

Objectives

Review the clinical presentation and pathophysiology of CRSwNP and AERD

Understand the current treatment guidelines for CRSwNP and AERD

Review updates in CRSwNP and AERD management in the biologic era

Evaluation and Diagnosis of Chronic Rhinosinusitis (CRS)

Symptoms^{1,2}

Objective findings^{1,2}

≥2 of the following for ≥12 weeks:

- Mucopurulent drainage (anterior and/or posterior)
- Nasal obstruction
- Facial pain/pressure/fullness
- Hyposmia/anosmia

Endoscopic inflammation:

- Nasal polyps
- Purulent mucus
- Mucosal edema

Radiographic findings:

 Inflammation of paranasal sinuses

Chronic Rhinosinusitis with nasal polyps (CRSwNP)

- CRSwNP prevalence of 1.7–2.7% of the US population¹
- Average age of diagnosis: ~39 years²
 - Age of diagnosis is younger in aspirin-exacerbated respiratory disease (AERD): ~34 years³
- Prevalence may be higher in women²
- Important phenotypes include: AERD, AFRS
- Impairment in quality of life
- Lost productivity, high healthcare utilization

- 1. Blackwell DL, Lucas JW, Clarke TC. VitalHealth Stat 10 2014;(260):1-161;
 - 2. 2. Shashy RG, et al. Arch Otolaryngol Head Neck Surg 2004;130:320–323;
 - 3. Buchheit KM, et al. World J Otorhinolaryngol Head Neck Surg 2020;6:203–206; Image: Cho SH, et al. J Aller Clin Immunol Pract 2020;8:1505–1511

Mechanisms for T2 and non-T2 inflammation in CRSwNP

Patterns of Inflammatory Endotypes in Patients With CRS, CRSsNP, or CRSwNP in a US Cohort

Pathogenesis of chronic inflammation in AERD

Management algorithm for CRSwNP: first line therapy

Management algorithm for CRSwNP: refractory to first line therapy

2020 National Institutes of Health: Workshop for Biologic Use in CRSwNP – surgery vs biologic??

EPOS/EUFOREA update on indication and evaluation of biologics in CRSwNP (2023)

Indication for biological treatment in CRSwNP

Presence of bilateral polyps in patient who had ESS**

THREE criteria are required

▼							
Criteria	Cut-off points						
Evidence of type 2 inflammation	Tissue eos ≥10/hpf, or blood eos ≥ 150 or total IgE ≥100						
Need for systemic corticosteroids or contraindication to systemic steroids	≥2 courses per Yr or long term (> 3 months) low dose steroids						
Significantly impaired quality of life	SNOT-22 ≥40						
Significant loss of smell	Anosmic on smell test (score depending on test)						
Diagnosis of comorbid asthma	In case of asthma: regular need for inhaled corticosteroids						

Defining response to biological treatment in CRSwNP Evaluation of 5 criteria Good - Excellent response Reduced nasal polyp size · Reduced need for systemic oral corticosteroids Poor - Moderate response Improved quality of life · Improved sense of smell No response · Reduced impact of comorbidities $\sqrt{}$ Evaluate treatment response **after 6 months Discontinue treatment** if no response to any of the criteria Evaluate treatment response after 1 year

^{*} Exceptional circumstances excluded (e.g., not fit for surgery)

Where does biologic therapy fit in treatment algorithm for patients with AERD?

Summary: CRSwNP presentation and treatment guidelines

- Most common presenting symptoms of CRSwNP include nasal congestion/blockage and hyposmia/anosmia
 - Consider diagnosis of AERD: ask all adult-onset asthmatic patients about nasal polyps, sense of smell, and COX-1 inhibitor tolerance
- 80 90% of patients in the US have a predominantly T2 inflammatory endotype marked by eosinophilic inflammation, T2 cytokines (IL-4, IL-5, IL-13), high tissue IgE levels, mast cell activation
- Current CRSwNP management guidelines suggest reserving biologic therapy for patients who fail surgical management
 - Exceptions for patients with co-morbidities and contra-indication to surgery

Next: biologic therapy updates

Biologic therapy for CRSwNP and AERD

- Biologic therapy for
- **CRSwNP** and **AERD**
 - Anti-IL-4Rα
 - Anti-IgE
 - Anti-IL-5/IL-5Rα
 - Anti-TSLP
- Choosing between specific biologic agents
- Biologic therapy versus aspirin therapy after desensitization in AERD

Biologics: What we have and what might be coming

Efficacy and safety of dupilumab in patient chronic rhinosinusitis with nasal polyps (LI SINUS-24 and LIBERTY NP SINUS-52): resu two multicentre, randomised, double-blind placebo-controlled, parallel-group phase 3

Claus Bachert, Joseph K Han, Martin Tanya M Laidlaw, Anders U Cervin, Jo Wytske J Fokkens, Shigeharu Fujieda Gianluca Pirozzi, Naimish Patel, Neil Leda P Mannent

Clinical Communications

Dupilumab improves nasal polyp burden and asthma control in patients with CRSwNP and AERD

Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials

Philippe Gevaert, MD, PhD,^a Theodore A. Omachi, MD,^b Jonathan Corren, MD,^c Joaquim Mullol, Joseph Han, MD,^e Stella E. Lee, MD,^f Derrick Kaufman, PhD,^b Monica Ligueros-Saylan, MD,^g Mor Rui Zhu, PhD,^b Ryan Owen, PhD,^b Kit Wong, PhD,^b Lutaf Islam, DVM, MSc,^h and Claus Bachert, MD, PhD^{a,i}

Belgium; South San Francisco and Los Angeles, Calif; Catalonia, Spain; Norfolk, Va; Pittsburgh, Pa; East Hanover, NJ; Welwyn G United Kingdom; and Stockholm, Sweden The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma

Andrew Menzies-Gow, M.D., Jonathan Corren, M.D., Arnaud Bourdin, M.D.,

Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial

J Mark FitzGerald, Eugene R Bleecker, Parameswaran Nair, Stephanie Korn, Ken Ohta, Marek Lommatzsch, Gary T Ferguson, William W Busse, Peter Barker, Stephanie Sproule, Geoffrey Gilmartin, Viktoria Werkström, Magnus Aurivillius, Mitchell Goldman, on behalf of the CALIMA study investigators*

Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma

Philippe Gevaert, MD, PhD,^a* Lien Calus, MD,^a* Thibaut Van Zele, MD, PhD,^a Katrien Blomme, MSc,^a Natalie De Ruyck, MSc,^a Wouter Bauters, MD, PhD,^b Peter Hellings, MD, PhD,^c Guy Brusselle, MD, PhD,^d Dirk De Bacquer, MD, PhD,^e Paul van Cauwenberge, MD, PhD,^a and Claus Bachert, MD, PhD^a Ghent and Leuven, Belgium

Biologics: What we have and what might be coming

Target	Drug	CRSwNP phase		
Interleukin 4 Receptor alpha	Dupilumab	Approved 2019		
Immunoglobulin E	Omalizumab	Approved 2020		
Interleukin 5	Mepolizumab	Approved 2021		
Interleukin 5 Receptor alpha	Benralizumab	Phase 3 completed		
Thymic stromal lymphopoietin	Tezepelumab	Phase 3 completed		
Interleukin 5	Depemokimab	Phase 3 completed		
Interleukin 13	Lebrikizumab	Phase 3		
Interleukin 4 Receptor alpha	r alpha CM310/stapokibart Phase 3			
Interleukin 33	Itepekimab	Phase 3		

Targets of approved and investigational biologic medications for treatment of CRSwNP

Biologic therapy (anti-IL4Rα) reduces need for surgery and improves sinonasal symptoms in CRSwNP/AERD

Time to first sinus surgery or systemic corticosteroid use for CRSwNP in anti-IL-4Rα therapy compared to placebo

Improvement in sinonasal symptoms in patients with AERD and aspirintolerant CRSwNP

Bachert C et al. Lancet. 2019 Nov 2;394(10209):1638-1650.

Mullol J et al. Allergy. 2022 Apr;77(4):1231-1244.

Dupilumab has impacts on eicosanoids, IgE, and nasal epithelium in AERD

Molecular endotying of nasal brushings shows T2 cluster with better response to dupilumab for CRSwNP

C1 (blue): Enriched for genes associated with T cell activation and IL-12

C2 (red): Enriched for genes associated with T2 inflammation

IL-4Rα Inhibition leads to long-term improvement in quality of life in patients with AERD

Efficacy of tapered dupilumab dose for CRSwNP*

Dupilumab dosing frequency in AERD

Survey Study of BWH AERD Registry: Dosing intervals reported by 111 patients with NSAID-ERD who attempted dosing intervals other than q2 weeks

Post hoc analyses from phase 3 studies of omalizumab for CRSwNP: eosinophil levels

Post hoc exploratory analysis from phase 3 studies of omalizumab for CRSwNP shows no difference in outcomes IgE < or ≥ 150 IU/mL

Nasal Polyp Score (NPS)

Nasal Congestion Score (NCS)

Prespecified subgroup analyses from phase 3 study of mepolizumab for CRSwNP: eosinophil levels

Sustained efficacy of mepolizumab for CRSwNP in 24week post-treatment follow-up

Depemokimab (ultra long-acting anti-IL-5) for CRSwNP

	ANCHOR-1			ANCHOR-2			Integrated		
	Placebo (n=128)	Depemokimab 100 mg subcutaneously (n=143)	Treatment difference, 95% CI; p value	Placebo (n=128)	Depemokimab 100 mg subcutaneously (n=129)	Treatment difference, 95% CI; p value	Placebo (n=256)	Depemokimab 100 mg subcutaneously (n=272)	Treatment difference, 95% CI; p value
Coprimary endpoint: change from baseline in total endoscopic nasal polyps score (0–8) at week 52									
Number of participants with available data	120	128		115	120		235	248	
Least squares mean, SE	0·2 (0·15)	-0·6 (0·14)	-0·7 (-1·1 to -0·3); p<0·001	0·1 (0·15)	-0·5 (0·14)	-0.6 (-1.0 to -0.2); p=0.004	0·1 (0·10)	-0·5 (0·10)	-0·7 (-0·9 to -0·4); p<0·001*
Coprimary endpoint: ch	Coprimary endpoint: change from baseline in mean nasal obstruction verbal response scale score (0-3) over weeks 49-52								
Number of participants with available data	116	125		111	119		227	244	
Least squares mean, SE	-0·53 (0·083)	-0·76 (0·079)	-0·23 (-0·46 to 0·00); p=0·047	-0·53 (0·078)	-0·77 (0·076)	-0·25 (-0·46 to -0·03); p=0·025	-0·53 (0·057)	-0·77 (0·055)	-0.24 (-0.39 to -0.08); $p=0.003*$

Efficacy of tezepelumab in CRSwNP

Anti-thymic stromal lymphopoietin (TSLP) for patients with CRSwNP

AAER over 52 weeks in patients with or without CRSwNP NAVIGATOR study

Change from baseline in SNOT-22 total score over 52 weeks in patients with NP

Anti-TSLP for patients with AERD

AAER over 52 weeks in patients with or without AERD NAVIGATOR study

Change from baseline in SNOT-22 total score over 52 weeks in patients with AERD

AAER=annualized asthma exacerbation rate Laidlaw TM et al. *JACI IP In Press*.

Meta-analysis of 29 RCTs: Efficacy of biologics for CRSwNP*

	Patient-important outcomes							Surrogate outcomes	
	HRQoL SNOT-22 (0-110) [‡]	Symptoms VAS (0-10 cm)	Smell UPSIT (0-40) †	Rescue OCS	Rescue polyp surgery	Adverse events	Nasal polyp size (0-8)	CT score LMK (0-24)	
Standard care*	50.11	6.84	14.04	31.96%	21.05%	73.78%	5.94	18.35	
Dupilumab	-19.91 (-22.50, -17.32)	-3.25 (-4.31, -2.18)	10.96 (9.75, 12.17)	-21.73 (-24.61, -18.22) RR 0.32 (0.23, 0.43)	-16.35 (-18.13, -13.48) RR 0.22 (0.14, 0.36)	0.13 (-8.12, 9.88) RR 1.00 (0.88, 1.13)	-2.04 (-2.73, -1.35)	-7.51 (-10.13, -4.89)	
Omalizumab	-16.09 (-19.88, -12.30)	-2.09 (-3.15, -1.03)	3.75 (2.14, 5.35)	-12.46 (-23.65, 12.78) RR 0.61 (0.26, 1.40)	-7.40 (-11.04, -2.43) RR 0.65 (0.48, 0.88)	-2.60 (-15.58, 13.28) RR 0.96 (0.79, 1.18)	-1.09 (-1.70, -0.49)	-2.66 (-5.70, 0.37)	
Mepolizumab	-12.89 (-16.58, -9.19)	-1.82 (-3.13, -0.50)	6.13 (4.07, 8.19)	-10.23 (-15.98, -2.88) RR 0.68 (0.50, 0.91)	-12.33 (-15.56, -7.22) RR 0.41 (0.26, 0.66)	-3.07 (-13.44, 9.07) RR 0.96 (0.82, 1.12)	-1.06 (-1.79, -0.34)		
Benralizumab	-7.68 (-12.09, -3.27)	-1.15 (-2.47, 0.17)	2.95 (1.02, 4.88)	-9.91 (-16.30, -0.96) RR 0.69 (0.49, 0.97)	-2.53 (-9.05, 7.16) RR 0.88 (0.57, 1.34)	-1.48 (-13.28, 12.54) RR 0.98 (0.82, 1.17)	-0.64 (-1.39, 0.12)	-1.00 (-3.83, 1.83)	
Reslizumab					-18.82 (-20.93, 20.56) RR 0.11 (0.01, 1.98)	-2.55 (-19.49, 19.18) RR 0.97 (0.74, 1.26)			
AK001						2.54 (-27.11, 51.03) RR 1.03 (0.63, 1.69)	-0.20 (-1.61, 1.21)		
Etokimab	-1,30 (-8.99 to 6,40)					188.14 (-59.76, 4879.1) RR 3.55 (0.19, 67.13)	-0.33 (-1.58, 0.92)		
ASA Desensitization	-10.61 (-14.51, -6.71)	-2.74 (-3.92, -1.57)	2.72 (-1.17, 6.61)		-16.00 (-19.79, 0.21) RR 0.24 (0.06, 1.01)	209.21 (8.30, 901.87) RR 3.84 (1.11, 13.22)	-0.95 (-2.44, 0.55)	-0.31 (-3.50, 2.88)	
Classification of	intervention (co	olour) ²⁴					Certainty (sh	ading) ^{24, 29}	
Among most bene	eficial Amon	g intermediate	e beneficial	Among least beneficial/not		No data	High/moderate (solid)		
Among most harn	nful Amon	g intermediate	e harmful	clearly differe	nt from placebo	(blank)	Low/very low (shaded)		

AERD: Patient reported outcomes – biologic efficacy

Reproduced with permission: Mullur J et al. Annals of Allergy, Asthma and Immunology, 2022

Possible role for IgE in predicting response to aspirin therapy after desensitization (ATAD) in patients with AERD

Conclusions: Biologic therapy for CRSwNP and AERD

- Biologic agents lead to substantial improvement CRSwNP and AERD quality of life and reduction in inflammatory disease burden.
- Systematic reviews and indirect treatment comparisons, while limited, suggest dupilumab is most efficacious for CRSwNP of current US FDA approved agents.
 - Head-to-head studies will further address this question.
- Future studies focused on biomarker-based endotyping and responder analyses will allow for optimization of personalized treatment for CRSwNP.

