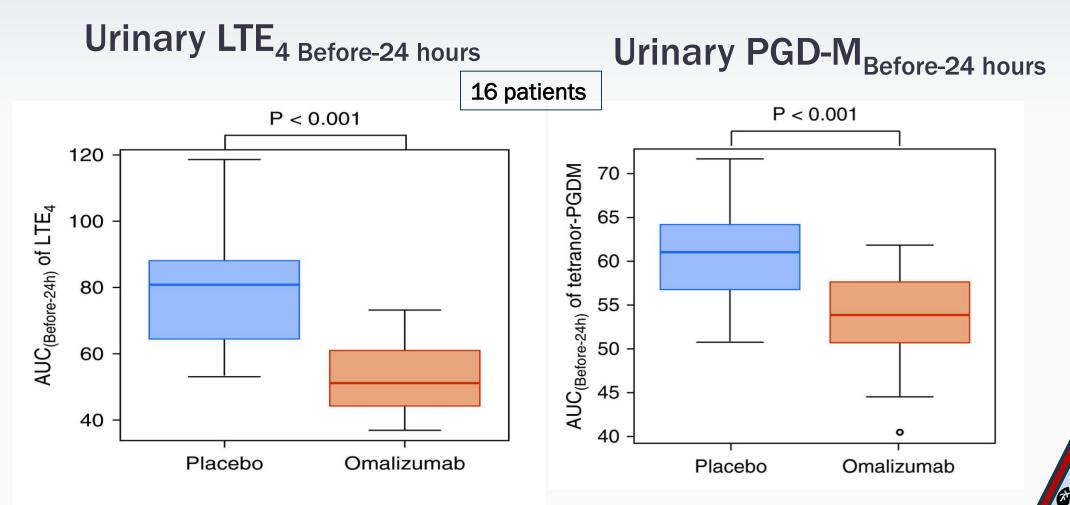


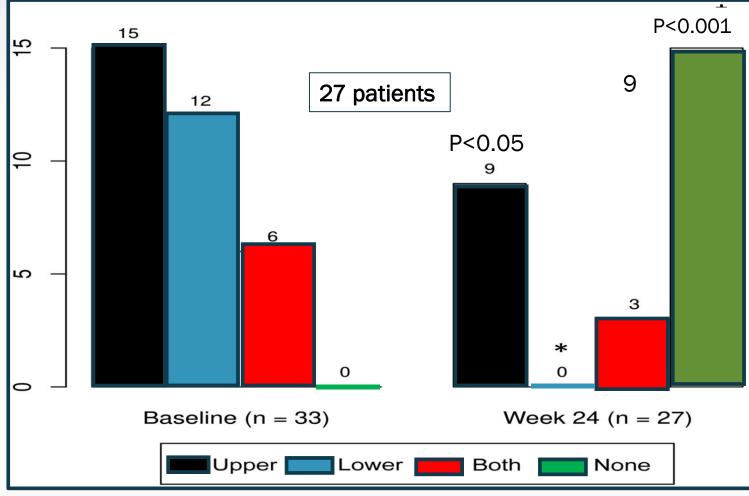

Urinary eicosanoids

No reduction in IL4, IL13, IL33, TSLP


The decrease in nasal IgE Is less for dupilumab than for omalizumab

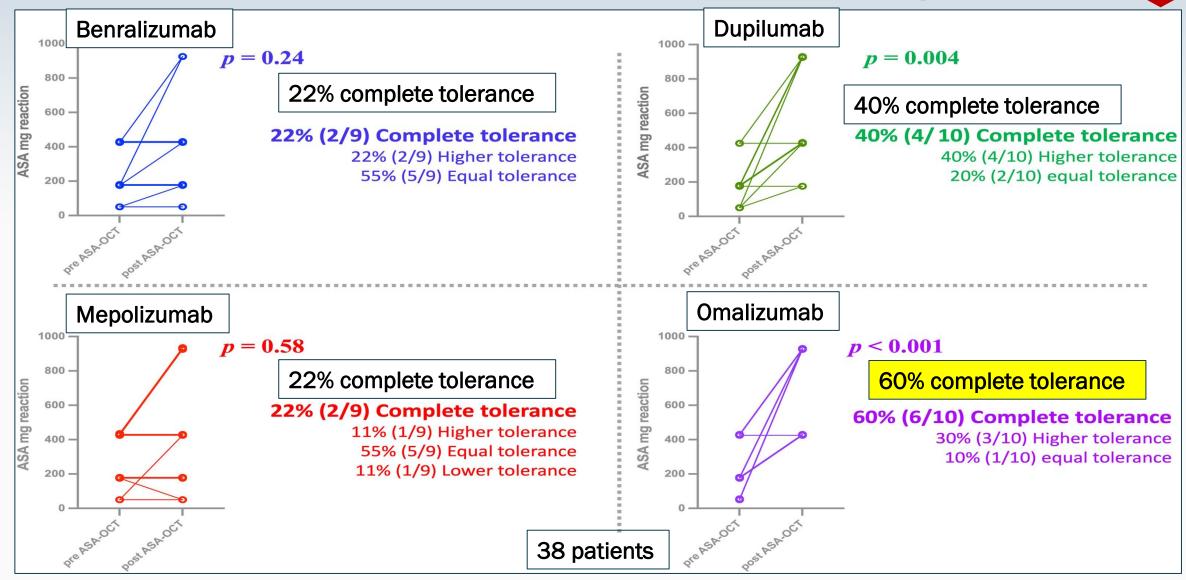
ASA provocation following Dupilumab Tx Respiratory symptoms shift to upper airway




Hayashi, H., Y. et al. (2020). Am J Respir Crit Care Med 201(12): 1488-1498.

ASA challenge after Omalizumab Tx

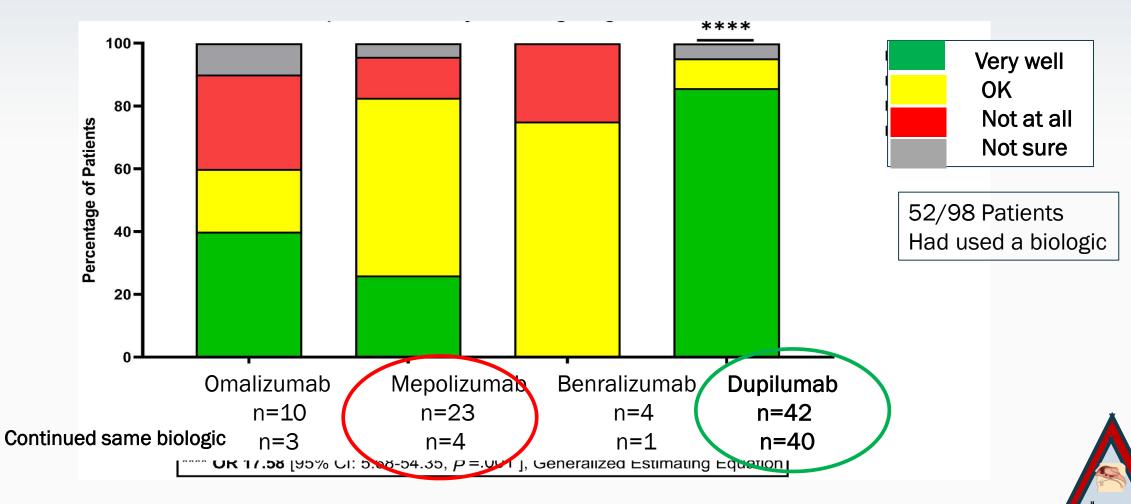
Hayashi, H., Y. et al. (2020). Am J Respir Crit Care Med 201(12): 1488-1498.


ASA provocation following Omalizumab Tx upper and lower respiratory symptoms reduced

Quint, T., V. et al. (2022). J Allergy Clin Immunol Pract 10(2): 506-516 e506.

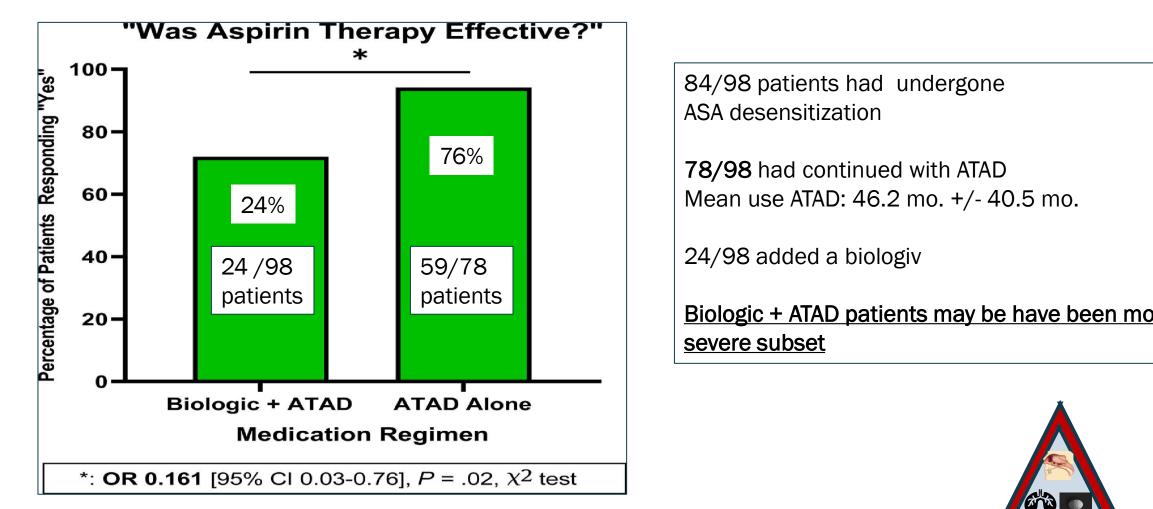
ASA tolerance after 6 mo. of biological Tx

Sanchez, J., E. et al. (2023). J Allergy Clin Immunol Pract 11(7): 2172-2179.


Meta-analysis 29 RCTs: comparing biologics in CRSwNP

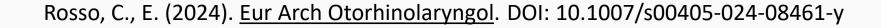
		Surrogate outcomes							
	HRQoL SNOT-22 (0-110) [‡]	Symptoms VAS (0-10 cm)	Smell UPSIT (0-40) [†]	Rescue OCS	Rescue polyp surgery	Adverse events	Nasal polyp size (0-8)	CT score LMK (0-24)	
Standard care*	50.11	6.84	14.04	31.96%	21.05%	73.78%	5.94	18.35	
Dupilumab	-19.91 (-22.50, - 17.32)	-3.25 (-4.31, -2.18)	10.96 (9.75, 12.17)	-21.73 (-24.61, -18.22) RR 0.32 (0.23, 0.43)	-16.35 (-18.13, -13.48) RR 0.22 (0.14, 0.36)	0.13 (-8.12, 9.88) RR 1.00 (0.88, 1.13)	-2.04 (-2.73, -1 .35)	-7.51 (-10.13, -4.89)	
Omalizumab	-16.09 (-19.88, - 12.30)	-2.09 (-3.15, - 1.03)	3.75 (2.14, 5.35)	-12.46 (-23.65, 12.78) RR 0.61 (0.26, 1.40)	-7.40 (-11.04, -2.43) RR 0.65 (0.48, 0.88)	-2.60 (-15.58, 13.28) RR 0.96 (0.79, 1.18)	-1.09 (-1.70, - 0.49)	-2.66 (-5.70, 0.37)	
Mepolizumab	-12.89 (-16.58, -9.19)	-1.82 (-3.13, -0.50)	6.13 (4.07, 8.19)	-10.23 (-15.98, -2.88) RR 0.68 (0.50, 0.91)	-12.33 (-15.56, -7.22) RR 0.41 (0.26, 0.66)	-3.07 (-13.44, 9.07) RR 0.96 (0.82, 1.12)	-1.06 (-1.79, -0.34)		
Benralizumab	-7.68 (-12.09, - 3.27)	-1.15 (-2.47, 0.17)	2.95 (1.02, 4.88)	-9.91 (-16.30, -0.96) RR 0.69 (0.49, 0.97)	-2.53 (-9.05, 7.16) RR 0.88 (0.57, 1.34)	-1.48 (-13.28, 12.54) RR 0.98 (0.82, 1.17)	-0.64 (-1.39, 0.12)	-1.00 (-3.83, 1.83)	
Reslizumab					-18.82 (-20.93, 20.56) RR 0.11 (0.01, 1.98)	-2.55 (-19.49, 19.18) RR 0.97 (0.74, 1.26)			
AK001						2.54 {-27.11, 51.03} RR 1.03 (0.63, 1.69)	-0.20 (-1.61, 1.21)		
Etokimab	-1.30 (-8.99 to 6.40)					188.14 (-59.76, 4879.1) RR 3.55 (0.19, 67.13)	-0.33 (-1.58, 0.92)		
ASA Desensitization	-10.61 (-14.51, -6.71)	-2.74 (-3.92, -1 .57)	2.72 (-1.17, 6.61)		-16.00 (-19.79, 0.21) RR 0.24 (0.06, 1.01)	209.21 (8.30, 901.87) RR 3.84 (1.11, 13.22)	-0.95 (-2.44, 0.55)	-0.31 (-3.50, 2.88)	
Classification of i	intervention (co					Certainty (shading)24, 29			
Among most beneficial Among intermediate beneficial				Among least b	No data	High/moderate (solid)			
Among most harmful Among intermediate harmful				clearly differe	nt from placebo	(blank)	Low/very low (shaded)		

1/3 of patients had been diagnosed to have AERD


Oykhman, P., et al. (2022). J Allergy Clin Immunol. 149 (4):1286-1295.

Patient Reported Efficacy of Biologic Agents in AERD: Registry survey

Mullur, J., et al. (2022). Ann Allergy Asthma Immunol 128(5): 575-582.


Registry patients with history of ATAD use Patient response as to ATAD effectiveness

Mullur, J., et al. (2022). Ann Allergy Asthma Immunol 128(5): 575-582.

Mepolizumab 📩 Dupilumab

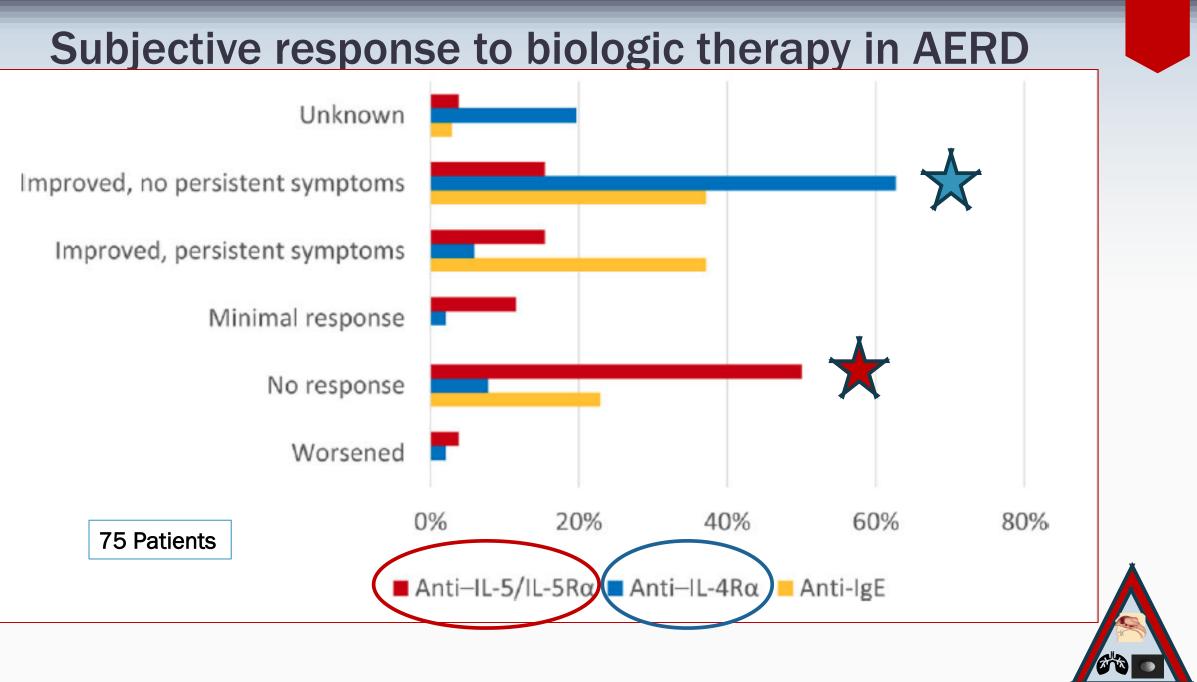
- **O** 20 patients with severe asthma and CRSwNP, all with prior ESS (average of 2)
- **1** year or more of mepolizumab
 - O Asthma controlled
 - **O** CRSwNP not controlled
- Switch to dupilumab and followed for 18 months
 - All patients had improvement in IgE, SNOT22, NPS, ACT, Olfactory function; Eos increased at 6 months but decreased by 18 months
 - **1** patient had uncontrolled asthma and returned to mepolizumab
 - **O 2** other patients dropped out due to other reasons
- O Dupilumab will mean dosing every other week

Switching biologics

- Patients failing to respond to omalizumab or mepolizumab/benralizumab often respond to dupilumab¹
- When switching to 2nd biologic, when dupilumab is 2nd biologic, it seems to be associated with more adverse events than when used as 1st biologic or another biologic, esp. hypereosinophilia¹
 - O Consider making 2nd switch or
 - O Combine with anti-IL-5 agent
- Omalizumab switch to dupilumab associated with keratoconjunctivitis sicca in 4.3%¹
- **O** Look for unexplored cross-reactions when adding 2nd biologic or switching biologics³
 - What will be the incidence of duplimab associated joint pain, eosinophilic granulomatosis with pol7angitis?
- SUCRA (FDA) values reported slightly higher frequencies of cough, bronchitis, arthralgia for dupilumab (all dx) compared to other biologics

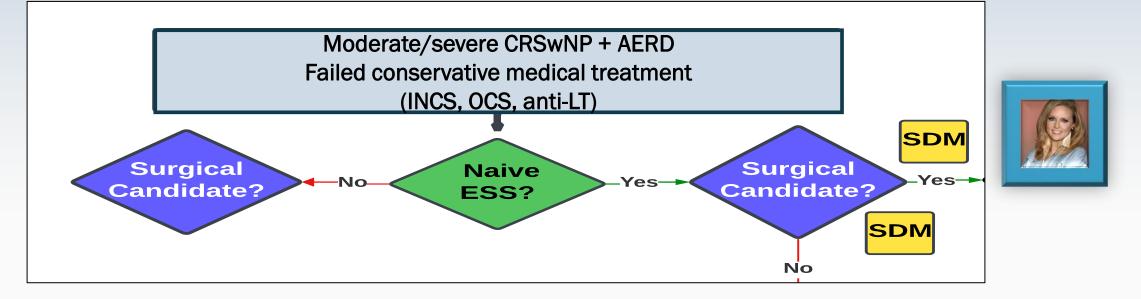
Otten, J., R. (2023). Expert Rev Clin Immunol 19(8): 1041-1049.
 Brkic, F. F (2023). Rhinology 61(4): 320-327.
 Nitro, L., A. (2022). Acta Otorhinolaryngol Ital 42(3): 199-204.

Real-world biologic effectiveness in AERD

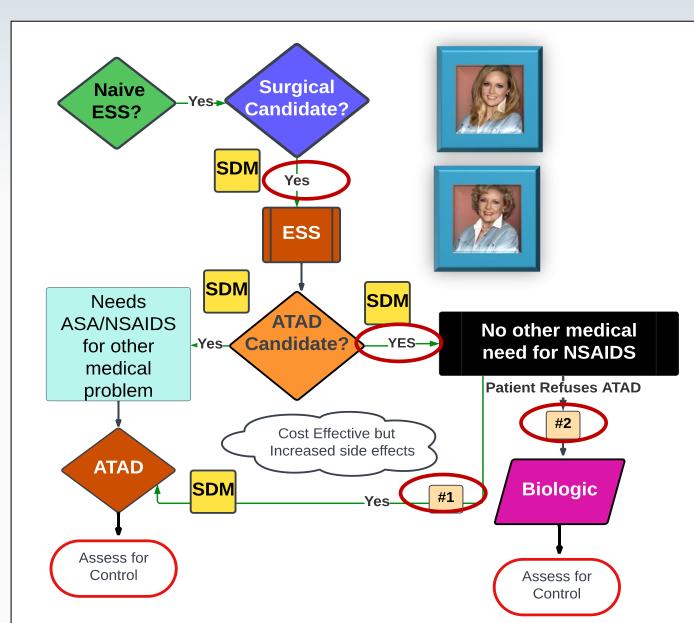

Historical Use of Biologic* N=111	Last Prescribed Biologic** 75 Patients $N = 75^+$							
	Omalizumab $n = 17^+$	Benralizumab $n = 3$	Mepolizumab $n = 2^+$	Reslizuma $n=2$	b Dupilumab $n = 51$			
Omalizumab $n = 35^+$	17 ⁺ /35 49%	2/35 6%	1 ⁺ /35 3%	1/35 3%	15/35 43% 9/22			
Benralizumab $n = 13$	1/13 8%	3/13 23%	0/13 0%	0/13 0%	69%			
Mepolizumab $n = 10^+$	1 ⁺ /10 10%	0/10 0%	2 ⁺ /10 20%	0/10 0%	8/10 80%			
Reslizumab $n=3$	0/3 0%	1/3 33%	0/3 0%	2/3 67%	0/3 0%			
Dupilumab n = 50	0/50 0%	1/50 2%	0/50 0%	0/50 0%	49/50 98%			

)%

)%

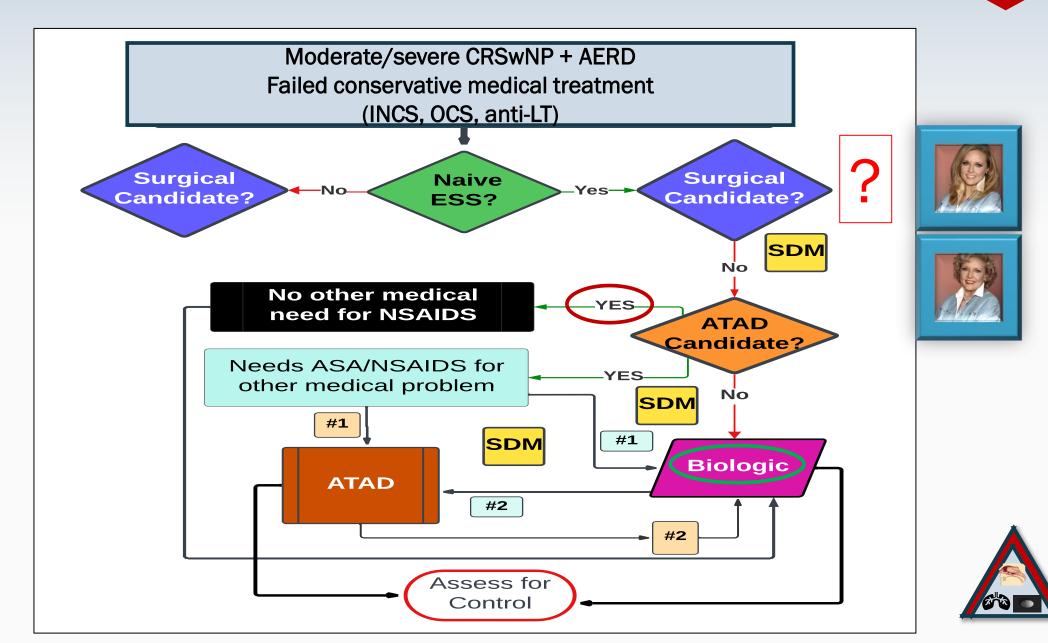

)%

Wangberg, H., et al. (2022). J Allergy Clin Immunol Pract 10(2): 478-484 e473.

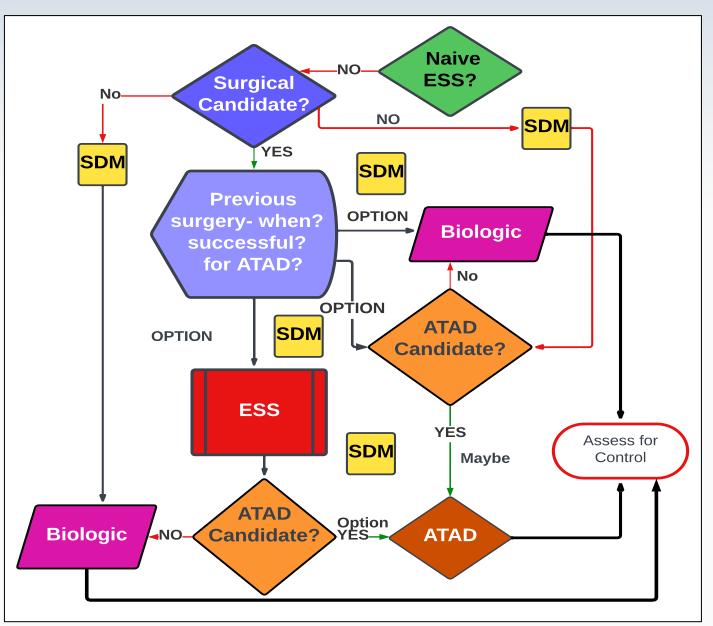


Wangberg, H., et al. (2022). J Allergy Clin Immunol Pract 10(2): 478-484 e473.

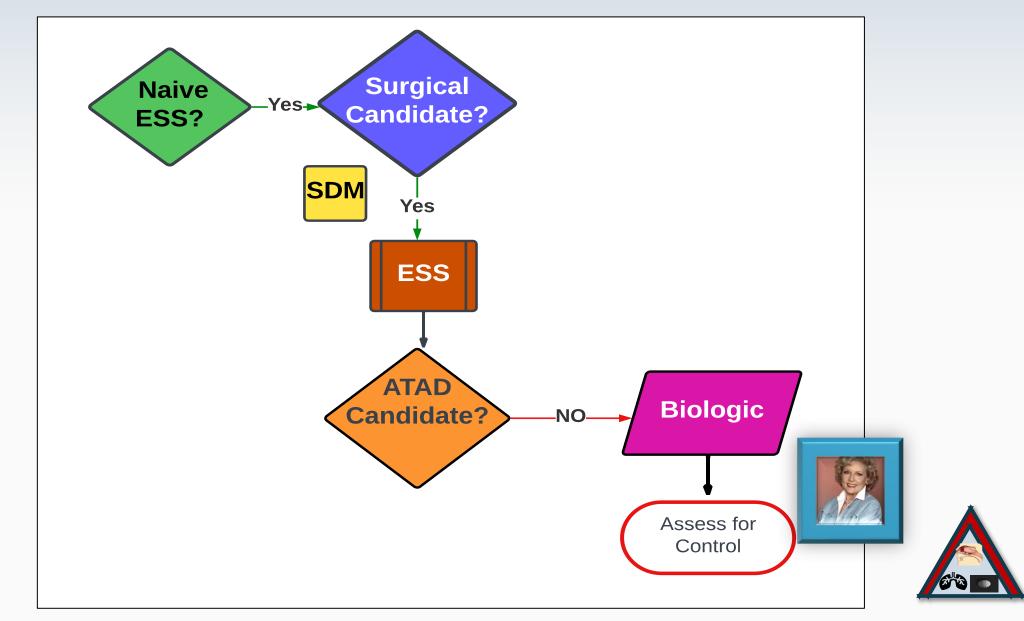
Decision point # 1a



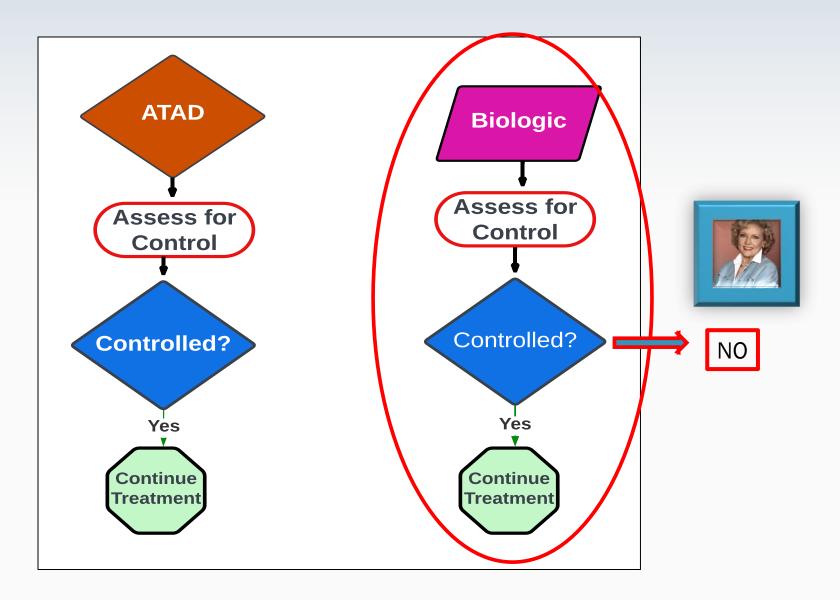
Decision point # 1b



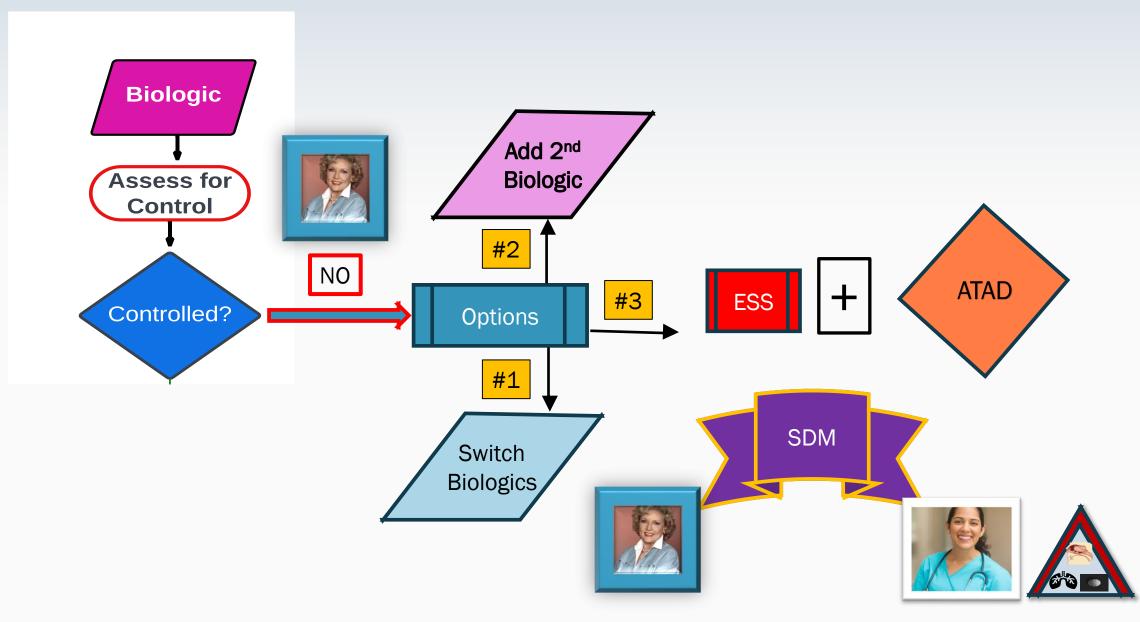
Decision point # 2a



Decision point # 2c (Not for our patient)



Decision point #3



Decision point #4

Decision point # 5

Cost effectiveness studies

- O ATAD (prior to biologics) cost effective at <\$50,000 per QALY
- O ATAD more cost effective than clopidogrel for cardiovascular prophylaxis
- O Dupilumab vs ESS for CRSwNP
 - ESS: \$50,436 with 9.8 QALYs
 - Oupilumab: \$537,420 for 8.94 QALYs
 - O Dupilumab would need to be \$855/year to be more cost effective than ESS
- **O** For AERD, surgery + ATAD more cost effective than dupilumab first
- **O** Surgery + ATAD with salvage dupilumab was cost effective with ICER of \$135, 517
 - **O** Upfront dupilumab was not cost effective with ICER of \$273,181
- Surgery + ATAD= QALY of 4.96 vs. upfront Dupilumab=QALY of 5.8

QALY= Quality adjusted life year; ICER= incremental cost effectiveness ratio

Laidlaw, T. M. et al. (2024). J Allergy Clin Immunol Pract **12**(1): 79-84.

Unanswered questions

- What is the most cost-effective long-term treatment for AERD patients?
- Should any AERD patients be started on ATAD prior to a first ESS?
- What is the role of biologics before or paired with ESS?
 - **O** Some or all AERD patients?
 - Presence of moderate/severe asthma?
 - **O** Patient preference?
- Can biologics replace both ESS and ATAD?
- O When biologics are ineffective, will adding ATAD be helpful?

