Objectives Review the clinical presentation and pathophysiology of CRSwNP and AERD Understand the current treatment guidelines for CRSwNP and AERD Review updates in CRSwNP and AERD management in the biologic era ### **Evaluation and Diagnosis of Chronic Rhinosinusitis (CRS)** #### Symptoms^{1,2} #### Objective findings^{1,2} #### ≥2 of the following for ≥12 weeks: - Mucopurulent drainage (anterior and/or posterior) - Nasal obstruction - Facial pain/pressure/fullness - Hyposmia/anosmia #### **Endoscopic inflammation:** - Nasal polyps - Purulent mucus - Mucosal edema #### Radiographic findings: Inflammation of paranasal sinuses ## Chronic Rhinosinusitis with nasal polyps (CRSwNP) - CRSwNP prevalence of 1.7–2.7% of the US population¹ - Average age of diagnosis: ~39 years² - Age of diagnosis is younger in aspirin-exacerbated respiratory disease (AERD): ~34 years³ - Prevalence may be higher in women² - Important phenotypes include: AERD, AFRS - Impairment in quality of life - Lost productivity, high healthcare utilization - 1. Blackwell DL, Lucas JW, Clarke TC. VitalHealth Stat 10 2014;(260):1-161; - 2. 2. Shashy RG, et al. Arch Otolaryngol Head Neck Surg 2004;130:320–323; - 3. Buchheit KM, et al. World J Otorhinolaryngol Head Neck Surg 2020;6:203–206; Image: Cho SH, et al. J Aller Clin Immunol Pract 2020;8:1505–1511 #### Mechanisms for T2 and non-T2 inflammation in CRSwNP ## Patterns of Inflammatory Endotypes in Patients With CRS, CRSsNP, or CRSwNP in a US Cohort ## Pathogenesis of chronic inflammation in AERD ### Management algorithm for CRSwNP: first line therapy ## Management algorithm for CRSwNP: refractory to first line therapy ## 2020 National Institutes of Health: Workshop for Biologic Use in CRSwNP – surgery vs biologic?? ## EPOS/EUFOREA update on indication and evaluation of biologics in CRSwNP (2023) #### Indication for biological treatment in CRSwNP Presence of bilateral polyps in patient who had ESS** THREE criteria are required | ▼ | | | | | | | | |--|---|--|--|--|--|--|--| | Criteria | Cut-off points | | | | | | | | Evidence of type 2 inflammation | Tissue eos ≥10/hpf,
or
blood eos ≥ 150
or
total IgE ≥100 | | | | | | | | Need for systemic corticosteroids or contraindication to systemic steroids | ≥2 courses per Yr or long term (> 3 months) low dose steroids | | | | | | | | Significantly impaired quality of life | SNOT-22 ≥40 | | | | | | | | Significant loss of smell | Anosmic on smell test
(score depending on test) | | | | | | | | Diagnosis of comorbid asthma | In case of asthma: regular need for inhaled corticosteroids | | | | | | | Defining response to biological treatment in CRSwNP Evaluation of 5 criteria Good - Excellent response Reduced nasal polyp size · Reduced need for systemic oral corticosteroids Poor - Moderate response Improved quality of life · Improved sense of smell No response · Reduced impact of comorbidities $\sqrt{}$ Evaluate treatment response **after 6 months Discontinue treatment** if no response to any of the criteria Evaluate treatment response after 1 year ^{*} Exceptional circumstances excluded (e.g., not fit for surgery) ## Where does biologic therapy fit in treatment algorithm for patients with AERD? ## Summary: CRSwNP presentation and treatment guidelines - Most common presenting symptoms of CRSwNP include nasal congestion/blockage and hyposmia/anosmia - Consider diagnosis of AERD: ask all adult-onset asthmatic patients about nasal polyps, sense of smell, and COX-1 inhibitor tolerance - 80 90% of patients in the US have a predominantly T2 inflammatory endotype marked by eosinophilic inflammation, T2 cytokines (IL-4, IL-5, IL-13), high tissue IgE levels, mast cell activation - Current CRSwNP management guidelines suggest reserving biologic therapy for patients who fail surgical management - Exceptions for patients with co-morbidities and contra-indication to surgery Next: biologic therapy updates ### Biologic therapy for CRSwNP and AERD - Biologic therapy for - **CRSwNP** and **AERD** - Anti-IL-4Rα - Anti-IgE - Anti-IL-5/IL-5Rα - Anti-TSLP - Choosing between specific biologic agents - Biologic therapy versus aspirin therapy after desensitization in AERD ### Biologics: What we have and what might be coming Efficacy and safety of dupilumab in patient chronic rhinosinusitis with nasal polyps (LI SINUS-24 and LIBERTY NP SINUS-52): resu two multicentre, randomised, double-blind placebo-controlled, parallel-group phase 3 Claus Bachert, Joseph K Han, Martin Tanya M Laidlaw, Anders U Cervin, Jo Wytske J Fokkens, Shigeharu Fujieda Gianluca Pirozzi, Naimish Patel, Neil Leda P Mannent #### **Clinical Communications** Dupilumab improves nasal polyp burden and asthma control in patients with CRSwNP and AERD ### Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials Philippe Gevaert, MD, PhD,^a Theodore A. Omachi, MD,^b Jonathan Corren, MD,^c Joaquim Mullol, Joseph Han, MD,^e Stella E. Lee, MD,^f Derrick Kaufman, PhD,^b Monica Ligueros-Saylan, MD,^g Mor Rui Zhu, PhD,^b Ryan Owen, PhD,^b Kit Wong, PhD,^b Lutaf Islam, DVM, MSc,^h and Claus Bachert, MD, PhD^{a,i} Belgium; South San Francisco and Los Angeles, Calif; Catalonia, Spain; Norfolk, Va; Pittsburgh, Pa; East Hanover, NJ; Welwyn G United Kingdom; and Stockholm, Sweden The NEW ENGLAND JOURNAL of MEDICINE #### ORIGINAL ARTICLE Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma Andrew Menzies-Gow, M.D., Jonathan Corren, M.D., Arnaud Bourdin, M.D., Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial J Mark FitzGerald, Eugene R Bleecker, Parameswaran Nair, Stephanie Korn, Ken Ohta, Marek Lommatzsch, Gary T Ferguson, William W Busse, Peter Barker, Stephanie Sproule, Geoffrey Gilmartin, Viktoria Werkström, Magnus Aurivillius, Mitchell Goldman, on behalf of the CALIMA study investigators* Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma Philippe Gevaert, MD, PhD,^a* Lien Calus, MD,^a* Thibaut Van Zele, MD, PhD,^a Katrien Blomme, MSc,^a Natalie De Ruyck, MSc,^a Wouter Bauters, MD, PhD,^b Peter Hellings, MD, PhD,^c Guy Brusselle, MD, PhD,^d Dirk De Bacquer, MD, PhD,^e Paul van Cauwenberge, MD, PhD,^a and Claus Bachert, MD, PhD^a Ghent and Leuven, Belgium #### Biologics: What we have and what might be coming | Target | Drug | CRSwNP phase | | | |------------------------------|-----------------------------------|-------------------|--|--| | Interleukin 4 Receptor alpha | Dupilumab | Approved 2019 | | | | Immunoglobulin E | Omalizumab | Approved 2020 | | | | Interleukin 5 | Mepolizumab | Approved 2021 | | | | Interleukin 5 Receptor alpha | Benralizumab | Phase 3 completed | | | | Thymic stromal lymphopoietin | Tezepelumab | Phase 3 completed | | | | Interleukin 5 | Depemokimab | Phase 3 completed | | | | Interleukin 13 | Lebrikizumab | Phase 3 | | | | Interleukin 4 Receptor alpha | r alpha CM310/stapokibart Phase 3 | | | | | Interleukin 33 | Itepekimab | Phase 3 | | | ## Targets of approved and investigational biologic medications for treatment of CRSwNP ## Biologic therapy (anti-IL4Rα) reduces need for surgery and improves sinonasal symptoms in CRSwNP/AERD Time to first sinus surgery or systemic corticosteroid use for CRSwNP in anti-IL-4Rα therapy compared to placebo Improvement in sinonasal symptoms in patients with AERD and aspirintolerant CRSwNP Bachert C et al. Lancet. 2019 Nov 2;394(10209):1638-1650. Mullol J et al. Allergy. 2022 Apr;77(4):1231-1244. ## Dupilumab has impacts on eicosanoids, IgE, and nasal epithelium in AERD ## Molecular endotying of nasal brushings shows T2 cluster with better response to dupilumab for CRSwNP C1 (blue): Enriched for genes associated with T cell activation and IL-12 C2 (red): Enriched for genes associated with T2 inflammation ## IL-4Rα Inhibition leads to long-term improvement in quality of life in patients with AERD ### Efficacy of tapered dupilumab dose for CRSwNP* ### Dupilumab dosing frequency in AERD Survey Study of BWH AERD Registry: Dosing intervals reported by 111 patients with NSAID-ERD who attempted dosing intervals other than q2 weeks ## Post hoc analyses from phase 3 studies of omalizumab for CRSwNP: eosinophil levels # Post hoc exploratory analysis from phase 3 studies of omalizumab for CRSwNP shows no difference in outcomes IgE < or ≥ 150 IU/mL #### **Nasal Polyp Score (NPS)** ## #### **Nasal Congestion Score (NCS)** ## Prespecified subgroup analyses from phase 3 study of mepolizumab for CRSwNP: eosinophil levels ## Sustained efficacy of mepolizumab for CRSwNP in 24week post-treatment follow-up ### Depemokimab (ultra long-acting anti-IL-5) for CRSwNP | | ANCHOR-1 | | | ANCHOR-2 | | | Integrated | | | |--|---|--|---|--------------------|--|---|--------------------|--|---| | | Placebo
(n=128) | Depemokimab
100 mg
subcutaneously
(n=143) | Treatment
difference, 95% CI;
p value | Placebo
(n=128) | Depemokimab
100 mg
subcutaneously
(n=129) | Treatment
difference, 95% CI;
p value | Placebo
(n=256) | Depemokimab
100 mg
subcutaneously
(n=272) | Treatment
difference, 95% CI;
p value | | Coprimary endpoint: change from baseline in total endoscopic nasal polyps score (0–8) at week 52 | | | | | | | | | | | Number of participants with available data | 120 | 128 | | 115 | 120 | | 235 | 248 | | | Least squares mean, SE | 0·2
(0·15) | -0·6
(0·14) | -0·7
(-1·1 to -0·3);
p<0·001 | 0·1
(0·15) | -0·5
(0·14) | -0.6 (-1.0 to -0.2); p=0.004 | 0·1
(0·10) | -0·5
(0·10) | -0·7
(-0·9 to -0·4);
p<0·001* | | Coprimary endpoint: ch | Coprimary endpoint: change from baseline in mean nasal obstruction verbal response scale score (0-3) over weeks 49-52 | | | | | | | | | | Number of participants with available data | 116 | 125 | | 111 | 119 | | 227 | 244 | | | Least squares mean, SE | -0·53
(0·083) | -0·76
(0·079) | -0·23
(-0·46 to 0·00);
p=0·047 | -0·53
(0·078) | -0·77
(0·076) | -0·25
(-0·46 to -0·03);
p=0·025 | -0·53
(0·057) | -0·77
(0·055) | -0.24 (-0.39 to -0.08); $p=0.003*$ | ### Efficacy of tezepelumab in CRSwNP ## Anti-thymic stromal lymphopoietin (TSLP) for patients with CRSwNP AAER over 52 weeks in patients with or without CRSwNP NAVIGATOR study Change from baseline in SNOT-22 total score over 52 weeks in patients with NP #### **Anti-TSLP for patients with AERD** AAER over 52 weeks in patients with or without AERD NAVIGATOR study Change from baseline in SNOT-22 total score over 52 weeks in patients with AERD AAER=annualized asthma exacerbation rate Laidlaw TM et al. *JACI IP In Press*. #### Meta-analysis of 29 RCTs: Efficacy of biologics for CRSwNP* | | Patient-important outcomes | | | | | | | Surrogate outcomes | | |------------------------|--|------------------------------|----------------------------|---|---|--|------------------------------|----------------------------|--| | | HRQoL
SNOT-22
(0-110) [‡] | Symptoms
VAS
(0-10 cm) | Smell
UPSIT
(0-40) † | Rescue
OCS | Rescue
polyp
surgery | Adverse events | Nasal
polyp size
(0-8) | CT score
LMK
(0-24) | | | Standard care* | 50.11 | 6.84 | 14.04 | 31.96% | 21.05% | 73.78% | 5.94 | 18.35 | | | Dupilumab | -19.91 (-22.50, -17.32) | -3.25
(-4.31, -2.18) | 10.96 (9.75, 12.17) | -21.73
(-24.61, -18.22)
RR 0.32
(0.23, 0.43) | -16.35
(-18.13, -13.48)
RR 0.22
(0.14, 0.36) | 0.13
(-8.12, 9.88)
RR 1.00
(0.88, 1.13) | -2.04 (-2.73, -1.35) | -7.51
(-10.13, -4.89) | | | Omalizumab | -16.09 (-19.88, -12.30) | -2.09 (-3.15, -1.03) | 3.75 (2.14, 5.35) | -12.46
(-23.65, 12.78)
RR 0.61
(0.26, 1.40) | -7.40
(-11.04, -2.43)
RR 0.65
(0.48, 0.88) | -2.60
(-15.58, 13.28)
RR 0.96
(0.79, 1.18) | -1.09 (-1.70, -0.49) | -2.66 (-5.70, 0.37) | | | Mepolizumab | -12.89 (-16.58, -9.19) | -1.82 (-3.13, -0.50) | 6.13 (4.07, 8.19) | -10.23
(-15.98, -2.88)
RR 0.68
(0.50, 0.91) | -12.33
(-15.56, -7.22)
RR 0.41
(0.26, 0.66) | -3.07
(-13.44, 9.07)
RR 0.96
(0.82, 1.12) | -1.06 (-1.79, -0.34) | | | | Benralizumab | -7.68 (-12.09, -3.27) | -1.15 (-2.47, 0.17) | 2.95 (1.02, 4.88) | -9.91
(-16.30, -0.96)
RR 0.69
(0.49, 0.97) | -2.53
(-9.05, 7.16)
RR 0.88
(0.57, 1.34) | -1.48
(-13.28, 12.54)
RR 0.98
(0.82, 1.17) | -0.64 (-1.39, 0.12) | -1.00 (-3.83, 1.83) | | | Reslizumab | | | | | -18.82
(-20.93, 20.56)
RR 0.11
(0.01, 1.98) | -2.55
(-19.49, 19.18)
RR 0.97
(0.74, 1.26) | | | | | AK001 | | | | | | 2.54
(-27.11, 51.03)
RR 1.03
(0.63, 1.69) | -0.20 (-1.61, 1.21) | | | | Etokimab | -1,30 (-8.99 to 6,40) | | | | | 188.14
(-59.76, 4879.1)
RR 3.55
(0.19, 67.13) | -0.33 (-1.58, 0.92) | | | | ASA
Desensitization | -10.61 (-14.51, -6.71) | -2.74 (-3.92, -1.57) | 2.72 (-1.17, 6.61) | | -16.00
(-19.79, 0.21)
RR 0.24
(0.06, 1.01) | 209.21
(8.30, 901.87)
RR 3.84
(1.11, 13.22) | -0.95 (-2.44, 0.55) | -0.31 (-3.50, 2.88) | | | Classification of | intervention (co | olour) ²⁴ | | | | | Certainty (sh | ading) ^{24, 29} | | | Among most bene | eficial Amon | g intermediate | e beneficial | Among least beneficial/not | | No data | High/moderate (solid) | | | | Among most harn | nful Amon | g intermediate | e harmful | clearly differe | nt from placebo | (blank) | Low/very low (shaded) | | | ### AERD: Patient reported outcomes – biologic efficacy Reproduced with permission: Mullur J et al. Annals of Allergy, Asthma and Immunology, 2022 ## Possible role for IgE in predicting response to aspirin therapy after desensitization (ATAD) in patients with AERD #### Conclusions: Biologic therapy for CRSwNP and AERD - Biologic agents lead to substantial improvement CRSwNP and AERD quality of life and reduction in inflammatory disease burden. - Systematic reviews and indirect treatment comparisons, while limited, suggest dupilumab is most efficacious for CRSwNP of current US FDA approved agents. - Head-to-head studies will further address this question. - Future studies focused on biomarker-based endotyping and responder analyses will allow for optimization of personalized treatment for CRSwNP.