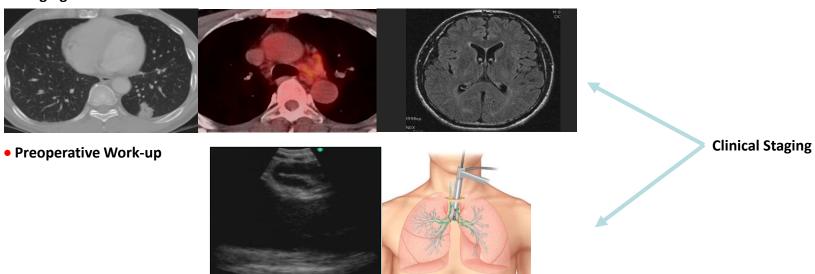
2018KOPANA 17th Spring Seminar

Critical Review and Appraisal of the Latest AJCC Systems and/or WHO Classifications
The Sutton Place Hotel, Vancouver, Canada 17 March, 2018


Jin-Haeng Chung, MD
Seoul National University Bundang Hospital

TNM staging of the Lung Tumours

Pathologist's Perspective

Lung Cancer Staging Methods

Imaging Studies

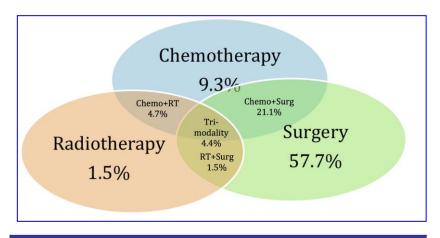
Surgical

Lung Cancer Stage Classification; Brief History

• First Edition; UICC 1968

ТО	No tumor
T1	Segmental bronchus or segment
T2	Lobar bronchus or one lobe
Т3	Main bronchus or more than one lobe
T4	Extending beyond the lung
N1	N1; enlargement of intrathoracic lymph nodes

Evolution of TNM of Lung Cancer; UICC

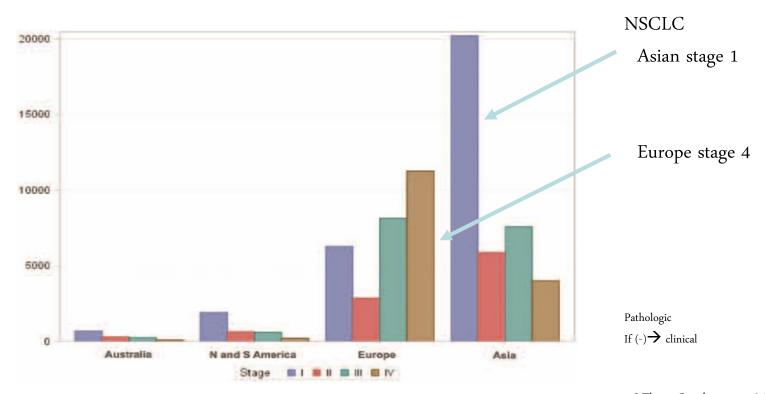

	Year	Data	Main Changes	
1st	1968		"the Livre de Poche"	1 st edition
2nd	1974	N=2,155	Mountain proposal 1973	T2 > 3cm, stage I-III
3rd	1978		Minimal change	Stage IV
4th	1987	N=3,753	UICC +AJCC Mountain proposal 1986	Stage IIIA/B; N3 concept
5th	1997	N=5,319	Last Mountain revision	Stage IA/IB, Stage IIA/IIB
6th	2002		No change	
7th	2009	Yr. 1990-2000 N=100,869	IASLC Quantum Leap ?	New LN map T3 > 7cm New definition; add. nodule Pleural effusion;M1a T2bN0→ IIA, T2aN1→ IIA,T4N0-1→ IIIA

Contents

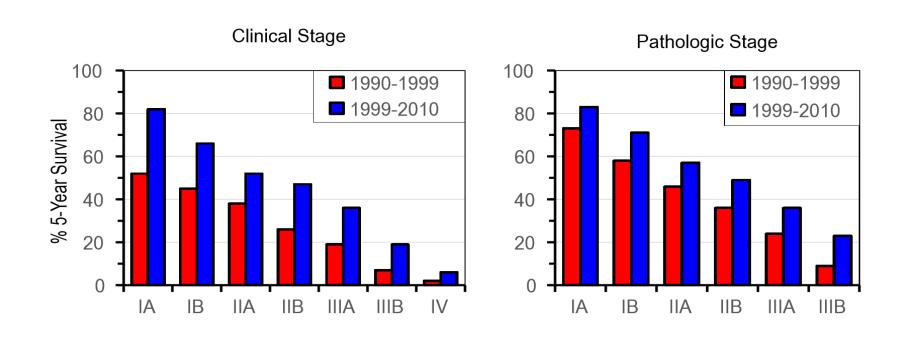
- ❖ Database used for the Eighth Edition Lung Cancer Stage Classification
- Changes in T, N, M descriptors in the Eighth Edition
- Stage Groupings in the Eighth Edition
- Summary

Database for the 8th edition

Region	Number	%
Europe	46,560	49
Asia	41,705	44
North America	4,660	5
Australia	1,593	1.7
South America	190	0.3
TOTAL	94,708	100

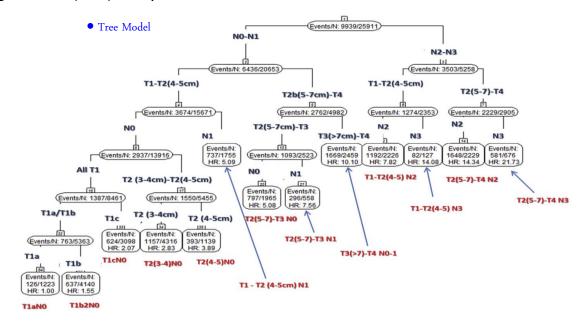

Type of data	# of cases
Retrospective	73,251
Prospective	3,905
TOTAL	77,156

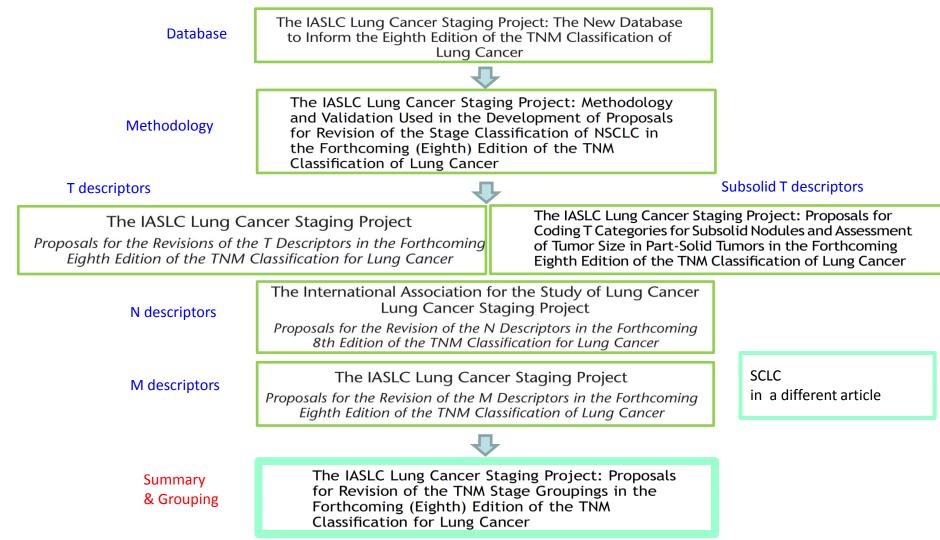
Database for the Eighth Edition of TNM; Countries


By Countries, comparing with 7th Edition, 35 sources from 16 countries

Element	Database for the seventh Edition	Database for the eighth Edition	_
Period of diagnosis	1990 to 2000	1999 to 2010]
Total patients submitted	100,869	94,708	
Geographical origin			_
Europe	58,701 (58%)	(46,560 (49%))	
North America	21,130 (21%)	4,660 (5%)	Increased A
Asia	11,622 (11.5%)	41,705 (44%)	contribution
Australia	9,416 (9.3%)	1,593 (1.7%)	
South America	0	190 (0.3%)	
Patients excluded	19,374 (19%)	17,552 (18%)	

Database for the Eighth Edition of TNM; Stage Distribution




Comparison of survival in the 1990–1999 vs. 1999–2010 data sets

Statistical Analysis

• Kaplan-Meier methods Cox regression; baseline factors (age,sex, region, and cell type), proportional hazards regression The recursive partitioning and amalgamation (RPA) analysis

Separate tumor nodules

Separate primary or metastasis

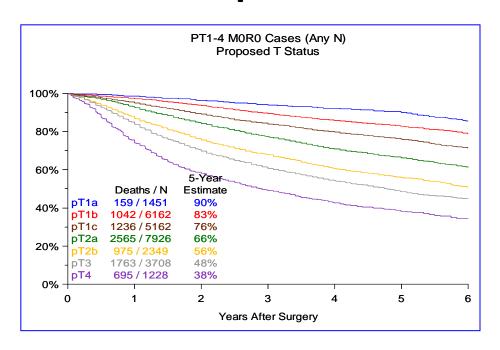
Multiple GG/L, pneumonic type

Summary; multiple nodules

The IASLC Lung Cancer Staging Project: Background Data and Proposals for the Classification of Lung Cancer with Separate Tumor Nodules in the Forthcoming Eighth Edition of the TNM Classification for Lung Cancer

The IASLC Lung Cancer Staging Project: Background Data and Proposed Criteria to Distinguish Separate Primary Lung Cancers from Metastatic Foci in Patients with Two Lung Tumors in the Forthcoming Eighth Edition of the TNM Classification for Lung Cancer

The IASLC Lung Cancer Staging Project: Background Data and Proposals for the Application of TNM Staging Rules to Lung Cancer Presenting as Multiple Nodules with Ground Glass or Lepidic Features or a Pneumonic Type of Involvement in the Forthcoming Eighth Edition of the TNM Classification


The IASLC Lung Cancer Staging Project: Summary of Proposals for Revisions of the Classification of Lung Cancers with Multiple Pulmonary Sites of Involvement in the Forthcoming Eighth Edition of the TNM Classification

Contents

- ❖ Database used for the Eighth Edition Lung Cancer Stage Classification
- **Changes in T, N, M descriptors in the Eighth Edition**
- ❖Stage Groupings in the Eighth Edition
- **Summary**

Descriptor	Category
= 1 cm</td <td>T1a</td>	T1a
>1-2 cm	T1b
>2-3 cm	T1c
>3-4 cm	T2a
>4-5 cm	T2b
>5-7 cm	T3
>7 cm	T4
Bronchus + < 2 cm	T2
Total atelectasis	T2
Diaphragm	T4

The T component

Changes in T stage

More segmented, upward, more weighted

- Size
- Involvement of main bronchus
- Atelectasis/obstructive pneumonitis
- Visceral Pleural Invasion
- Diaphragm

T1a < 1 cm T1a
up Tra
T1a > 1-2 cm T1b
$T1b > 2-3 \text{ cm}$ \longrightarrow $T1c$
T2a > 3-4 cm T2a
$T2^a > 4-5 \text{ cm}$ T2b
T2 \flat > 5-7 cm \longrightarrow T3
T3 structures T3
$T3 > 7 \text{ cm}$ \longrightarrow $T4$

Changes in T stage

Generally Downward

- Involvement of main bronchus
- Atelectasis/obstructive pneumonitis
- Visceral Pleural Invasion
- Diaphragm
- Others

	7 th		8 th
tumor in the main bronchus ≥	T2	3-4cm	T2a
2cm distal to the carina		4-5cm	T2b
		5-7cm	Т3
tumor in the main bronchus < 2	Т3	3-4 cm	T2a
cm distal to the carina		4-5cm	T2b
distai to the carma		5-7cm	Т3
Carina or trachea involve	T4		T4

 Multivariate Results
 Survival from Surgery

 Variable
 n/N (%)
 HR (95% CI)
 P Value

 Other histology vs. adenocarcinoma
 3725/8807 (42)
 1.42 (1.26, 1.60)
 <0.001</td>

Multivariate Survival Analyses of Pathologically Staged pT2-3 Tumors Based on Their Endobronchial Location

2868/8807 (33)

7031/8807 (80)

5807/8807 (66)

234/8807 (3)

1031/8807 (12)

7640/8807 (87)

6230/8807 (71)

1571/8807 (18)

467/8807 (5)

67/8807 (1)

24/8807 (0)

1304/8807 (15)

HR, hazard ratio: 95% CI, 95% confidence interval; n, number with descriptor; N, number evaluated; %, percent with descriptor.

0.88 (0.78, 1.00)

1.96 (1.76, 2.20)

1.45 (1.33, 1.58)

1.74 (1.39, 2.18)

1.98 (1.78, 2.21)

1.28 (1.09, 1.50)

1.09 (0.97, 1.22)

1.33 (1.20, 1.48)

0.99 (0.83, 1.19)

1.08 (0.69, 1.69)

1.03 (0.51, 2.06)

1.56 (1.39, 1.76)

0.045

< 0.001

< 0.001

< 0.001

< 0.001

0.002

0.133

0.953

0.725

0.937

< 0.001

< 0.001

TABLE 5.

Squamous vs. other

Age $\ge 60 \text{ vs.} \le 60$

Male vs. female

Europe vs. Asia

invasion

invasion

Americas vs. Asia

Size ≥ 2 vs. ≤ 2 cm

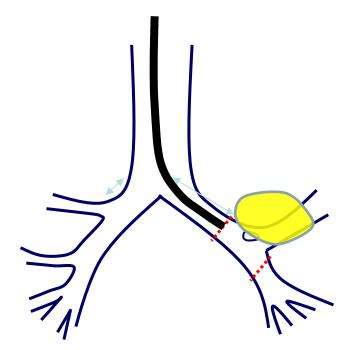
Size ≥ 3 vs. 2 to ≤ 3 cm

Size >5 vs. 3 to ≤ 5 cm

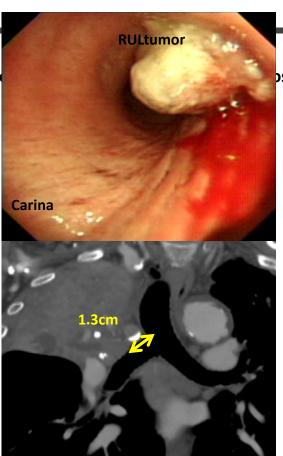
Size >7 vs. 5 to \leq 7 cm

invasion of main bronchus

pT2 main bronchus >2 cm from carina vs. pT2 without


pT3 main bronchus <2 cm from carina vs. pT2 without

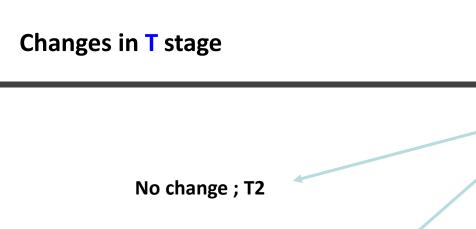
pT3 other than main bronchus vs. pT2, pT3 with


p value from Wald χ^2 test in Cox regression.

Main Bronchus Invasion

• Difficult Clinical-Pathologic Correlation

Difficult to

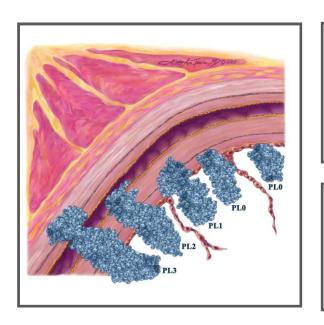

scopy

Changes in T stage

- Size
- Involvement of main bronchus
- Atelectasis/obstructive pneumonitis
- Visceral Pleural Invasion
- Diaphragm
- Others

General	ly D	ownwai	rd
---------	------	--------	----

	7 th		8 th
atelectasis or obstructive	T2	3-4cm	T2a
pneumonitis that extends to the hilar region but		4-5cm	T2b
does not involve the entire lung		5-7cm	Т3
associated atelectasis or	Т3	3-4 cm	T2a
obstructive pneumonitis of the entire lung		4-5cm	T2b
		5-7cm	Т3



- Size
- Involvement of main bronchus
- Atelectasis/obstructive pneumonitis
- Visceral Pleural Invasion
- Diaphragm
- Others

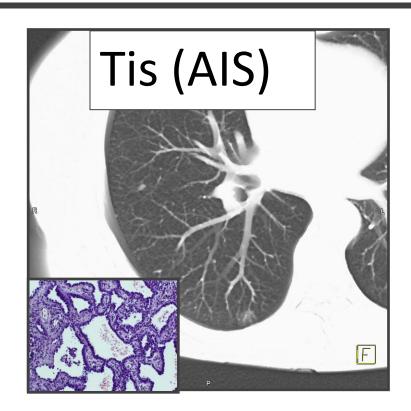
T3→ T4

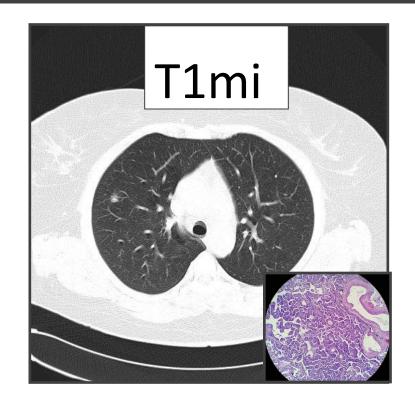
Elimination of mediastinal pleura

Visceral pleura invasion

To clarify visceral pleura involvement, the use of **elastic stains** is recommended.

PL0: ---PL1 / PL2: T2
PL3: T3

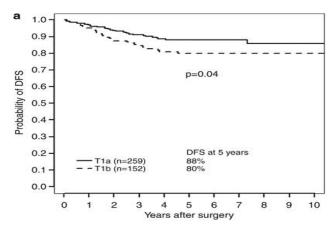

20% of presumed stage IA cancers can be understaged if elastic stains are not used

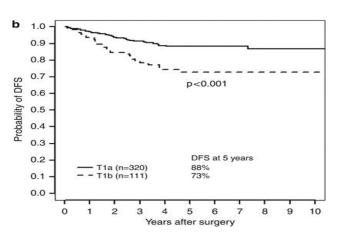

Taube JM et al. Am J Surg Pathol 2007; 31: 953

Changes in T stage; subsolid nodules

cT*	CT image on HRCT						
	Solid part	0 cm	0 cm	≤0.5 cm†	0.6-1.0 cm†	1.1-2.0 cm†	2.1-3.0 cm†
	Total tumor size including GG	≤0.5 cm	0.6-3.0 cm‡‡	≤3.0 cm‡‡	06-3.0 cm++	1.1-3.0 cm††	2.1-3.0 cm††
	Pathologic Differential Diagnosis	AAH‡, AIS, MIA	AIS, MIA, LPA	MIA, LPA, AIS	LPA, Invasive AD, MIA	LPA, Invasive AD	Invasive AD
	Clinical Stage*		cTis‡‡	cT1mi‡‡	cTla	cT1b	cTlc
	Invasive part	0 cm	0 cm	≤0.5 cm‡‡	0.6-1.0 cm†	1.1-2.0 cm†	2.1-3.0 cm†
рТ	Total tumor size including lepidic growth part	Usually ≤0.5 cm‡	≤3.0 cm‡‡	≤3.0 cm‡‡	0.6-3.0 cm††	1.1-3.0 cm††	2.1-3.0 cm††
	Pathology	ААН	AIS	MIA	Lepidic predominant AD or Invasive AD with lepidic compnent	Invasive AD with a lepidic component or lepidic predominant AD	Invasive AD with lepidic component
	Pathologic Stage		pTis##	pT1mi‡‡	pīla	pīlb	pIlc

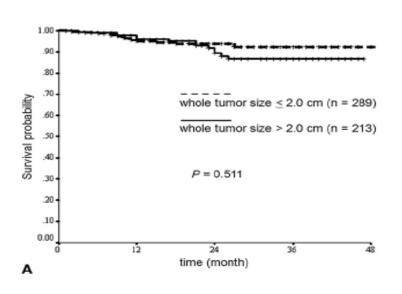
Minimally invasive lesion

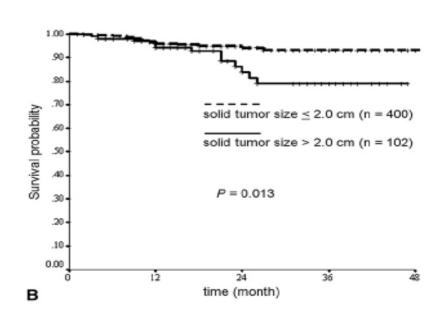



Travis W et al. J Thorac Oncol 2016; 11: 1204-1223.

Measuring the invasive area.....

Disease-free survival (DFS) comparing T1a (≤ 2 cm) *versus* T1b (> 2 cm or ≤ 3 cm).




(a) T1a and T1b defined according to gross tumor size (*P*=0.04).

(**b**) T1a and T1b defined according to invasive size (*P*<0.001).

Prognostic Significance of Solid vs Whole Tumor Size by HRCT 502 Stage IA Adenocarcinoma

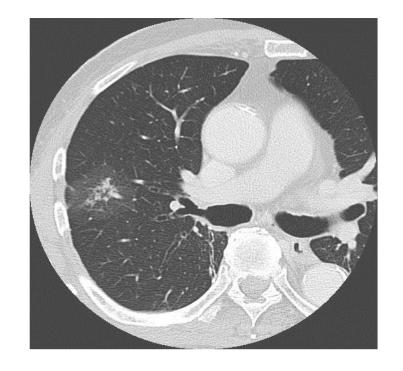
-DFS by HRCT A: 3 yr DFS 92.5% 2≤cm and 86.7 >2cm B: 3 yr DFS 93.2% 2≤cm and 78.9 >2cm

-Solid size – independent predictor in multivariate analysis (HR 2.30; 95% CI 1.46-3.63)

Tsutani et al JTCVS 143:607-12, 2012

Size measurement in part-solid non-mucinous ADC

Clinical staging: solid part

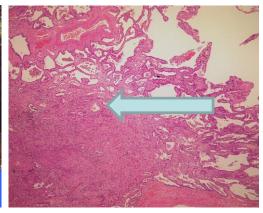

Pathologic staging: invasive part

Also measure total tumor size

For all cell types

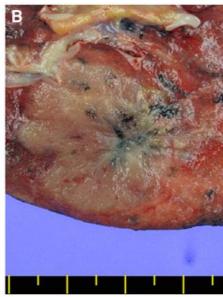
After induction (yp): size = % of viable cells x total size

Measure size with LUNG WINDOW


Travis W et al. J Thorac Oncol 2016; 11: 1204-1223

Subsolid nodules with small solid component

Small solid component within a subsolid nodule may indicate invasive adenocarcinoma... but not always



Size change after Formalin Fixation

- Size difference after fixation
- ✓ Stage shift after fixation: 3.17%
- ✓ The risk of a > 10% change in size was increased in tumours with a lepidic pattern (subsolid nodule)
- ✓ Longer ischemic time: tumor shrinkage

Cancers with multiple lesions

Multiple primary tumours:

One TNM for each tumour

Separate tumour nodules:

T3, T4, M1a

Multiple adenos with GGO/lepidic features:

Highest T (#/m) N M

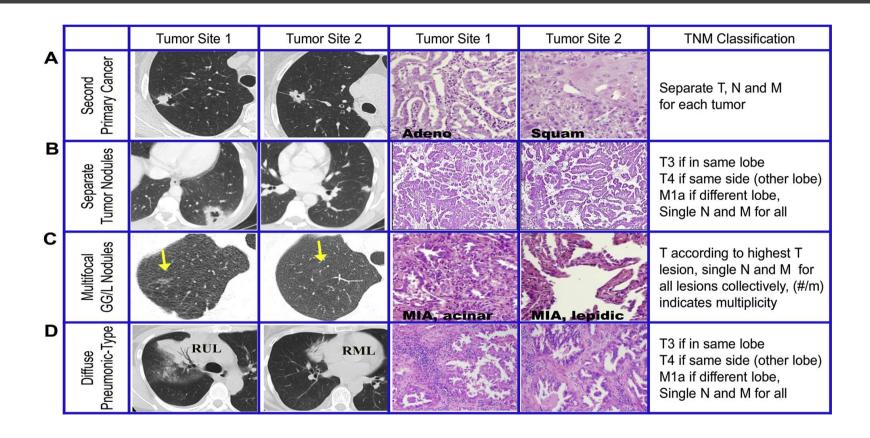
Pneumonic type adenocarcinoma:

T3, T4, M1a

Detterbeck F et al.

J Thorac Oncol

2016; 11 (5):


639-650

651-665

666-680

681-692

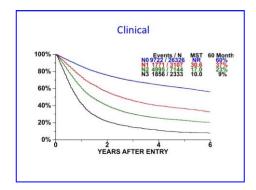
Multiple Nodules

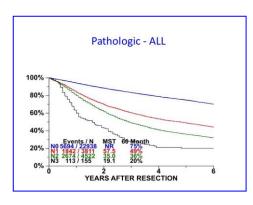
Implications for clinical practice: T

Every cm counts; careful follow-up

Accurate tumour size measurement, important BUT...

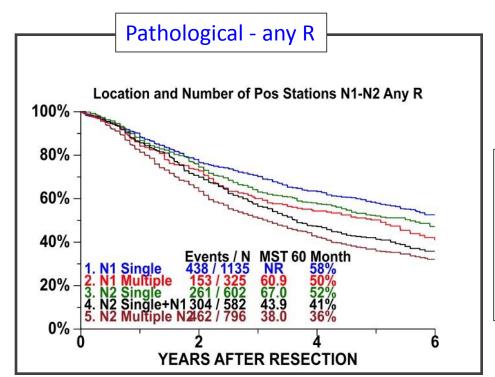
Rules to measure tumour size


Rules to measure part-solid non-mucinous ADC


Elastic stains for visceral pleura invasion

Prognosis refinement

Better stratification for clinical trials


The N component

Changes in N stage; No changes but recommendations

Quantification of nodal disease

```
N1 Single = N1a
N1 Multiple = N1b
N2 Single N2 ("skip mets") = N2a1
N2 Single N2 + N1 = N2a2
N2 Multiple N2 = N2b
```

Limitations of Database for N staging; Pathologic

TABLE 2. Origin of the Data for Pathological Nodal (pN) Categories

	Pathological N					Follow-up (mo)		
Data Source	N0	N1	N2	N3	Total	Min	Median	Max
Belgrade	10	54	24	0	88	6	42	70
EDC	1002	218	189	21	1430 74	1.6% <1	23	125
Japan 1999	7717	1296	1855	100	10,968	1	66	83
Japan 2002	2994	386	401	11	3792	1	73	90
Japan 2004	6662	726	1296	19	8703	1	62	77
Korea	933	270	222	1	1426	60	87	139
MDACC	1233	260	212	0	1705	<1	42	120
MSKCC	451	74	60	1	586	1	79	110
Norway	1193	369	145	1	1708	8	55	96
Sydney	743	158	118	1	1020	<1	69	139
Total	22,938	3811	4522	155	31,426	<1	64	139

EDC, electronic data capture; MDACC, M. D. Anderson Cancer Center; MSKCC, Memorial Sloan-Kettering Cancer Center.

[•] Japan with Naruke map

Changes in N stage; No changes but recommendations

Quantification of nodal disease, recommended:

N

pN1a: involvement of single pN1 nodal station

pN1b: involvement of multiple pN1 nodal stations

pN2a1: involvement of single pN2 nodal station without pN1 (skip pN2)

pN2a2: involvement of single pN2 nodal station with pN1

pN2b: involvement of multiple pN2 nodal stations

pN3: as it is

Implications for clinical practice: N

The amount of nodal disease has prognostic impact

Important to quantify nodal disease both at clinical and pathologic staging

Upfront resection for single station cN2 will be discussed

Prognosis refinement

Better stratification

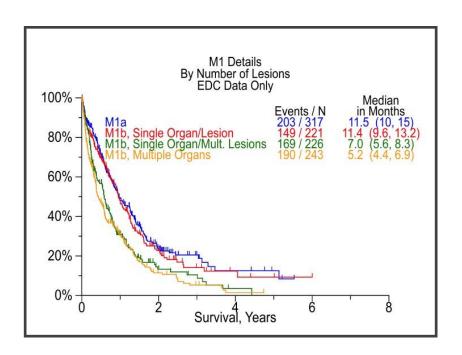

Changes in M stage

 TABLE 3. Prognostic Impact of Single and Multiple Metastatic Lesions in a Single Organ versus Multiple Metastatic Sites

		Overall Survival		
Proposed Category	Variable	n/N (%)	HR (95% CI)	P Value
M1a	M1a	324/1025 (32)	Reference level	
M1b	M1b, single organ/lesion	225/1025 (22)	1.11 (0.91, 1.36)	0.308
M1c	M1b, single organ/multiple lesions	229/1025 (22)	1.63 (1.34, 1.99)	< 0.001
	M1b, multiple organs	247/1025 (24)	1.85 (1.52, 2.24)	< 0.001

J Thorac Oncol. 2015;10: 1515–1522

The M component: M1b

M1a: no change

M1b: single extrathoracic M1

M1c: multiple extrathoracic M1s in one organ

M1c: multiple extrathoracic M1s in several organs

Implications for clinical practice: M

Number of M1s is more important than their location

M1b: baseline definition of oligometastases

Prognosis refinement

Better stratification

Contents

- ❖ Database used for the Eighth Edition Lung Cancer Stage Classification
- ❖ Changes in T, N, M descriptors in the Eighth Edition
- **Stage Groupings in the Eighth Edition**
- Summary

The Eighth Edition; Grouping

7th

T/M	Subgroup	N0	N1	N2	N3
T1	T1a <2	Ia	Ha	IIIa	Шь
	T1b >3	Ia	Ha	IIIa	Шь
T2	T2a >3-5	Ib	Ha	IIIa	IIIb
	T2b > 5-7	Ha	IIb	IIIa	IIIb
Т3	T3 >7	IIb	IIIa	IIIa	IIIb
	T3 Inv	IIb	IIIa	IIIa	Шь
	T3 Satell	IIb	IIIa	IIIa	IIIb
T4	T4 Inv	IIIa	IIIa	IIIb	IIIb
	T4 Ipsi Nod	IIIa	IIIa	IIIb	Шь
M1	M1a Contra Nod	IV	IV	IV	IV
	M1a pt Disem	IV	IV	IV	IV
	M1b	IV	IV	IV	IV

TABLE 5 Lung Cancer Stage Grouping (Eighth Edition)

T/M	Label	No	N1	N2	N3
T1	T1a ≤ı	IA1	IIB	IIIA	IIIB
	T1b >1-2	IA2	IIB	IIIA	IIIB
	T1c >2-3	IA3	IIB	IIIA	IIIB
T2	T2a Cent, Yisc Pl	IB	IIB	IIIA	IIIB
	T2a >3-4	IB	IIB	IIIA	IIIB
	T2b >4-5	IIA	IIB	IIIA	IIIB
T3	T3 >5-7	IIB	IIIA	IIIB	IIIC
	T3 Inv	IIB	IIIA	IIIB	IIIC
	T3 Satell	IIB	IIIA	IIIB	IIIC
T4	T4 >7	IIIA	IIIA	IIIB	IIIC
	T4 Inv	IIIA	IIIA	IIIB	IIIC
	T4 Ipsi Nod	IIIA	IIIA	IIIB	\ IIIC /
M1	Mla Contr Nod	IVA	IVA	IVA	IVA
	MlaPl Dissem	IVA	IVA	IVA	IVA
	M1b Single	IVA	IVA	IVA	IVA
	M1c Multi	IVB	IVB	IVB	IVB

Changes Summary

More complex !!!!

- ✓ More emphasis in T stage by Size
- ✓ Main bronchus invasion & atelectasis; down grade
- ✓ Diaphragm invasion; T4
- ✓ Subsolid Tumor
- ✓N staging; further suggestion
- ✓ M1b; single distant mets, M1c; multiple distant mets

- ✓ Stage group shift; mainly due to tumor size
- ✓ New stage groups; IA1, 1A2, IA3, IIIC, IVB

UICC second Edition

Second 6	ed. (1974)
Occult ca.	TXN0M0
Stage I	T1N0M0 T1N1M0
	T2N0M0
Stage II	T2N1M0
Stage III	T3anyN/M N2anyT/M M1anyT/N

Changes Summary

More relevance to tumour size

Reclassification of some T descriptors

Validation of present N descriptors

Amount of nodal disease is prognostic

Three metastatic groups

More stages for better prognostic stratification

Limitations & Future Direction

Limitations

- Geographic distribution
- Surgical cases dominant
- Less information in clinical stage (N)

Future

- More data contribution
- Non surgical cases
- Information in clinical stage (N) especially endoscopic staging

Thank You

