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Abstract

Large enterprise networks are getting targeted by Advanced and Persistent Threats (APTs) increasingly in recent times.
To detect these attacks, enterprises deploy a wide variety of Intrusion Detection Systems (IDS) or Security Information Event
Management (SIEM) as a layer of protection against malicious attack groups. This report explains in detail two main aspects of
Intrusion Detection Systems (IDS) or Threat Detection Softwares (TDS): threat detection and alert correlation and reviews four
research pieces that utilizes audit records along with several intuitive techniques in order to detect threats and correlate alerts.
The first two papers [1] [2] address the threat detection approaches and the last two papers [3] [4] focus on alert correlation
techniques primarily. The aim of this report is to produce an in-depth study of these papers and figure out the advantages and
the shortcomings of each of them. In the next section, I provide a detailed understanding of how an APT unfolds with a brief
description of the four papers reviewed in this report. This is followed by the discussion of the four papers in detail including
evaluations and limitations of each system. In the final section, I provide some general discussion on these systems along with a
few future research insights.

I. INTRODUCTION

Nowadays Advanced and Persistent Threats (APTs) are increasingly plaguing large enterprise networks. Advanced and
Persistent Threats (APTs) are very advanced and sophisticated cyber-attacks campaigns that consist of multiple stages and
spans across a time period which is typically a few weeks to several months. What makes APTs such a vicious attack is
that these APT campaigns are inflicted upon enterprise networks by means as simple as spearphishing emails. Once the APT
actors successfully penetrates the network they uses a variety of advanced tools and stealthy softwares which enables them to
persist in the network for weeks (or months) without getting detected. The goal of a successful APT campaign is to penetrate
a network, persist on it, gather the necessary data and confidential information and exfiltrate it to some C2 server.

In a very detailed report (named APT1) [5] as published by Mandiant, a security firm discussed in detail the goals, activities,
and effects of a global APT actor. These include stealing sensitive and confidential information worth hundreds of terabytes
from at-least 141 organizations. The largest data theft from a single organization mentioned in that report was 6.5 terabytes
of data from an APT campaign spanning over 10 months. Over the years, there has been a drastic increase in the number of
APT attacks which involves some very powerful APT actors, including some nation-state actors. To understand the motivation
and operations of the APT actors the Mandiant report also provided an APT life-cycle model [Figure 1] which helps one
significantly to understand the multiple stages or attack steps involved in an APT campaign and collectively how they achieve
their actors’ goals and motives.
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Fig. 1: APT Life Cycle

Since then, the sophistication and the stealthy attack techniques used in APTs are in rapid escalation. The most recent examples
of a typical APT campaign include the Equifax data breach [6] which compromised the personal details of almost 150 million
American citizens and the infamous DNC hack [7]. However even though APTs have evolved into more sophisticated attacks,
the high-level steps of these attacks still conform to the life cycle in Figure 1. The main aim of the Intrusion Detection Systems
(IDSs) is to detect these malicious attacks, either in real-time or in a forensic setting so that the security analysts can take
preventive or mitigating measures. To that extent, enterprises deploy host-based or network-based IDS with each having its
own set of limitations. In the first two papers: HERCULE [1] and SLEUTH [2] I have elaborated on the threat detection
aspects of IDS and alert-correlation mechanisms are discussed by the means of PRIOTRACKER [3] and NODOZE [4]. Also,
it is to be pointed out that SLEUTH [2] and HERCULE [1] acts as a complete threat detection system compared to the other
two systems because these can detect threats as well as correlate alerts into meaningful attack scenarios simultaneously unlike
the other two systems. The four systems reviewed in this report are primarily host-based IDS or host-based alert-correlation
systems and all of them have a common input in the basic stages: kernel audit logs. The kernel acts as a bridge between
system resources and software applications and has the ability to intercept every system call in an operating system and record
them. All the four systems ingest these audit logs and perform some modifications and simplifications before using those in
their respective architecture.
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II. HERCULE: ATTACK STORY RECONSTRUCTION VIA COMMUNITY DISCOVERY ON CORRELATED LOG GRAPH

HERCULE is a log-based intrusion detection system that is inspired by relationships in social networks. This multi-stage
intrusion analysis system is modeled as a community discovery problem. HERCULE generates multi-dimensional weighted
graphs by correlating audit logs, and detects “attack communities” within those weighted multi-dimensional graphs. The key
idea is based on the observation that those log entries (the events contained in an audit log file) which are related to the
attack stages have dense and heavily-weighted connections among themselves compared to the sparse and lightly-weighted
connections among the benign log entries. The weighted graphs generated by HERCULE from the audit logs are analogous to
social networks where people with similar interests, mutual friends or other similar features have closer and strong connections
to each other.
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Fig. 2: HERCULE architecture

A. Design and System Overview

The architecture [Figure 2] of HERCULE can be differentiated into 3 different phases or modules each of which performs a
series of non-trivial algorithms. The primary input to HERCULE is multiple raw logs both from the system (for e.g., process
creation, deletion, file modifications, process executions, and others) and network activities (for e.g., DNS, HTTP, and others).
All these raw logs [Table I] are fed into the first phase which is the Raw Log Parser. The parser parses each log and extracts
a set of pre-defined features (which is referred to as a data entity) [Table II] that captures representative information of each
log entry. A total of 20 different unique features are extracted by the Parser from each log entry at this stage. Each of these
data entities are provided as an input to the Tainting Module and further into the second phase which is the Log Correlation
Module. The Tainting Module parses the data entities and looks for any suspicious executable binary which is not in a
whitelist by utilizing popular malware/virus platforms like Virustotal.

H # [ Logs [ Provider H
L1 DNS Tshark
L2 | WFP Connect Auditd
L3 HTTP Firefox

L4 | Process create Auditd
L5 Object access Auditd
L6 | Authentication Syslogd

TABLE I: Logs Used

This module also looks for known malicious website accesses based on URL blacklists to identify and detect attack related
logs. These initial attack related logs entries identified by the Tainting Module will be subsequently processed by the Post
Processing Module in the last phase of HERCULE. The second phase or the Log Correlation Module is divided into 2
sub-modules: Connection Generation and Weight Assignment.

The Connection Generation sub-module takes the parsed data entities as input and produces undirected, unweighted, mul-
tidimensional graphs generated on the basis of inter/intra-log correlation. Just like in a social network, each log entry is
treated as an individual or a node and each edge dimension as a type of relationship between any two individuals (or log
entries). Accordingly, in an n-dimensional network, G = (V, E, D) where V is the set of nodes, E is a set of edges, and
D is a set of dimensions- G forms |V|x |V|x |D| a 3-dimensional boolean matrix M. Consequently, M, ;, = 1 indicates
that between the log entry/nodes i and j there exists a correlation dimension k, otherwise M; ;; = 0. For each pair of log
entries having one or more than one type of relationship between them, a multi-dimensional edge e connects those log entries
(or nodes). The dimensions of this edge is defined as a uniform 29-feature vector ¥ = [d, da, ....dzg]T where a relationship
between any two nodes (let’s assume node u and node v) can be represented by the binary value of each dimension dj. If
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H Field ‘ Logs ‘ Description H
timestamp | L1-L6 event timestamp
gq_domain | LI DNS queried domain name
r_ip L1 DNS resolved ip address
pid L2, L4, L5 base-16 process id
ppid L4 base-16 parent process id
pname L2, L4, L5, L6 | process name
h_ip L2 host IP address
h_port L2 host port number
d_ip L2 destination IP address
d_port L2 destination IP port
type L3 request/response
get_q L3 absolute path of GET
post_q L3 absolute path of POST
res_code L3 response code
h_domain L3 host domain name
referer L3 referer of requested URI
res_loc L3 location to redirect
acct L5 principle of this access
objname L5 object name
info L6 Authentication information

TABLE II: Features extracted by Parser

any two nodes or log entries can be correlated by k-th relationship then dj = 1, otherwise di = 0. The 29-feature vectors
are summarised below in Table III. The key intuition to define these 29 feature vectors is to capture any causal relationship
between any two nodes or log entries. For two nodes/log entries, u and v the following set of feature vectors are defined:
dy is used to model the time difference between nodes u and v.

This threshold value ¢ can be customized to determine whether two D Feature

nodes are temporally correlated or not. do and dy3 checks if nodes d, 6 (u-timestamp, v.timestamp) < t

u and v shares the same process id or process name to infer any do w.pid = v.pid

implicit/explicit correlation among them. ds and d4 verifiy whether ds w.d_ip = v.d_ip

u and v share the same destination IP and Port as they should dy u.d_port = v.d_port

have a high degree of correlation if they communicate to the same ds u.referer = v.referer

IP addresses. ds,ds,d7, and dg capture the causality relations of dg w.host — v.host

different web page visits within HTTP logs. dg, d19, and d;; checks d- w.referer = v.host

if nodes u and v share the same parent process id. Similarly, the ds u.host = v.referer

other features also compare a variety of different parameters like do w.ppid = v.ppid

object names accessed by u and v, inbound and outbound network dio w.ppid = v.pid

traffic from DNS queries and several other parameters. After the dyy w.pid = v.ppid

feature vectors are determined for each edge, connections among dys u.objname = v.objname

nodes are generated based on these relationship values from the dy3 w.pname = v.pname

feature vectors. The inputs to the connection generation algorithm dis w.r_ip = v.d_ip

are the feature vectors from Table III and all the parsed data entities. dis w.d_ip = v.r_ip

This algorithm iterates over all possible feature values between log dig u.q_domain = v.h_domain

pairs and generates edges with at least one feature vector value being dyn u.h_domain = v.q_domain

non-zero. dig u.q_domain = v.referer
In the Weight Assignment sub-module, a weight assignment dio w.referer = v.q_domain

algorithm assigns different weights to edges that have different dao u.q_domain = v.res_loc

edge feature values. The key intuition behind this algorithm is doy u.res_loc = v.q_domain

the disadvantages of applying Community Detection algorithm on dos u.getq = v.pname

unweighted multi-dimensional graph generated from the Connection dos u.pname = v.getq

Generation sub-module. By formal means, within two community doy u.get_q = v.objname

clusters of nodes A (attack related log entries) and B (benign log dos u.objname = v.get_q

entries) in a multi-dimensional unweighted graph G, it is expected dog u.pname = v.objname

to get |eal > |eap| and |eg| > |eap| where |eal, |eg|, and dyr u.objname = v.pname

|eap| denotes the number of edges in the clusters A and B and dog w.r_ip = v.h_ip

in between A and B respectively. In general, there exists several dao w. h:ip - v.r:ip

cases of log entries which are attack related but also have a

significant connections with benign entries. Cases like these reduces TABLE III: Feature Vectors

the efficacy of the community detection algorithms which mainly
aims to maximize the intra-cluster density and minimize the inter-cluster density. Another key observation made is that the
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feature values between e, €4, and ep (which denotes the edge vectors of esp, €4, and ep respectively) are significantly
different. Under this observation, the weight assignment algorithm is implemented to assign different weights to edges with
different edge feature values so that the following inequality holds: w4 - |ea| > wap - |eap| (w4 is the weight assigned for
edges in e4 and wy p is the weight assigned for edges in e 4 ). This algorithm tries to learn a global weight vector @ that can
be applied intuitively on each edge. A sigmoid function S is used to map the dot product to bounded real number range [0,1]
as the finalized weight assignment value on each edge is:

k
1
w = S(;az 61) = 1te >F L ae;

Then the graph is multi-dimensional unweighted graph is transformed into a weighted graph WG. To determine the optimal value
of w the training phase and the testing phase is defined as follows: Given n unweighted graphs G4, Gs, ...G,, for each (I €
[1,n]) the training phase of the weight assignment looks for a best assignment weight vector aj, for Gy, ..., Gi—1, Gi41, ..., Gp,
and the festing phase takes the dot product of weight vector a; and all edge vectors € to generate a weighted graph W G|. Several
algorithms were used and compared for the optimal weight assignment value. As a simple and straight forward approach, Feature
Weight Summation is calculated in which the algorithm considers each feature value of an edge with the same “importance”.
However, there were performance issues by implementing this approach. To overcome the limitations two supervised learning
techniques were implemented namely, Logistic Regression and Support Vector Machines(SVM). These two classification-
based learning methods classified edges into two classes(e4,ep vs e4p) on the basis of decision boundary. But, the weight
vectors produced by these two methods were not globally optimum as a result of which the value assigned to edges of e 4 and
ep were not maximized and the weight values assigned to e 4 p were not guaranteed to be minimized. Therefore a new approach
was designed and implemented which transformed the weight assignment into a quadratic optimization problem. A trade-off
parameter is introduced to balance between the attack-related nodes and benign nodes. A regularizer is also implemented
to overcome the Overfitting problem of the machine learning techniques which ensures that the output weight vector a is
theoretically global optimum. Since the optimization is constrained, the previously used sigmoid function is not leveraged
again to map the dot product to [0,1].

The third and the final phase is the Community Detection phase in which in which the correlated multi-dimensional weighted
graph is taken as input and communities are generated by using the Louvain algorithm [8]. The initialization of communities
is done from the weighted graphs by applying Louvain algorithm in two different phases to finally build a new network. Then,
the detected communities are fed into the Post Processing Module. This module also takes input the log entries tainted in
phase 1 (by the tainting module) and classifies the communities that contains tainted nodes/entries as malicious and rest as
benign. Finally, the reconstructed attack phases are produced as output.

B. Evaluation

HERCULE is evaluated against 15 real-world APT attacks which were recreated with some minor modification as necessary
since it is very hard to exactly replicate the APT attacks. To determine its scalability a two-week long experiment was
also conducted which mostly contained normal benign user activities such as browsing websites, downloading and updating
softwares, watching videos along with three APT attacks. On an average, the accuracy with which HERCULE classified the
log entries within any identified community as malicious or benign is around 89.87% with a low false positive rate. A detailed
analysis of the results of all the 16 APT attack scenarios is provided in Table IV. In Figure 3 the communities marked in red
are the identified group of malicious log entries and the other communities are marked with different random colors.

[[ APT Keyword | Tnitial Tactics [ CVE | Post Exploitation | Target [ Acc | FP 1]
Black Vine 1 Watering hole 2012-4792 | Keylogger Win 0.846 | 0.0012
Black Vine 2 Email attachment 2014-0322 | Exfiltrate files Win 0.834 | 0.0023
Attack on Aerospace Watering hole 2015-5122 | Network sweeping Win 0.810 | 0.0018
Tibetan and HK Email google drive links 2014-4114 | Exfiltrate files Win 0.886 | 0.0013
Op-DeputyDog iframe background running 2013-3893 | Escalate privilege Win 0.877 | 0.0024
Russian Campaign Controlled Website 2015-3043 | Download backdoor | Win 0.833 | 0.0023
Op-Clandestine Fox Email compromised website | 2014-1776 | Rename payload Win 0.857 | 0.0026
Cylance SPEAR Team | Email attachment 2012-0158 | Browsing files Win 0.826 | 0.0016
APT on Taiwan Email attachment N/A Rename payload Win 0.819 | 0.0010
Op-Tropic Trooper Email attachment 2010-3333 | Download tools Win 0.812 | 0.0006
Op-Tropic Trooper Email attachment 2012-0158 | Keylogger Win 0.863 | 0.0090
Hacking Team Email with file link 2015-5119 | Download backdoor | Win 0.859 | 0.0058
Russian Campaign Email attachment 2008-5499 | Download backdoor | Linux 0.850 | 0.0017
Op-DeputyDog Email compromised website | N/A Brute force login Linux 0.899 | 0.0060
SeaDuke Email trojaned-ware N/A Add bad user Linux 0.874 | 0.0012
Two weeks Combined APTs N/A N/A Win 0.736 | 0.0126

TABLE IV: Evaluation Results
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Fig. 3: Community Distribution (Red nodes denote malicious community)

C. Limitations

In this section, I will discuss the contributions and critiques of HERCULE from my point of view. The main contribution
of this paper is developing and implementing a novel automated multi-stage intrusion analysis system which facilitates attack
scenario reconstruction from multiple correlated logs. It leverages community discovery techniques to correlate attack steps and
detect an attack. This system is then evaluated against a wide range of different real-world APT attacks. Although HERCULE
performs exceptionally well against these manually generated APT attack scenarios, there are a few pitfalls which can be
discussed in the light of this Written Critique. Starting with the technical shortcomings, it is important to note here that even
though HERCULE builds up weighted multi-dimensional graphs to detect attack related log entries, a significant amount of
the detection depends upon the Tainting module which is basically a manually updated whitelist. This paper explicitly states
that along with VirusTotal [9], it leverages BitBlaze [10] to analyze any suspicious executable binary that appeared in the log
entries. Now there are two limitations to this: first, in the majority of the APT attacks, attackers tend to clean up their attack
traces after the completion of the attack. Hence, the malicious executable binaries used by the attackers would be removed
(deleted) from the system even before HERCULE could feed it into Tainting Module. The name of a suspicious executable
appearing in the log entries does not guarantee that the same executable would still be present in the system to analyze when
HERCULE is running. And secondly, in recent years, there have been a wide range of dynamic malware analysis systems like
[11][12][13][14], each of which has its own set of pros and cons compared to the others. A comparative study between such
popular dynamic malware analysis systems would be more efficient instead of fielding any random system. Moreover, it is
evident that these attacks are evolving very rapidly and by leveraging online malware analysis platforms like VirusTotal, there
remains a very high chance that the attacks would not be detected in due time.

Finally, the output produced by HERCULE as can be seen in Figure 3 still requires a significant manual analysis to reconstruct
the attack story from the detected malicious communities. It is not feasible to infer meaningful steps about the attacks from the
community detection graphs as the graphs are too congested. This particular limitation has been resolved in other systems [2][4]
which are discussed later in this report. Those systems produce concise and more meaningful attack graphs than compared to
HERCULE. The key intuition to generate concise, meaningful graphs is that the cyber analysts should not spend much time
inferring the attack steps while analyzing these graphs. This limitation is evident in HERCULE from the fact that the paper
could not even include the graph for the two-week-long custom attack scenario experiment as it is too dense to be shown
in the paper. This shows that if this system is implemented in real-world enterprise networks (which consists of billions of
activities stretched over a far more elongated period of time) it would not perform as efficiently as compared to the manually
crafted attack scenarios.

III. SLEUTH: REAL-TIME ATTACK SCENARIO RECONSTRUCTION FROM COTS AUDIT DATA

SLEUTH is an advanced intrusion detection system [2] which enables the real-time reconstruction of attack-scenarios on an
enterprise network. The billions of audit logs in an enterprise network are scaled to detect the real-time detection of attacks in a
platform-neutral, main-memory based, dependency graph abstraction model based on the audit logs. There are a number of key
challenges of real-time attack detection which have been solved by a series of novel approaches. SLEUTH addresses the key
problem of an efficient event storage and event analysis (from the audit logs) based on the main memory by the development
of a compact main-memory dependence graph representation, which performs far better than popular graph databases such as
Neo4]J [15] or Titan [16]. SLEUTH implements a fag-based approach to detect and identify entities and events that are likely
related to attack steps. Tags helps to prioritize and focus the analysis by incorporating an assessment of trustworthiness and
sensitivity of the data and the processes. This assessment is based on Provenance, Prior system knowledge, Behaviour derived
from the audit logs. Further SLEUTH leverages a customizable policy framework that can raise detection alerts based on these
tags. Finally, a backward analysis and forward analysis reveals the full scale of the impact of the adversarial actions in a
compact graph.
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A. Design and System Overview

The architecture of SLEUTH' [Figure 4] can be divided into four main parts: First, the main-memory based dependence
graph generation from the audit logs. Second, the Tag and Policy-based attack detection based upon a set of customizable
policies. And finally, Root cause and Impact analysis followed by the reconstruction of the attack scenario in the form of
scenario graphs. To facilitate real-time analysis, the dependencies are stored in a graph data structure. One other reason to use
main-memory dependence graph representation is that many graph algorithm applications are limited unless the main memory
is large enough to process the data. In an enterprise network, the number of events can easily range in billions to tens of
billions per day which would require a humongous amount of main memory, which is infeasible. The graph databases optimized
for main-memory performance like STINGER [17] and NetworkX [18] use about 250 bytes and 3KB per edge respectively.
Compared to that, SLEUTH implements a more space-efficient compact dependence graph representation that uses only 10
bytes per edge. This dependency graph representation is a per-host data structure which is mainly optimized for intra-host
reference. The graph mainly represents two types of entities: subjects, which are processes, and objects, which are entities
such as files, pipes, and network connections. There are several attributes associated with Subject such as process ids (or pid),
command line, owner, code tags and data tags. For Objects, the attributes include name, type, owner and tags. Events recorded
in audit logs are mapped as labeled edges between subjects and objects or between two subjects. A detailed explanation of
the algorithms used to reduce the storage space requirements for each event, subject or object is published in [19].

Customizable Policies

& Audit Stream
Linux A
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T 2 Tag-Based
By Audit Dependence Graph ( ¥ ) Tag and Policy-Based
; Stream Construction O1097% Attack Detection »>{\—pt Root-Cause and >
Windows : A Impact Analysis
" (=) Alarms
Audit Stream u@ f Scenario Graph

FreeBSD :
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Fig. 4: SLEUTH System Overview

Tags play a crucial role in attack detection in SLEUTH. Each audited event recorded in the audit logs is interpreted in the
context of these tags to determine whether it contributes to an attack or not. Moreover, tags helps to expedite the forward and
backward analysis. Further, tags play a very important role in the attack scenario reconstruction phase by pruning out huge
amounts of benign data that does not meaningfully contribute towards an attack. A brief description of the tag design is as
follows. Following tags are defined as trustworthiness tags (t-tags):

o Benign authentic tags: Assigned to data or code which are received from sources trusted to be benign and whose authenticity

can be verified.

e Benign tag: Lower level of trust compared to benign authentic. The data/code is still supposedly benign.

o Unknown tag: Assigned to data/code whose information is relatively unknown.

Policies are used to define what sources are benign, which in simple terms can be used as a whitelist. If no policy is applicable
to a source then its t-fag is set to unknown (More about policies later). Following are the tag definitions for confidentiality
tags (c-tags):

e Secret: Confidential and highly sensitive data, such as login credentials or private keys

« Sensitive: Data which does not facilitate a direct way to an attacker to gain access to a system, but its disclosure can lead

to several security impacts.

o Private: Data which if leaked can lead to privacy concerns but not necessarily lead to any security impact.

e Public: Data which is publicly available.

Pre-existing objects and subjects are assigned some initial values based on the tag initialization policies. External objects such
as remote network connections are also assigned initial tags according to policies. The other subjects and objects created when
the system is running are assigned tags based on the tag propagation policies. A subject/process is given two types of integrity
tags: code trustworthiness tags (code t-tags) and data trustworthiness tags (data t-tags) which facilitates attack detection.

A set of policies or rules are defined based on these tags to detect attacks. These policies are customizable as per the host
system and are flexible enough to focus on any particular application or process at any given time. Some of the most important
attack detection policies are defined below:

o Untrusted Code Execution: When a subject with a higher code t-tag loads or executes an object with a lower t-tag, this

policy is triggered and subsequently an alarm is raised.

o Modification by subject with lower code t-tags: When a subject with a lower code t-tag modifies (change name, permission

and others) an object with a higher t-tag then this policy alarm is raised.

ISLEUTH stands for (attack) Scenario LinkagE Using provenance Tracking of Host audit data
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Event Direction | Alarm Trigger | Tag Trigger
define init

read 0—S read propRd
load, execve 0—S exec propEx
write S—0 write propWr
rm, rename S—0 write

chmod, chown S—0 write, modi fy

setuid S—S propSu

TABLE V: Edges with policy trigger points. In the direction column, S indicates subject, and O indicates object. The next two
columns indicate trigger points for detection policies and tag setting policies.

o Confidential data leak: When untrusted subjects exfiltrate sensitive data this alarm is raised. A typical scenario would be
network writes by subjects with a Sensitive c-tag and Unknown code t-tag.
e Preparation of untrusted data for execution: This alarm is raised when an operation by a subject with Unknown code
t-tag, is followed in conjunction with some library loading operations.
The APT attacks in general do not involve the execution of the untrusted code in the first step itself. The attacker would
download and execute the malicious code by some means, or change some memory permissions containing the malicious code
and eventually execute the untrusted code. The policies are designed in such a way that eventually one of the policies could
detect the attack.
For the tag assignment, tag propagation and attack detection purposes a customizable and flexible policy framework is also
implemented. The policies can be defined by the means of simple rule-based notation encoded as C++ functions. An example
of such rule-based notation which is used to trigger an alert for Untrusted Execution is as follows:

exec(s,o) : o.ttag < benign — alert(”UntrustedExec”)

This particular rule is triggered when a subject s executes a file/object o with a t-tag lower than benign and alert named
UntrustedExec is raised. These rules are generally incorporated with events, and include conditions on the subject and object
attributes involved within the event. A variety of attributes can be included in these conditions, such as Perl syntax regular
expressions are used to match object names and subject command lines. The t-tags and c-tags values of subjects and objects
can be compared with certain thresholds. Moreover, the ownership of subjects and objects or the permissions associated with
an object or an event can be included in these attributes. Different policies have different effects. The main function of a
detection policy is to raise an alarm. The tag initialization or tag propagation policies update the tags associated with subject
or object in an event. In order to induce a finer degree of control over the order in which the policies are checked, a trigger
point is defined instead of events. The trigger points defined in the policy framework is shown in Table V. It provides a level
of indirection that enables sharing of policies across a set of similar events. When any particular event is encountered, all
detection policies associated with its alarm trigger are executed and checked only when the destination subject or object tag
is about to change. After this, policies associated with the event’s tag triggers are checked in the order in which they are
specified. As soon as a matching rule is found, the tags defined by that rule are assigned to the destination subject or object
in that event and the remaining policies are not checked.

The Tag Initialization Policies are invoked at the init trigger to initialize tags for new objects, or pre-existing objects. In
a default setting, when a subject creates a new object, this object inherits the subject’s tags. This can be overridden using the
Tag Initialization policies. A simple example of such a policy is as follows:

init(o) : o.type == FILE — o.ttag = BENIGN_AUTH, o.ctag = PUBLIC

This rule specifies that if the object type is a File, then t-tag and the c-tag of that object are initialized to BENIGN_AUTH
and PUBLIC respectively. Several such initialization policies can be defined to initialize different objects or subjects.

The Tag Propagation Policies are used to override the default tag propagation values. Similar to tag initialization polices,
different tag propagation policies can be defined for a different group of related events as indicated in Table V. Following is
an example of such a policy which prevents over-tainting from .bash_history file which is repeatedly read and written by an
application each time it is invoked.

propRd(s, o) : match(o.name,”\.bash_history$)” — skip

In the final phase of SLEUTH, a backward and forward analysis is performed from a particular node (from which an alarm
is raised) to determine the root cause and impact analysis of an attack. The primary aim of Backward Analysis is to zoom in
and detect the entry point of an attack among the hundreds of millions of nodes in the dependency graph. A naive backward
search can lead to performance issues and determining multiple entry nodes leading to false positives. The key intuition used
here is that Tags are used to overcome both the challenges. A tag value of unknown on a node increases the likelihood of
that node being a part of an attack campaign rather than the neighbouring nodes with benign tags. The backward search in
SLEUTH is defined as an instance of shortest path problem leveraging the Dijkstra’s algorithm. Tags are used to define edge

University of Illinois at Chicago Page 7



Written, Critique, and Presentation

Dataset | Drop&Ld | Intel Gather | Backdoor Insert | Priv Escl | Data Exfil | Cleanup
W-1 v v v v
W-2 v v v v v
L-1 v v v v v
L-2 v v v v v v
L-3 v v v v v v
W-1 v v
F-2 v v v v
F-3 v v v

TABLE VI: SLEUTH Evaluation Results

costs which in turn guide the backward search along relevant paths leaving out the benign paths. Information flows among
benign nodes which are not part of the attack are assigned a very high-cost value. Edges having dependency from a node with
unknown code or data t-tag to a node with benign code or data t-tag are assigned a cost value of 0 and likewise.

The second part of this Tag-based bi-directional analysis is the Forward Analysis which determines the impact of an attack
campaign starting from the entry point (or node). A custom distance threshold value dy; is defined to prune out the nodes
which are deemed too far from the suspect nodes. This value can be interactively adjusted by an analyst. The same cost metric
as backward analysis is used for the forward analysis too. Finally, the output of forward analysis is subjected to a series of
algorithms to transform the final scenario graphs into compact and simple graphs which can easily interpreted by the analysts.
These algorithms performs a variety of non-trivial simplifications which include pruning of unsuspicious nodes, merging entities
with the same names and filtering out repeated reads or writes between the same set of entities. These algorithms are further
described in detail in [19]

B. Evaluation

The main components of SLEUTH: dependency graph generation, policy framework, attack detection mechanisms are all
implemented in C++ consisting of 9.5KLoC approximately. Apart from this, the forward and backward analysis systems for
scenario graph reconstruction and presentation are implemented in Python in about 1.6KLoC. SLEUTH is evaluated in an
adversarial engagement setup where attack campaigns were carried out by Red teams as a part of the DARPA Transparent
Computing (TC) program. Attack datasets were collected on two Windows, three Linux and three FreeBSD machines spanning
over a period of 358 hours and contained 73 million events. Since this was an adversarial engagement, no prior knowledge of
the red team attacks were provided beforehand. SLEUTH was able to detect the majority of the red team attacks [Table VI]
which included drop and load activities, backdoor insertion, privilege escalation, data exfiltration by means of C&C servers
and cleanup of attack traces from the system. SLEUTH successfully detected the key entry and exit points, key files accessed,
and also missed out on a couple of entities. The scenario graphs generated during this campaign are also very precise and
detailed reflecting the steps of the attacks as performed by the red teams [Figure 5]. The performance of this system in a
benign environment is highly impressive. Audit data was collected from four Ubuntu Linux servers spanning over 3 to 5 days.
The key focus was on software updates and system upgrades in this experiment resulting to changes in 110 packages along
with thousands of binary and script files also being updated. With some changes to the policy framework, all the updates and
downloads were marked as benign leading to no alarms or false positives being generated.
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C. Limitations

Before discussing a couple of drawbacks of this system, I will point out, in brief, the major contributions of SLEUTH. The
key contribution of this paper is the design and implementation of an efficient real-time intrusion detection system that leverages
main memory dependence graph data model. Further, efficient tag-based techniques are implemented for attack detection and
reconstruction purposes. A customizable policy framework for tag propagation and tag initialization is also implemented for
these tag-based techniques to work efficiently. Another distinctive feature of this system is that SLEUTH can be implemented
by an analyst without detailed application-specific knowledge compared to other intrusion detection systems.

Focusing to the drawbacks of the system, I feel there are a few shortcomings which are pertinent to the application purposes
of this system. As mentioned earlier, SLEUTH is a per-host data structure. The scalability of this system to implement across
inter-host architecture is not feasible. As a result, it may lead to attacks being misreported if an attacker tries to achieve lateral
movement across different hosts. To the best of my knowledge, there are no host-based distributed real-time intrusion detection
systems commercially available. To this extent, deploying SLEUTH in enterprise networks would come with a trade-off. It is
fairly simple to set-up and implement this system in an enterprise network which would consist of hundreds of hosts.

Another disadvantage of SLEUTH is the dependency explosion which is potentially caused in long-running attacks where
normal activities get connected to malicious activities leading to graph explosion. For long-running attacks this system can
produce graphs that may contain numerous benign nodes, thus reducing the efficacy of the system. This is mainly due to naive tag
propagation and get can be mitigated with the help of a more robust tag propagation techniques. The problem of dependence
explosion has been resolved later by Milajerdi et al. [20] in HOLMES which inherently uses the same causality tracking,
provenance graph generation methodologies of SLEUTH. However, HOLMES introduces a notion of minimum ancestral cover
to overcome dependence explosion. Moreover, NODOZE [4] (discussed later) tackles the dependence explosion problem by
leveraging behavioural execution partitioning.

IV. TOWARDS A TIMELY CAUSALITY ANALYSIS FOR ENTERPRISE SECURITY

In this paper, an alert-correlation system named PRIOTRACKER [3] is developed to distinguish the normal benign events
from the malicious ones by assigning a rareness score to each event and comparing it to a reference model which records
the regular activities in an enterprise computer system. PRIOTRACKER leverages a backward and forward causality tracker to
help investigate the malicious causal dependencies among the events. Further, this attack causality analysis has been modeled
as an optimization problem to detect the maximum number of malicious events within a certain time period. A priority score
for each event is also calculated based on its rareness score and certain other features (from the causality graph) and the event
with the highest priority score is analyzed. Weights are also assigned to these features (more on this later) by means of machine
learning algorithms to reveal the maximum number of rare events before a given deadline.

Incident Dependency Graph
A3
.*\
§ \ PrioTracker
Event Database Causality Refi
P— Tracker Database Model Bullder

S+ -4
N

2 72 72 1 NN N
L I I I I
i i-.-li-l i-l 5 5 B2

Fig. 6: PRIOTRACKER Architecture

A. Design and System Overview

The architecture of PRIOTRACKER [Figure 6] can be differentiated into three main parts: a priority-based event causality
tracker, a reference database and a reference model builder. Three different types of low-level system events are collected
from Windows and Linux machines using ETW and kernel audit respectively. These are file events (such as file read, write and
execute), process events (process create and destroy) and network events (socket create, destroy, read, and write). The Causality
Tracker starts to build a dependency graph between OS-level events from an intrusion alert raised by the existing detection
system. This dependency graph generation process is very similar to BackTracker [21] but modified to prioritize abnormal
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or malicious event tracking. The key intuition here is that the causality tracker maintains a priority queue data structure that
contains all the events from their respective alerts to be analyzed. After an alarm is raised, the priority score of that event is
calculated and is further added to the priority queue. PRIOTRACKER then iteratively analyzes each event based on its priority
score until the queue is empty or a time threshold (73;,,;:) is reached. As it retrieves an event from the head of the queue and
adds into a result graph, an algorithm calculates its causal dependencies, returns a set of events (which that particular event
has dependencies with), calculate the priority scores of those events and adds them back into the priority queue. The value of
the priority score depends on a few different important factors. First, a Rareness Score is calculated which is based on the
frequency of the occurrence of events across different hosts from the Reference Model and the Reference Database. The
rareness score is defined as follows:

() 1, if e has not been observed by reference model
rs(e) =
%, otherwise
ref(e)

The ref(e) is the reference score of the event e which will be discussed later on. Next, a Fanout Score is implemented on
the basis of pruning out read-only files and taking into account the write-only files. This heuristic is also motivated from the
BackTracker [21]. The fanout score is defined as follows:

0, if e reaches a read-only file in backtracking
fs(e) =< o, if e reaches a write-only file in forward tracking
m, otherwise

The Priority Score of an event can now be defined as the weighted sum of the rareness score and the fanout score of that

event e.
Priority(e) = a x rs(e) + 8 x fs(e) (1)

The value of o and § is an optimization problem to maximize the result of the objection function for a given set of events.

max f(E, (a,f) = Z EdgeCountg(PrioT'rackq,g)(€, Tiimit)) (2)
eelE

st. 0<a<l,a+p5=1
The « and 3 here are the weight values for rareness and fanout scores respectively. PrioTrack is the dependency algorithm
defined earlier and EdgeCount is a function which count counts the number of edges in the graph whose rareness score is
greater than a customizable threshold 6.

Next, the Reference Model is implemented which collects data from 54 Linux and 96 Windows machines used daily in
an enterprise system to quantify the rareness of system events and help distinguish the anomalies from benign system events.
The data is collected and modeled in the following efficient

ways: (abstract-event) ::= (1;rocess-evem)
. . - 13
o The data collected from the 150 machines are subjected | gﬁex:fz_zvem)
to Mixed Membership Community and Role Model (process-event) ::= (process) (process-op) (process)
(MMCR) [22] to segregate machines from different {file-event) = (process) (file-op) (file)
. . . (network-event) ::= (process) (network-op) (socket)
departments in the company into three different com- (process) = (executable-path)
munities. (file) u= (path-name)
o The file, process and network events collected from g;‘;g’;?s op) - Sf;";;i':fidress) : (remote-port)
these machines are abstracted using Backus-Naur form | ‘destroy’
(BNF) [Figure 7] (file-op) = jreég’,
. . . . . . write
e A notion of a time window is implemented which | ‘execute’
maintains a counter that is increased upon the repeated (network-op) = ‘create’
occurrence of an event on the same host within that | g:}roy
time period. These repeated occurrences are considered | ‘write’
as once to withstand attacks that include repeated ma- Fig. 7: Event Abstraction using BNF

licious activities with a burst of events which tricks a
benign system to consider them as common behaviours.
The time window here is configured to be one week worth of time as enterprises are generally operated on a weekly
basis.
With the help of these features, the Reference Score of an event e is defined as its accumulative occurrence on all
homogeneous hosts for all weeks.

ref(e) = Z Z count(e,w, h) (3)

he€hosts weweeks
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where hosts are the set of similar machines (detected by MMCR) and weeks is the set of weeks of data collected. Further
count is defined as

1,if e occurred in week won host h

count(e,w,h) = { ]

0, otherwise
Next, Hill Climbing algorithm is leveraged to optimize Equation 3. This algorithm gradually improves the quality of weight
selection by implementing a feedback loop. The algorithm takes a set of starting events E and initial weight vectors (« and )
as inputs. For the starting event set E, 1113 randomly selected system events within the last 10 months were selected. After
every iteration, the algorithm adjusts an individual element in weight vectors and compares whether this change improves the
value of the objective function f(E, («, 3). A positive change is accepted and this process continues until no positive change
could be found. Here, the algorithm optimized the weight vectors to a value of & = 0.27 and 5 = 0.73

B. Evaluation

The priority-based dependency tracker in PRIOTRACKER have been developed in Java consisting of 20KLoC and the
Reference Model is also implemented in Java in about 10KLoC. The Causality tracker frequently accesses the reference
database in order to determine the reference score of associated events. As a result, RocksDB which enables in-memory key-
value store for fast access and data persistence is leveraged here. PRIOTRACKER is evaluated on a dataset which is 1TB in
size and consists of 2.5 billion events approximately collected from the 150 hosts over one week. Moreover, eight different
attacks are crafted associated with noise or normal system operations to determine the efficacy of PRIOTRACKER. The results
of PRIOTRACKER are compared with a baseline forward tracker from BackTracker [21]. The results are summarized in
Table VIL. It is evident that PRIOTRACKER performs much better than compared to the baseline tracker and is also able
to successfully detect all the attacks without missing any one of them. The difference in detection time between these two
systems is also significant. PRIOTRACKER is able to detect attack traces in a very short time which is almost 2 magnitudes
smaller than the same in some cases. A reduced version of Forward Tracking Graph also shows the attack steps in Figure 8.

Attack Case Baseline PrioTracker
Runtime | FNR | Critical Events | Runtime | FNR | Critical Events

Data Theft 6.29s 0% 13 1.55s 0% 13
Phishing Email 45.90s 0% 148 27.51s 0% 148
Shellshock 37.45s 0% 25 9.13s 0% 25
Netcat Backdoor 6.85s 0% 14 0.88s 0% 14
Cheating Student NA 62% 14 24m47s 0% 37
Illegal Storage 15m31s 0% 12 12m39s 0% 12
wget-gcc 18m31s 0% 25 5m37s 0% 25
password-gzip-scp NA 40% 9 57s 0% 15

TABLE VII: Evaluation Results of PRIOTRACKER. FNR = False Negative Ratio

C. Limitations

In brief, the key contributions of PRIOTRACKER include design and implementation of a novel priority-based causality
tracker that distinguishes malicious events from the benign ones by calculating a priority score based upon the rareness and the
fanout of that event. Hill Climbing algorithm is applied to these features to optimize the value of the priority score. Moreover,
a customizable Reference Model is also implemented to observe and model the OS-level events from hosts in an enterprise
to facilitate the computation of priority score of events. Also, the dataset used for evaluation purposes is significantly large
and contains audit data from 150 different (Windows and Linux) machines with a wide variety of attacks being performed in
it. There are however a few drawbacks to this system which can potentially jeopardize the efficacy of PRIOTRACKER. First,
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Fig. 8: Reduced Version of Forward Tracking Graph for Email Phishing Attack
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this whole architecture starts from a detection signal or an intrusion alert raised by an existing intrusion detection system. It
proceeds to query the reference database and compute that particular event’s priority score and generate the causality graph.
With the advent of all these zero-day attacks, it is highly possible that the existing intrusion detection system misses the
attack and fails to generate the intrusion alert. The very notion of priority based causality analysis comes into question here.
Another key limitation is the fact that the output of PRIOTRACKER can be seen in Figure 8. However, there is no algorithm
or description of the methods used to generate these reduced version of Forward Tracking Graph mentioned anywhere in the
paper. This may lead to an assumption that these are all manually generated and separated by the dotted lines, which can be
cumbersome for large attack scenarios. No efficient methods are described by which these reduced version of Forward Tracking
Graph can be generated. And finally, the formula of reference score depends upon the occurrence of a repeated event on a host
within a particular time period (one week here). This notion may not hold legit in some attack scenarios like WannaCry [23]
that contains a series of initial attack steps which is very common in an enterprise network. In some instances of this attack,
the victim unintentionally downloads a malicious .zip and runs it. Here unzipping this malicious file would not contribute to
a different reference score since this process is often seen and thus lead to an incorrect rareness score.

V. NODOZE: COMBATTING THREAT ALERT FATIGUE WITH AUTOMATED PROVENANCE TRIAGE

NODOZE [4] is an alert correlation system which mitigates threat alert fatigue issue that burdens cyber analysts with
an overload of alarms generated by threat detection systems most of which tend to be benign or false alarms. It leverages
the contextual and historical information from a generated alert and builds a causal dependency graph which then assigns
an anomaly score to each edge and propagates it to the neighbouring edges using a novel network diffusion algorithm. The
anomaly score is assigned based on the frequencies of all the events in an enterprise which are stored in an Event Frequency
Database. Finally, a True Alert Dependency Graph is generated based on the behavioural execution partitioning which contains
the most anomalous dependency paths generated from the candidate event.

NoDoze I i
Threat ! O\%’O i
- - él_er_ts_) Dependency Network Diffusion i H
-> @ ----- > Graph - -==¥»| &Behavioral ---): !
Threat T > Construction partitioning ! W i
Detector A A - E :
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Fig. 9: NODOZE Architecture

A. Design and System Overview

NODOZE acts as an add-on to the existing intrusion detection systems, which aims to reduce false positives and generate a
concise view of the generated threat alert. Similar to PRIOTRACKER [3], this alert correlation system also starts its workflow
from an alert raised by the existing intrusion detection system and correlates alerts by assigning an anomaly score to each
event in the provenance graph generated from the alert. Following are some definitions for the better understanding of the
terms used in this paper: Similar to SLEUTH [2] subjects and objects correspond to processes and files, sockets respectively.
Here a dependency event & is a 3-tuple relation < SRC, DST, REL > where SRC is a process from where data flow is
initiated, DST is a process or a object which receive the data flow, and REL represents the relationship between the process
and the object. Following are the different dependency event relationships [Table VIII] modeled in NODOZE:

SRC DST REL
Process Pro_Start; Pro_End
Process File File_Write; File_Read; File_Execute
Socket IP_Write; IP_Read

TABLE VIII: Dependency Event Relationships

A dependency path P is defined as the ordered sequence of the set of paths (of length n) which lead to a dependency event
&, It is divided into two types: A control dependency path (CD) of an event ¢ is a dependency path Pop = {e1,€2,- -+ ,e,}
such that REL is either Pro_Start or Pro_End. A data dependency path (DD) is a dependency path Ppp = {e1,€2, - ,&,}
such that the REL between the SRC and DST is anything but Pro_Start or Pro_End. A true alert dependency graph is
the process of pruning of redundant nodes from the causal dependency graph by means of behavioural execution partition
to generate a concise attack graph which contains the most anomalous dependency paths. Given a list of n alert events from
the threat detector and user provided threshold parameters 7; and 74, the key goal of NODOZE is to rank these alert events
based on their anomaly score, prune out the false alarms by removing the alerts whose anomaly score is less than 7; and
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generate a true alert dependency graph with a maximum dependency path length of 7;. The key intuition here is to calculate the
anomaly score based on the whole dependency path of the candidate event. This algorithm generates the dependency paths of a
candidate alert event and also calculates that path’s anomaly score. In Algorithm 1, line 1 generates the complete dependency
graph G for the alert event £,. All the dependency paths of the provided length 7; for £, are generated by a forward and a
backward depth-first traversal and combined together. This is implemented in lines 2 to lines 6. In Algorithm 1, lines 7 to
lines 10 then assigns an anomaly score to each event in the dependency path generated in the previous steps. First, a N x N
transition probability matrix M is constructed for the given dependency graph G of the candidate alert event. N represents
the total number of vertices in G and each entry in M, is calculated by:

il Freq(e
M, = probability(e) = |leq(2(5)|

This equation helps determine the frequency of a relationship between a particular source and destination. Further, a fanout score
vector of each event in the dependency graph G is calculated by the means of /N and OUT scores which represents the degree

(1)

of fanout from sender and receiver respectively (more on this later).
Once the values in the transition probability matrix along
with I N and OUT scores are calculated, a Regularity Score Algorithm 1: GETPATHANOMALYSCORE
or a normal score of each dependency path is calculated. Tnputs : Alert Event &
Gi d d h P = £ 1 h I Max Path Length Threshold 7,
lven a dependency pat - (Ela T 7El) of lengt ’ Output: List L p sg> of dependency path and score pairs.

regularlty score is defined as: Go = GETDEPENDENCYGRAPH(Eq)

Vsre < GETSRCVERTEX(Eq)

Vast < GETDSTVERTEX(Eqx)

Ly, + DFSTRAVERSALBACKWARD(G o, Visre,Tr)

Ly < DFSTRAVERSALFORWARD(G«,Vyst,T1)

l
RS(P) = [[IN(SRC;) x M(s;) x OUT(DST;)  (2)

[ IR

i=1 /* Combine Backward and Forward Dependency Paths ¥
6 Lp < COMBINEPATHS(Ly,L )
where IN and OUT are the sender and the receiver fanout 1\/4 Gf’Gﬂe'wTe a transition K:Iaf"fx of (ﬂé)iww graph using Eq. 1 K
. . . 7 = GETIRANSITIONMATRIX
score vectors. The right hand side of the equation measures s foreach P € L, do
. : : . /* Calculate Path ly score ing Eq. 2 and Eq. 3 ¥
the regularity or normality of an event € in which SRC; s | AS  CALCULATESCORE(PM)
sends information to DS’I’,L This equation is normalized /* Append path and its anomaly score to a list %
. . 10 Lcpas> < Lepas> U<PAS>
further to help generate a normalized anomaly score. Finally, u end
the Anomaly Score (AS) is calculated as follows: 12 return Lcp s>

AS(P)=1-RS(P)  (3)

This equation ensures that if any path contains at least one abnormal event, it will be assigned a high anomaly score. The
CALCULATESCORE in Algorithm 1 calculates the anomaly scores of the dependency paths of a candidate alert event. Since
longer dependency paths would have higher anomaly scores compared to the shorter paths, a sampling-based approach is used
to find the decay factor which normalizes the anomaly scores. In order to determine the decay factor «, a large sample of false
alert events are taken, their dependency paths of different max lengths 7; is constructed and their respective anomaly scores
are calculated. Then, a key-value pair based map is used to store the path length and its corresponding average anomaly score.
And finally, the ratio at which the anomaly score increases with increasing length from baseline length & is represented as the
decay factor a. Equation 2 is finally re-calculated with this decay factor value which returns a normalized anomaly score for
a given dependency path P of length I.

l
RS(P) = [[IN(SRC;) x M(z;) x OUT(DST;) x o0 (4)
i=1
At the final stage, the True Alert Dependency Graph is generated by Algorithm 1. The inputs to this algorithm are the list
of dependency path and anomaly score pairs and a merge threshold 7,,, which quantifies the difference between the scores of
benign and malicious paths. This algorithm merges high anomaly score paths until the difference is greater than the merge
threshold. The value of 7, is determined by using a training phase to calculate the average difference between benign and
malicious paths. Finally, all the alerts are ranked based on their anomaly score and a cut-off threshold 7; as mentioned earlier.
If the anomaly score of an alert is greater than 74 it is classified as a true alert and vice-versa. The threshold value is calculated
from a training dataset consisting of true attacks and false alarms.

A very crucial data structure for the NODOZE architecture to work efficiently is the Event Frequency Database. This
module counts the total number of occurrences of all events in an enterprise network and stores it in an external database.
NODOZE queries this database to calculate scores for Equation 1. Further, this module needs to be updated periodically to
update those counts. To calculate the frequencies of an event & =< SRC;, DST;, REL; > following equations are used:

hosts
Freq(£) =Y checkEvent(SRC;, DST;, REL;, h,t)
h
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hosts
Fregsye rel(&i) = Z checkEvent(SRC;, *, REL;, h,t)
h
Here hosts are the number of hosts in the network, ”«” is used to match any DST entity and checkEvent function returns the

total number of occurrences of event &; in host & in a pre-determined time window ¢. The number of occurrences of an event
is counted in a very similar way to that of PRIOTRACKER [3] with the only difference here being the time windows which
is 1 day here compared to a week in PRIOTRACKER.

de3|gn1 .png
chromium
ssh sshd bash

Fig. 10: True Alert Dependency Graph generated by NODOZE
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B. Evaluation

The architecture of NODOZE and the Event Frequency Database is implemented in Java consisting of 9KLoC and 4KLoC
respectively. The system audit logs are collected in PostgreSQL database using Windows ETW [24] and Linux Auditd [25]
from 191 hosts (51 Linux and 140 Windows) for 5 days. A total of 50 attacks were simulated including 10 real-world APT
attacks and 40 recent malwares from VirusTotal [26]. The baseline threat detection system used to generate the threat alert
events is a commercial tool [27]. The results are summarised in Table IX. NODOZE was able to detect all the attacks in a
very quick time period with a very negligible false positive rate. The evaluation dataset contains 400 GB of audit data with

Attack Case Baseline NODOZE

Dur(s) Ver Edg Size Dur(s) | Ver | Edg | Size | CD(TP) | CD(FP) | DD(TP) | DD(FP)
WannaCry 94 5948 8712 3320 18 19 21 49 100% 0% 100% 0.03%
Phishing Email 63 6002 148 3984 10 17 16 48 100% 0% 100% 0%
Data Theft 73 5364 | 23825 | 2208 41 23 24 65 100% 0% 100% 0%
Shellshock 31 2794 4031 3776 8 15 20 36 100% 0% 100% 0%
Netcat Backdoor 62 2914 6158 1968 14 12 11 48 88% 0% 84% 0%
Cheating Student 50 1217 | 22647 784 10 12 11 40 100% 0% 100% 0.07%
Passing the Hash 53 848 1026 560 11 8 8 36 100% 0% 100% 0%
wget-gcc 63 8323 8679 168 9 11 12 33 100% 0% 100% 0.01%
password-gzip-scp 68 8066 | 15318 | 5168 8 10 9 36 100% 0% 100% 0%
VPNFilter 20 2639 9774 1000 9 15 15 45 100% 0% 100% 0%

TABLE IX: Evaluation Results of NODOZE. Dur=Duration in seconds, Ver=Number of vertices, Edg=Number of Edges, Size
in KB, CD=Control Dependency, DD=Data Dependency, TP=True Positive, FP=False Positive

approximately 1 billion OS-level log events. The Event Frequency Database was generated by consuming 10 days of daily
OS-level system event in the enterprise and the underlying baseline TDS generated 364 threat alerts from all these simulated
attacks. A true alert dependency graph generated from an attack is shown in Figure 10 which summarizes the attack steps in a
very concise and simple graph representation. As it is evident from Table IX, NODOZE not only detects the attacks but does
the same in a much less time than compared to the baseline provenance tracker. The number of edges and vertices in the true
alert dependency graph is also much less compared to the baseline tracker. The runtime performance of NODOZE is highly
impressive as 95% of all the alerts produced by the TDS are analyzed and responded by NODOZE in less than 40 seconds as
shown in Table IX.

C. Limitations

The key contributions of NODOZE include the design and implementation of an automated platform-neutral alert correlation
system for enterprise networks which leverages a novel network diffusion algorithm that propagates anomaly scores in
dependency graphs generated from a candidate threat alert event and finally calculates the aggregate anomaly scores for
threat alerts. Moreover, the true alert dependency graphs generated by NODOZE are concise and accelerates the investigation
process without losing any important contextual attack information. NODOZE overcomes the dependence explosion problem
of SLEUTH [2] by leveraging behavioural execution partition which effectively reduces the redundant nodes and produces a
compact attack graph.

Focusing on the limitations of NODOZE, there are a few drawbacks in the technical details of the system. First, NODOZE
would potentially miss the attacks in which attackers’ steps are incredibly similar to those of benign programs. One of such
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incidents happened in ccleaner [28] where attackers performed a typical APT-style attack and were able to inject a malware
backdoor into the official version of the software from Avast. Since these malwares replicate those normal benign steps
performed by the actual software (and some malicious attack steps), the flows manifested by this malicious ccleaner [29] [30]
would be practically treated as benign by NODOZE leading to the attack not getting detected at all.

Second, NODOZE leverages an online database [31] to assign low IN and OUT scores to known malicious file extensions
which are observed during audit data collection. However, with the advent of the several variations of the APT attacks, it is
potentially unfeasible to rely on an online database that often depends on user submissions and can get delayed to update
new malwares. Moreover, this website primarily focuses on windows’ file extensions. Hence if NODOZE is implemented on a
Linux/FreeBSD system, it can assign the default /N and OUT score of 0.5 to potentially malicious files which can eventually
lead to a flawed anomaly score calculation. Further, the /N and OUT score assignment for socket connection is implemented
by leveraging domain knowledge of the network. This leads to infeasibility for implementation purposes in case of a large
enterprise network which consists of hundreds (if not thousands) of hosts.

Third, although the value of 7; in Algorithm 1 is user provided, no particular intuition is explained how to determine this
max path length threshold 7;. Since the evaluation was based on simulated attacks, the authors knew what they were looking
for and provided specific threshold values in different attack scenarios. However that might not be case in terms of adversarial
testing cases, where analysts literally have no idea how long a dependency path can be and this is evident in the NetCat
Backdoor experiment where the true positive (TP) rates for control and data dependency are 88% and 84% respectively.

And finally, the cut-off threshold 7,4 used to determine if a candidate threat alert is a true attack or a false alarm plays a very
crucial role in the efficacy of NODOZE. However, the paper provides a very vague one line explanation on how to calculate
74. "To this end, calculating T4 require training dataset with true attacks and false alarms and its value depends on the current
enterprise configuration such as the number of hosts and system monitoring events”. Even in the attack scenarios explained,
there is no mention of the anomaly scores of those alert event paths or how much the cut-off threshold value 7 is.

VI. DISCUSSION

Log based attack detection was first proposed by King et al. [21] which generated dependency graph based on OS-level
system events in order to capture the prerequisites and consequences of an attack. Over the years, this has been finely tuned and
improved by several papers. Tandon et al. [32] leveraged syscall arguments along with syscall sequences to detect malicious
programs. Ben-Asher et al. [33] investigated the effects of knowledge to detect attacks. They established that contextual
knowledge about alerts is more efficient in detection than compared to analysts’ experience and prior knowledge. Milajerdi et
al. [20] produced a strong signal for threat detection and correlated suspicious information flows by matching some pre-defined
rules. In this technical critique report, I have summarized two different aspects of intrusion detection system- threat detection
and alert correlation. Both of these aspects correspond to the four papers reviewed in this report. Each of these papers has
a significant contribution to this area of intrusion detection systems. HERCULE? [1] is an automated multi-stage intrusion
analysis system based on social networks. They define a long list of possible relationships between events. These relationships
are leveraged to create graphs of events in which edges have a weight value, which is calculated using a quadratic optimization
algorithm. The result returned by the system is a complete graph representing all the malicious events involved in a multi-step
attack. SLEUTH [2] is a platform-neutral real-time attack detection and attack reconstruction system which leverages main
memory dependency graph model and an efficient tag-based policy framework to produce attack scenarios. PRIOTRACKER
[3] isn’t directly aimed at constructing a compact scenario graph, but instead, it aims to include as much of attack activity as
possible within a given amount of analysis time. NODOZE [4] prioritizes anomalous information flows to reduce the size of
the graph generated by forward analysis. A key limitation to both of these systems is that since NODOZE and PRIOTRACKER
rely on anomalous or rare events and/or anomalous information flows, sophisticated attackers can evade them by designing
their malware to match the behaviors of benign applications. Moreover, these techniques require an external attack detector
to initiate the analysis. Although the four papers cannot be compared directly to each other but a general comparison of the
different aspects of these systems are summarized in Table X.

Kernel audit logs are a rich source of information for log-based causality analysis systems in order to detect attacks. There
are a few headers for future research in threat detection and alert correlation aspects of an intrusion detection system. First, all
these systems require audit logs to streamed into it or preserved in some storage for efficient threat detection. However, in an
enterprise network, the number of hosts can easily range in hundreds (or even thousands) and the size of the audit logs just
keep increasing with every passing day. If audit logs are stored in an enterprise, the total size of those files can rapidly escalate
into terabytes in no time as hosts in an enterprise perform a huge number of operations on a daily basis. More research should
be conducted on robust data retention techniques which would eliminate unnecessary logs in due time. Moreover, research
should be performed in data reduction techniques so that the size of those log files do not exceed some certain sizes. All these
would significantly decrease the storage overheads that exist in the present systems.

2HERCULE stands for Harmful Episode Reconstruction by Correlating Unsuspicious Logged Events, also as a tribute to Hercule Poirot, one of the most
celebrated fictional detectives
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I [ HERCULE [ SLEUTH | PRIOTRACKER [ NODOZE 1]
Main Goals Threat detection and | Threat detection and | Distinguish malicious | Alert correlation us-
attack scenario recon- | attack scenario recon- | attack events from be- | ing contextual infor-
struction struction nign events mation of threat alerts
Strengths Detects threats | Attack scenario | Priority based causal- | An alert correlation
and discovers | reconstruction ity tracker to detect | system which
attack communities | representing the | abnormal causal de- | leverages a network
embedded within | root cause and impact | pendencies diffusion  algorithm
graphs analysis of the attack in order to propagate
and generate anomaly
score for each alert
Weakness Output graphs are dif- | Dependence No output graphs | Attacks that replicate
ficult to analyze explosion generated benign  application

behaviour can remain
undetected

Evaluation dataset

16 simulated attacks

73 million events

2.5 billion events

50 simulated attacks

Platform-neutral Yes Yes Yes Yes
Real-time detection No Yes No No
Implemented in Python C++ and Python Java Java

TABLE X: Comparison of different aspects of the four papers discussed in the report

Second, lateral movement is a key attack step in APTs as attackers tend to persist on an enterprise network by laterally
moving from one host to another while undetected. In general, in order to detect such attack steps, a distributed framework is
necessary instead of a per-host implementation. But it is very hard to achieve in an enterprise network which can consist of
hundreds of hosts. Significant research should be conducted in that particular area.
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