MOLECULAR DERMATOPATHOLOGY MELANOMA

Stephen Koh MD PhD

Kaiser Permanente, Orange County – Anaheim Medical Center Medical School – University of Southern California AP/CP, Surgical Pathology, Dermatopathology - UCLA

DISCLOSURE

I HAVE NOTHING TO DISCLOSE

- 1. Introduction to Molecular and Genetic Melanocytic Tumors.
- 2. Molecular prognostics and treatment of melanoma.

1. Introduction to Molecular and Genetic Melanocytic Tumors.

2. Molecular prognostics and treatment of melanoma.

INTRODUCTION

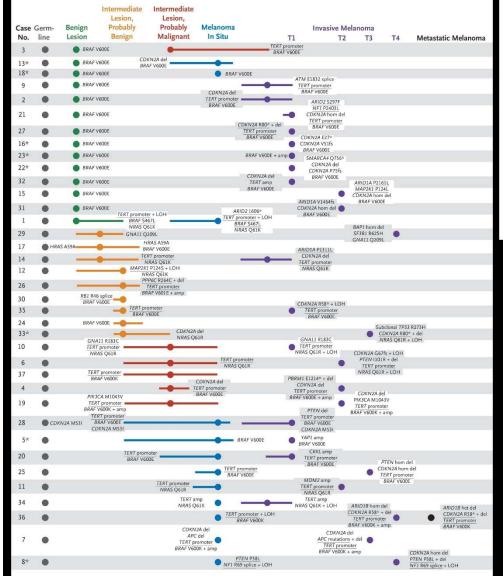
- Despite growth in genomics, gold standard for melanoma diagnosis still relies on histopathology.
- Initially melanoma were categorized based on histology – RGP and VGP growth phases.
- However categories now better distinguished by epidemiologic and genomic observations.

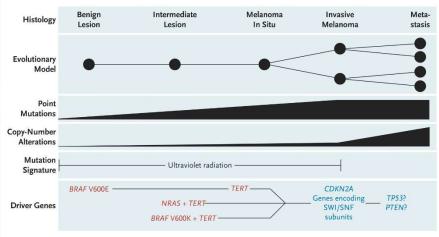
WHO Classification of Melanoma

3rd Edition

- Superficial spreading melanoma
- Nodular melanoma
- Lentigo maligna melanoma
- Desmoplastic melanoma
- Nevoid melanoma
- Acral-lentiginous melanoma
- Mucosal melanoma
- UveaL melanoma
- Melanoma of childhood
- Melanoma arising from giant congenital nevus
- Melanoma arising from a blue nevus
- Persistent Melanoma

4th Edition


- Low CSD melanoma (SSM)
- High CSD melanoma (LMM)
- Desmoplastic melanoma
- Acral melanoma
- Mucosal melanoma
- Uveal melanoma
- Spitz melanoma
- Melanoma arising from giant congenital nevus
- Melanoma arising from a blue nevus

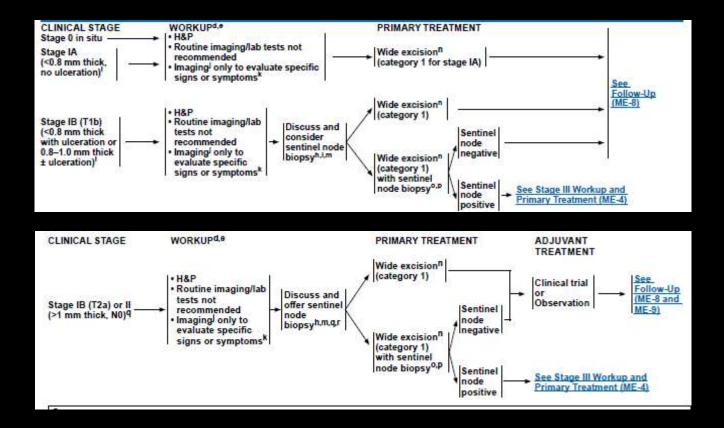

		High UV radiation	on exposure/CS		
	1	Ш	ш		
	Low-CSD mela	High-CSD melanoma/LMM	Desmoplastic melanoma		
	Naev	? IMP	? IMP		
Low-grade dysplasia	BIN	DPN		? IAMP/dysplasia	? IAMP/dysplasia
High-grade dysplasia/MIS	BAP1-inactivated melanocytoma/ MELTUMP	Deep penetrating melanocytoma / MELTUMP	PEM/MELTUMP	Lentigo maligna (MIS)	MIS
Low-CSD elanoma/SSM (VGP)	Melanoma in BIN (rare)	Melanoma in DPN (rare)	Melanoma in PEM (rare)	LMM (VGP)	Desmoplastic melanoma
RAF p.V600E; NRAS TERT; DKN2A; TP53; PTEN	BRAF or NRAS + BAP1	BRAF, MAP2K1, or NRAS + CTNNB1 or APC	BRAF + PRKAR1A or PRKCA	NRAS; BRAF (non-p.V600E); KIT; NF1 TERT; CDKN2A; TP53; PTEN:	NF1; ERBB2; MAP2K1; MAP3K1; BRAF; EGFR; MET TERT; NFKBIE; NRAS; PIK3CA; PTPN11
l dy	dysplasia High-grade rsplasia/MIS Low-CSD lanoma/SSM (VGP) RAF p.V600E; NRAS TERT; KN2A; TP53;	Low-grade dysplasia BIN High-grade rsplasia/MIS BAP1-inactivated melanocytoma/ MELTUMP Low-CSD lanoma/SSM (VGP) Melanoma in BIN (rare) EAF p.V600E; NRAS BRAF or NRAS + BAP1	dysplasiaBINDPNHigh-grade rsplasia / MISBAP1-inactivated melanocytoma / MELTUMPDeep penetrating melanocytoma / MELTUMPLow-CSD lanoma / SSM (VGP)Melanoma in BIN (rare)Melanoma in DPN (rare)EAF p.V600E; NRASBRAF or NRAS + BAP1BRAF, MAP2K1, or NRAS + CTNNB1 or APC	Naevus Low-grade dysplasia BIN DPN High-grade rsplasia/MIS BAP1-inactivated melanocytoma/ MELTUMP Deep penetrating melanocytoma/ MELTUMP PEM/MELTUMP Low-CSD lanoma/SSM (VGP) Melanoma in BIN (rare) Melanoma in DPN (rare) Melanoma in PEM (rare) EAF p.V600E; NRAS BRAF or NRAS + BAP1 BRAF, MAP2K1, or NRAS + CTNNB1 or APC BRAF + PRKAR1A or PRKCA	Low-CSD melanoma/SSMHigh-CSD melanoma/LMMNaevus? IMPLow-grade dysplasiaBINDPN? IAMP/dysplasiaHigh-grade melanocytoma/ MELTUMPBAP1-inactivated melanocytoma/ MELTUMPDeep penetrating melanocytoma/ MELTUMPPEM/MELTUMPLentigo maligna (MIS)Low-CSD lanoma /SSM (YGP)Melanoma in BIN (rare)Melanoma in DPN (rare)Melanoma in PEM (rare)LMM (VGP)LAF p.V600E; MRASBRAF or NRAS + BAP1BRAF, MAP2K1, or NRAS + CTNNB1 or APCBRAF + PRKCANRAS; BRAF (non-p.V600E); KIT; NF1

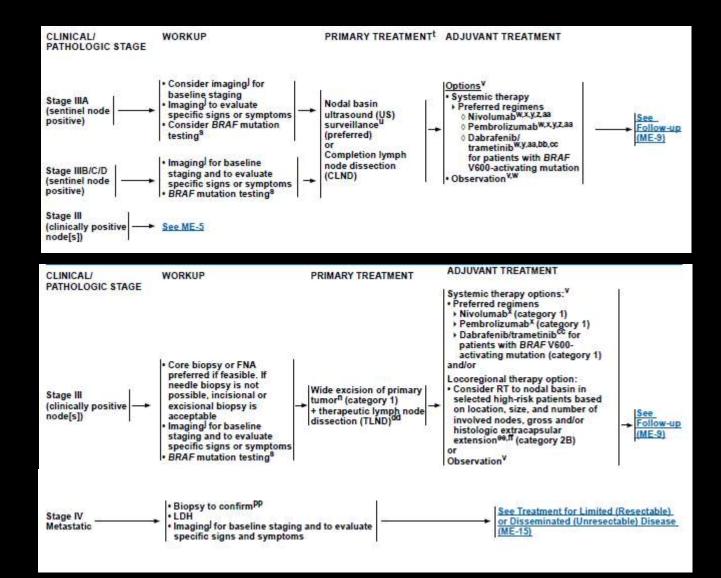
• WHO Classification of Skin Tumors 4th.

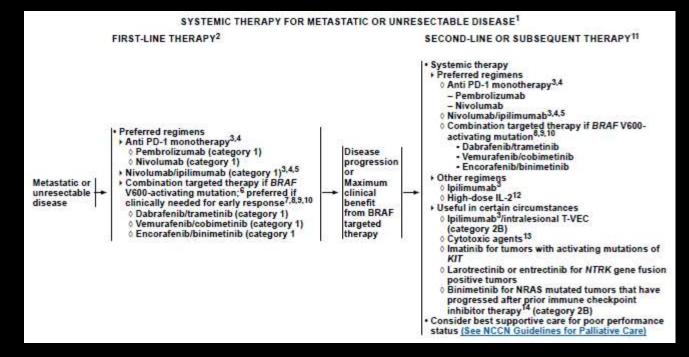
	Low to no (or variable/incidental) UV radiation exposure / CSD										
IV	v	VI	VII	VIII	IX						
Malignant Spitz tumour/ Spitz melanoma	Acral melanoma	Mucosal melanoma	Melanoma in CN	Melanoma in BN	Uveal melanoma						
Spitz naevus	? Acral naevus	? Melanosis	CN	Blue naevus	? Naevus?						
Atypical Spitz tumour (melanocytoma)	IAMP/dysplasia	Atypical melanosis/ dysplasia/IAMPUS	Nodule in CN (melanocytoma)	(Atypical) CBN (melanocytoma)	?						
STUMP/MELTUMP	Acral MIS	Mucosal MIS	MIS in CN	Atypical CBN	?						
Malignant Spitz tumour/ Spitz melanoma (tumorigenic)	Acral melanoma (VGP)	Mucosal lentiginous melanoma (VGP)	Melanoma in CN (tumorigenic)	Melanoma in blue naevus (tumorigenic)	Uveal melanoma						
HRAS; ALK; ROS1; RET; NTRK1; NTRK3; BRAF; MET	KIT; NRAS; BRAF; HRAS; KRAS; NTRK3; ALK; NF1	KIT, NRAS, KRAS or BRAF	NRAS; BRAF p.V600E (small lesions); BRAF	GNAQ; GNA11; CYSLTR2	GNAQ, GNA11, CYSLTR2, or PLCB4						
CDKN2A	CDKN2A; TERT; CCND1; GAB2	NF1; CDKN2A; SF3B1; CCND1; CDK4; MDM2		BAP1; EIF1AX; SF3B1	SF3B1; EIF1AX; BAP1						

• WHO Classification of Skin Tumors 4th.

- Cases included melanoma with precursor lesion
- Study defined the succession of genetic alterations during melanoma progression.
- It also identified an intermediate category with more than one genetic alteration – resolving the dysplastic/atypical nevi controversy.
- Shain et. al. The genetic evolution of Melanoma from Precursor Lesions. NEJM 2015.

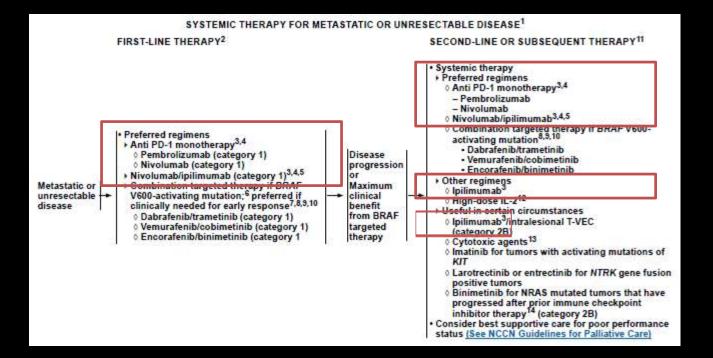

Pathway	Gene	Mutation	Subtype*	Progression phase ¹	Role
MAPK	BRAF	V600E	Non-CSD	Naevi	Initiation
	BRAF	V600K, K601E and G469A, among other clustered nonV600E alterations	CSD	Intermediate and MIS lesions	Initiation
	NRAS	Q61R and Q61K, among other less common alterations affecting codon 61 or 12	CSD	Intermediate and MIS lesions	Initiation
	NF1	Disabling mutations occurring throughout the gene and deletions	CSD	MIS	Initiation
Telomerase	TERT	Promoter mutations affecting hg19 coordinates 1,295,228 or 1,295,250, among less common, nearby mutations	CSD and non-CSD	Intermediate and MIS lesions	Progression
RB	CDKN2A	Deletions and disabling mutations occurring throughout the coding region	CSD and non-CSD	Invasive melanoma	Progression
Chromatin remodelling	ARID1A, ARID1B and/or ARID2	Disabling mutations occurring throughout the protein	CSD and non-CSD	Invasive melanoma	Progression
PI3K	PTEN	Disabling mutations occurring throughout the protein and deletions	Non-CSD	Thicker invasive melanomas	Advanced progression
p53	TP53	Disabling mutations occurring throughout the protein	CSD	Thicker invasive melanomas	Advanced progression

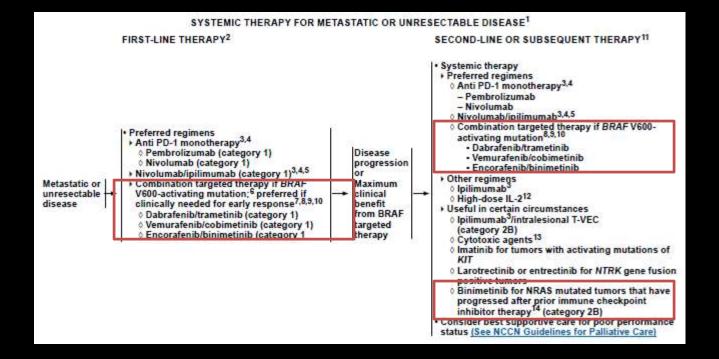

ARID, AT-rich interaction domain; CDKN2A, cyclin-dependent kinase inhibitor 2A; CSD, chronically sun damaged; MIS, melanoma in situ; NF1, neurofibromin 1; TERT, telomerase reverse transcriptase. *Subtype refers to the melanoma subtype(s) predominantly associated with the mutation. *Progression phase refers to the earliest progression phase at which the mutation typically occurs.


• Shain et. al. From melanocytes to melanomas. Nat Rev Cancer 2016.

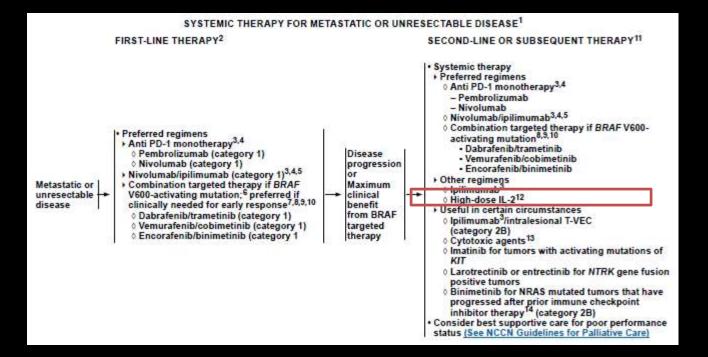
- 1. Introduction to Molecular and Genetic Melanocytic Tumors.
- 2. Molecular prognostics and treatment of melanoma.

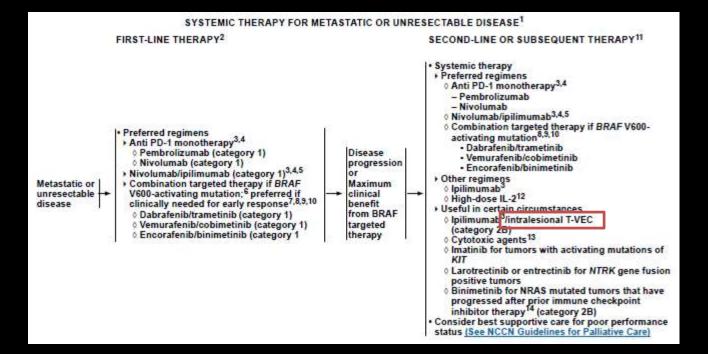
NCCN GUIDELINES



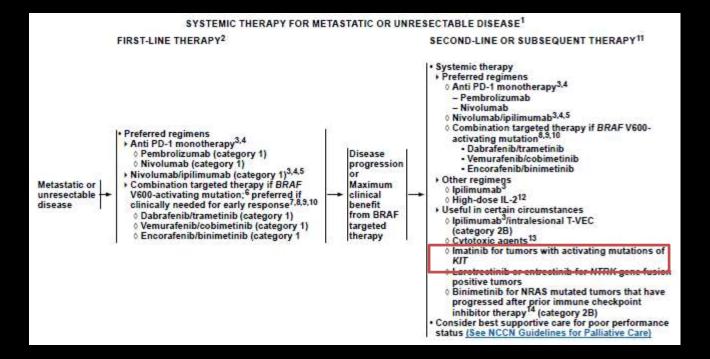


 There are many other clinical scenarios such as satellite/in transit/nodal recurrence and various tx options.

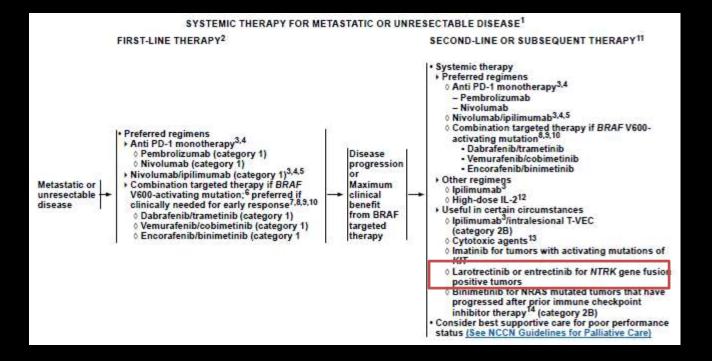

Checkpoint Inhibitors: CTLA-4 Ab and PD-1 and PD-L1 Blocking Ab


BRAF and MEK Inhibitors

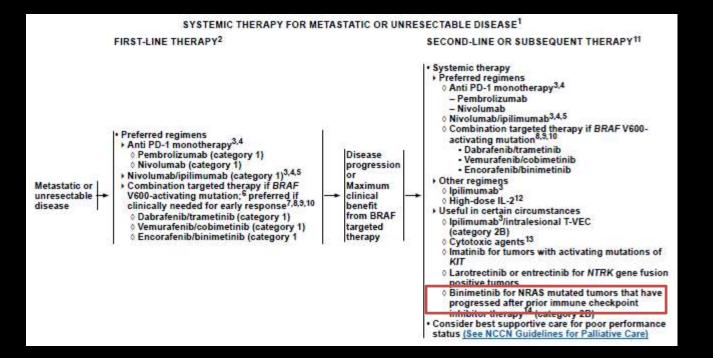
Interleukin-2

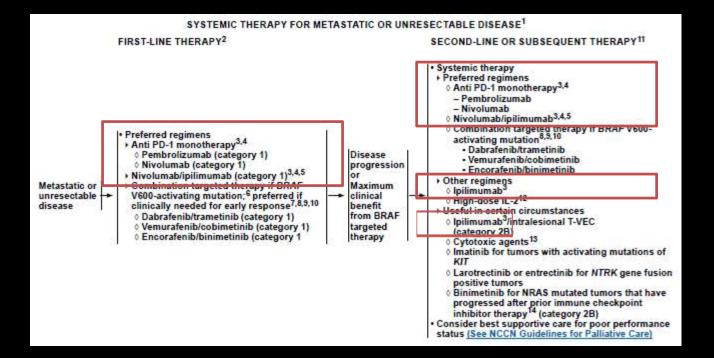


Intralesional T-VEC

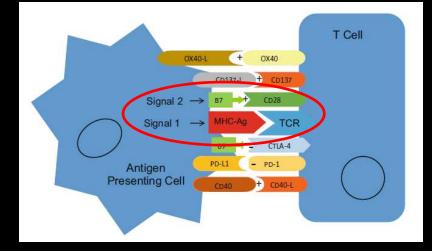


KIT Inhibitor

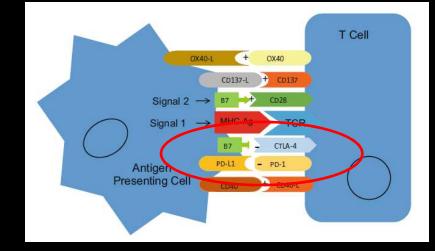



TRK Inhibitors

MEK Inhibitors for NRAS mutations



Checkpoint Inhibitors: CTLA-4 Ab and PD-1 and PD-L1 Blocking Ab



- T-Cell activation introduction
- CTLA-4 Blocking Ab
 - Ipilimumab
- PD-1 Blocking Ab
 - Nivolumab
 - Pembrolizumab

- T-Cell activation introduction
- CTLA-4 Blocking Ab
 - Ipilimumab
- PD-1 Blocking Ab
 - Nivolumab
 - Pembrolizumab

- Pathogen or Tumor antigen specific T-cell activation requires two signals:
 - 1. T-cell receptor (TCR) recognizes/binds to tumor associated antigen presented in association with MHC by antigen presenting cells.
 - 2. Costimulatory signal is provided by binding CD28 with B7-1(CD80) or B7-2(CD86) receptors.

- Both signals are required for activation, differentiation, and proliferation of antigen – specific T cells which then migrate to the source of antigens in the periphery to elicit effector function (PROGRAM=KILL TUMOR CELLS!).
- T cell immunity is tightly regulated by check and balance systems involving many stimulatory and inhibitory molecules.

- T-Cell activation introduction
- CTLA-4 Blocking Ab
 - Ipilimumab
- PD-1 Blocking Ab
 - Nivolumab
 - Pembrolizumab
- Eggermont AM et al. NEJM 2016:375:1845-1855.
- Hodi FS et al. NEJM 2010:711-723.
- Robert C et al. NEJM 2011:2517-2526.
- Maio M et al. J Clin Oncol 2015:1191-1196
- Ascierto PA et al. Lancet Oncol 2017.

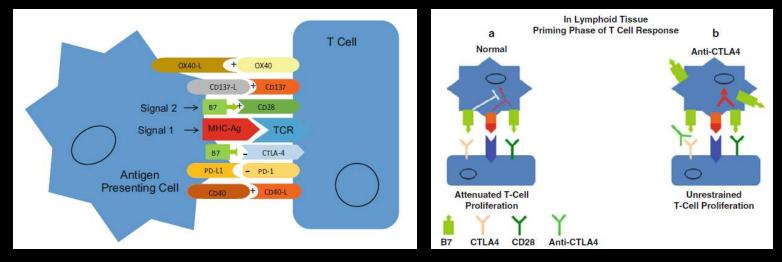

Immune Checkpoint targeted therapy

Table 6. FDA-Approved Indications for Immune Checkpoint Inhibitor and BRAF/MEK Targeted Therapy in Cutaneous Melanoma

Agent	Treatment for Metastatic or Unresectable Disease	Adjuvant Therapy
Immune Checkpoint Inhibito	brs	
Ipilimumab ³⁹⁴	Unresectable or metastatic melanoma	Cutaneous melanoma with pathologic involvement of regional lymph nodes of more than 1 mm who have
		undergone complete resection, including total lymphadenectomy
Nivolumab ³⁹⁵	Unresectable or metastatic melanoma	Melanoma with lymph node involvement or metastatic disease who have undergone complete resection
Pembrolizumab ³⁹⁶	Unresectable or metastatic melanoma	Melanoma with involvement of lymph node(s) following complete resection
Nivolumab/ipilimumab394,395	Unresectable or metastatic melanoma	No FDA approval in this setting

- Current list of FDA approved ImmunoCheckpoint inhibitors.
- There are other anti-CTLA-4 and anti-PD-1/anti-PD-L1 drugs not approved or in development.

CTLA-4 Blocking Ab

- Immediately following T-cell activation, CTLA-4 is upregulated.
- CTLA-4 competes with CD28 for B7 thus interrupting the costimulatory signal and blunting T-cell response.
- Antibody blocking CTLA-4 therefore enhance antitumor immunity by sustaining T-cell response.

CTLA-4 Blocking AB

Trial				Median		Efficacy Analysis ^t		AEs ^c	
Name and Reference	Phase Design	Stages Included ^a	Treatment Arms Folloup		RFS or DFS	DMFS	os	Any grade Grade 3–4 Grade 5	
Immune Checkpoi	nt Inhibi	tors		·					
EORTC 18071 NCT00636168	III DB		HD-lpi (n = 475) Pbo (n = 476)	5.3 y 🤇	5-y: 41% vs. 30% HR = 0.76	5-y: 48 vs. 39% HR = 0.76	5-y: 65% vs. 54%	99% vs. 91% 54% vs. 26%	
Eggermont 2016 ³⁸⁴	RCT		lin	da	[0.64–0.89] <i>P</i> < .001	[0.64–0.92] P = .002	[0.58–0.88] P = .001	1.5 vs. 1.3%	

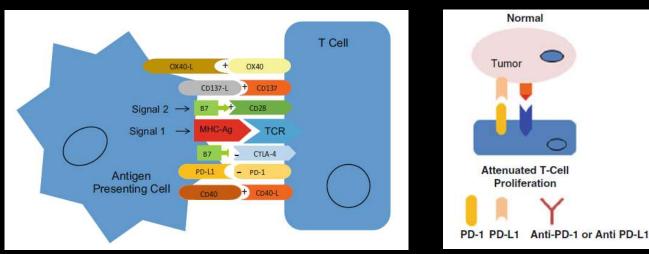
- For stage 3 disease, ipilimumab improved Relapse Free Survival (RFS), Distant Mets Free Survival (DMFS), and Overall Survival (OS).
 - OS = the "gold standard" for measuring clinical benefits of a cancer drug. Measuring how long patients live compared to control. OS is a strong and precise endpoint, requiring having more patients and longer followups compared to other clinical trial endpoints.
 - RFS/DFS = survival without any signs or symptoms of the cancer.
 - DMFS = defined start point of the period to appearance of a distant mets.

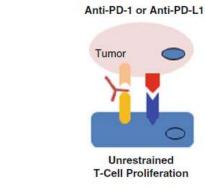
CTLA-4 Blocking AB

Trial			Patients		8				
Name and References	Phase Design	Median Follow-up (months)	Tx Naive	CNS Mets	Treatment Arms	Response Rate	PFS Median (months)	OS Median (months)	Grade 3-4 irAEs°
CA184-002 NCT00094653 ⁴⁰³	III RDB	21.0 27.8 17.2	0% ^d	12% ^e	lpi + gp100 (n = 403) lpi (n = 137) gp100 (n = 136)	6% <i>P</i> = .04 11% <i>P</i> = .001 2%	2.8 <i>P</i> < .05 ^t 2.9 <i>P</i> < .001 2.8	10.0 <i>P</i> < .001 10.1 <i>P</i> = .003 6.4	} 10%–15% 3%
CA184-024 NCT00324155 ^{404,540}	III RDB	Min 36.6	100%	None	DTIC + ipi (n = 250) DTIC + pbo (n = 252)	15% P = .09	$\frac{ND^{g}}{ND^{g}} P = .0006^{f}$	11.2 9.1 P < .001	38% 4%
CA184-169 NCT01515189 ⁵⁴⁴	III RDB	14.5 11.2	44% ^d 43% ^d		HD-ipi (n = 365) Ipi (n = 362)	15% 12%	2.8 <i>P</i> = .16 2.8	15.7 <i>P</i> = .04 11.5	30% 14%

• For unresectable and metastatic disease, ipilimumab improved Overall Survival (OS).

- PFS, progression free survival = how long person lives without the disease worsening.


- T-Cell activation introduction
- CTLA-4 Blocking Ab
 - Ipilimumab
- PD-1 Blocking Ab
 - Nivolumab
 - Pembrolizumab
- Weber J et al. NEJM 2017:1824-1835.
- Eggermont AM et al. NEJM 2018:1789-1801
- Harnid O et al. Eur J Cancer 2017:37-45
- Weber JS et al. Lancet Oncol 2015:375-384


PD-1 and PD-L1 Blocking Ab

Normal

Proliferation

Tumor

- PD-1 to PD-L1 binding leads to T cell exhaustion and deletion.
- Tumor cells upregulate PD-L1 evading immunosurveillance.
- Thus, anti-PD-1 or Anti-PD-L1 interrupts this \bullet mechanism, restoring anti-tumor immunity and sustained T-cell activation to kill tumor cells.

PD-1 and PD-L1 Blocking Ab

- Current targeted therapies are associated with lower rates of toxicity than historical adjuvant tx options (IFNa, cytotoxic chemo).
- Although data is limited, so far, targeted therapies with Anti-PD-1 Ab (nivolumab and pembrolizumab) was associated with clinically meaningful and statistically significant improvement in relapse free survival, distant metastasis free survival, and overall survival in Stage III and IV.

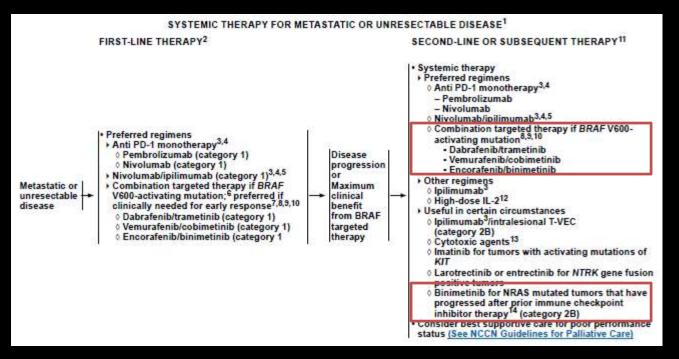
PD-1 and PD-L1 Blocking Ab

Trial			nd Targeted Therapy:	17 - V		Efficacy Analysis ^b		AEs
Name and Reference	Phase Design	Stages Included ^a	Treatment Arms	Median Follow- up	RFS or DFS	DMFS	os	Any grade Grade 3–4 Grade 5
Immune Checkpoi	nt Inhibi	tors	й х тах	• •				
EORTC 18071 NCT00636168 Eggermont 2016 ³⁸⁴	III DB RCT		HD-lpi (n = 475) Pbo (n = 476)	5.3 y	5-y: 41% vs. 30% HR = 0.76 [0.64–0.89] P < .001	5-y: 48 vs. 39% HR = 0.76 [0.64–0.92] P = .002	5-y: 65% vs. 54% HR = 0.72 [0.58–0.88] P = .001	99% vs. 91% 54% vs. 26% 1.5 vs. 1.3%
CheckMate 238 NCT02388906 Weber 2017 ³⁸⁵	III DB RCT	IIIB/C ^d IV	Nivo + Pbo (n = 453) HD-Ipi + Pbo (n = 453)	1.6 y	1-y: 71% vs. 61% ^e HR = 0.65 [0.51–0.83] P < .001	1-y: 80 vs. 73% HR = 0.73 [0.55–0.95]	NR	97% vs. 99% 25% vs. 55% 0 vs. 0.4%
KEYNOTE-054 NCT02362594 Eggermont 2018 ³⁸⁶	III DB RCT		Pembro (n = 514) Pbo (n = 505)	1.2 y	1-y: 75% vs. 61% HR = 0.57 [0.43–0.74] P < .001		NR	93% vs. 90% 32% vs. 19% 0.2% vs. 0
BRAF-Targeted Th	nerapy							
COMBI-AD NCT01682083 Long 2017 ³⁸⁷	III DB RCT	IIIA >1 mm, IIIB/C ^h	Dab + Tram (n = 438) Pbo (n = 432)	2.8 y	3-y: 58% vs. 39% HR = 0.47 [0.39–0.58] <i>P</i> < .001	NR ⁱ HR = 0.51 [0.40–0.65] Nominal <i>P</i> < .001	3-y: 86% vs. 77% HR = 0.57 [0.42–0.79] P = .0006 ^j	97% vs. 88% 41% vs. 14% 0.2% vs. 0
BRIM8 NCT01667419 Maio 2018 ³⁹³	III DB RCT	IIC, IIIA >1 mm, IIIB/C no IT ^ĸ	Vem (n = 250) Pbo (n = 248)	2.5 y, 2.8 y ⁱ	2-y: 62% vs. 53% HR = 0.65 [0.50–0.85] <i>P</i> = .0013	2-y: 72% vs. 65% HR = 0.70 [0.52–0.96] P = .027	2-y: 90% vs. 86% HR = 0.76 [0.49–1.18] <i>P</i> = .2165	NR 57% vs. 15% 0.4% vs. 0

PD-1 and PD-L1 Blocking Ab

Г	Trial Patients			Efficacy Results°						
Name and References	Phase Design	Median Follow-up (months)	Tx Naive	Brain Mets⁵		Response Rate	PFS 2-year Rate	OS 2-year Rate	3–4 Tx- Related AEs ^d	
KEYNOTE-002 NCT01704287 ^{406,} ⁵²⁹	II R, OL	28	None ^e		Pembro 2 mg/kg Q3W (n = 180) Pembro 10 mg/kg Q3W (n = 181) Chemo (n = 179)	22% <i>P</i> < .0001 ^f 28% <i>P</i> < .0001 4%	16% <i>P</i> < .0001 22% <i>P</i> < .0001 <1%	36% P = .117 ^f 38% P = .011 30%	14% 16% ⁹ 26%	
KEYNOTE-006 NCT01866319 ^{407,}	III R, OL	22.9	34% ^h	9%	Pembro 10 mg/kg Q2W (n = 279) Pembro 10 mg/kg Q3W (n = 277) Ipi 3 mg/kg Q3W x 4 doses (n = 278)		31% <i>P</i> < .0001 28% <i>P</i> < .0001 14%	55% <i>P</i> = .0009 ⁱ 55% <i>P</i> = .0008 43%	17% 17% 20%	

Table 11. Nivolumab Trials in Advanced Melanoma^a

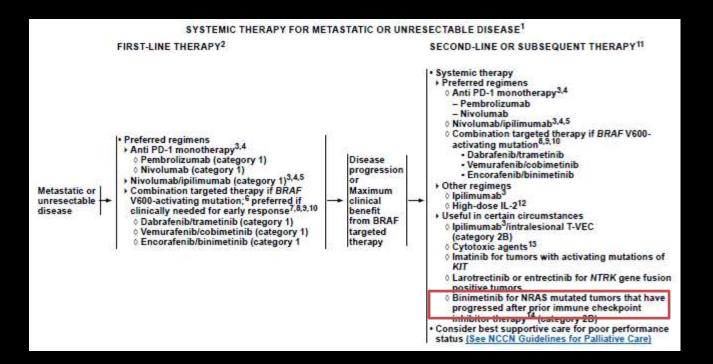

Trial		Patients				c	Grade		
Name and References	Phase Design	Median Follow-up (months)	Tx Naive	CNS Mets⁵	Treatment Arms	Response Rate	Median PFS (months)	Median OS (months)	3–4 Tx- Related AEs ^d
CheckMate 037 NCT01721746410,523	III R, OL	~24	0 ^e	20% 14%	Nivo (n = 272) Chemo (n = 133)	27% 10%	3.1 3.7 NS ^r	15.7 14.4 P = .716	14% 34%
CheckMate 066 NCT01721772 ^{526,530}	III RDB	38 ^g 39 ^g	100%	3.6%	Nivo (n = 210) DTIC (n = 208)	43% P < .001	5.1 2.2 P < .001	37.5 11.2 P < .001	15% 18%
CheckMate 067 NCT01844505 408,421,531	III RDB	47 36 19	100%	3.6%	Nivo/ipi, then nivo (n = 314) Nivo (n = 316) Ipi (n = 315)	58% <i>P</i> < .0001 ^h 45% <i>P</i> < .0001 19%	11.5 <i>P</i> < .0001 ^h 6.9 <i>P</i> < .0001 2.9	NR P < .0001 ^h 36.9 P < .0001 19.9	59% 22% 28%
CheckMate 069 NCT01927419 ^{409,528}	II RDB	25	100%	3% ^g	Nivo/ipi, then nivo (n = 95) Ipi (n = 47)	59% 11% P < .0001	NR 3.0 P < .0001	NR NR <i>P</i> = .26	54% 20%

Adverse effects of Checkpoint Immunotherapies

Table 15. Checkpoint li	mmunothera									
Study:		C	heckMate 0	67 and 069	409,531			KEYNOTE	E-006 ^{407,422}	
Agent:	Ipilim	umab	Nivolu	umab ^b	Ipilimumab ·	+ Nivolumab	lpilin	numab	Pembro	lizumab
Grade:	3-4	Any	3–4	Any	3-4	Any	3–5	Any	3–5	Any
All types	20-28	86-94	22	86	54-59	90 <mark>-96</mark>	20 ^c	73–74°	12–17 ^c	76 – 80℃
Diarrhea	6–11		3	**	1	****	1.1.1.1	**C	2–3 ^d	
Colitis	2–8		1		8-13		6		3	
Nausea	1–2		0		1–2		<1 ^c		<1 ^c	
Vomiting		*	1	*	1-2		0		<1	
Decreased appetite	N	*	0		≤ <mark>1</mark>			*		*
Rash	≤2	***	<1			****	≤1 ^c	**C	•	**C
Pruritus		****	I <1	**		****	<1 ^c	***C	0 ^c	**C
Maculopapular rash	~1	* / /			2-3		<1		<1	
Vitiligo	0 ^b	*b	<1			*	0			*
Fatigue	≤1	****	1	****	4–5	****	1 ^c	**C	≤1 ^c	***C
Pyrexia		*	0	*	1-3	**	0		0	
Arthralgia ^b	0 ^b	*b	<1 ^b			*b	≤1°	*C	<1°	*C
Myalgia	0	*	<1		<1	*	<1		<1	
Asthenia	1 ^b	*b	<1	*	<1 ^b		1	*	<1	*
Headache	<1	* \ \	0	*	1–2	*	0		0	61
Dyspnea	0		<1	*OC	1-2	* C	<1		<1	
Cough	0	* \ \	1				/ / 0		0	
Abdominal pain	1-2	* //	0	*	<1	1.24	0		0	
Chills	0	*	0		0		0	1	0	01
Elevated ALT	≤2		1		9–11		1		<1	
Elevated AST	≤1	*			6–7		1		<1	
Hypophysitis	2–4	*	<1			*	1		<1	
Hypothyroidism	0	*	0	*	<1		0 ^c	с	<1 ^c	*C
Hyperthyroidism	0 ^b		0			*b	<1		0	01
Elevated lipase	≤4	*	5	*	10–11	**	(1994) (1994)		1.100	-
Elevated amylase	≤1		2	*	2–3	*	00 00			
Pneumonitis	<1		<1		1–2	*	3. 			
Creatinine increased	0		<1		≤1		0		0	6

Immune Checkpoint targeted therapy

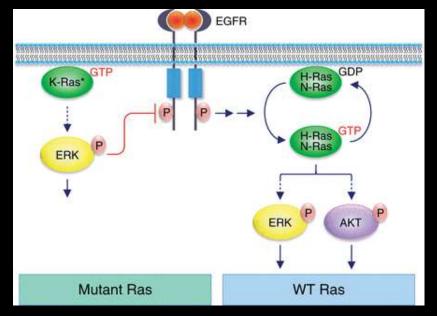
- CTLA-4 Blocking Ab
 - Ipilimumab
- PD-1 Blocking Ab
 - Nivolumab
 - Pembrolizumab
- Checkpoint targeted therapy summary:
 - FDA approved for advanced stage melanomas.
 - Trials show promising results improving survival.
 - PD-1 Blocking Ab > CTLA-4 Blocking Ab (survival and AE)

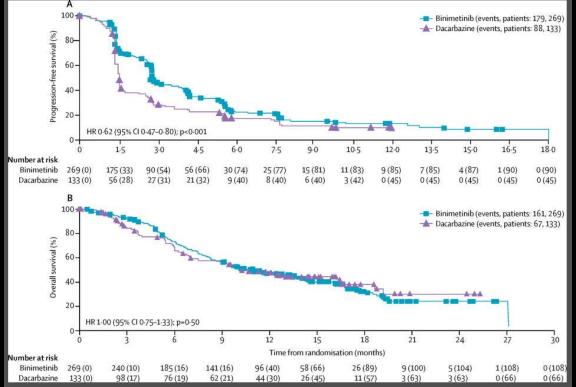


- Daud A et al. J Clin Oncol 2016:34:Abstr 9510
- Schreuer M et al. Lancet Oncol 2017:464-472
- Johnson DB et al. J Clin Oncol 2014:3697-3704
- Flaherty KT et al. NEJM 2012:1694-1703
- Chen G et al. JAMA Oncol 2016:1056-1064
- Long GV et al. Ann Oncol 2017:1631-1639
- Robert C et al. NEJM 2015:30-39
- Dreno B et al. Ann Oncol 2017:1137-1155
- Dummer et al. Lancet Oncol 2018:1315-1327

BRAF Inhibitors and MEK Inhibitors

- Dabrafenib
- Vemurafenib
- Encorafenib


- Trametinib
- Cobimetinib
- Binimetinib



 Dummer et. al. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomized, phase 3 trial Lancet Oncol 2017.

- Highest incidence of mutated RAS genes is found in tumors of exocrine pancreas, colon, and follicular and undifferentiated thyroid CA.
- About 15-20% of melanomas are believed to harbor a mutation in NRAS.
- NRAS mutation is low in acquired nevi but common in congenital nevi (~80%). This is in contrast to BRAF which are rare or absent in congenital nevi.
- NRAS mutations are reported in more commonly sunexposed areas.
- Occurrence of BRAF and NRAS mutations in melanoma appear to be mutually exclusive events.

- Member of the small GTPase family of proteins.
- RAS protein is active upon binding to GTP.
- Mutant RAS interfere with ability to switch to the GDP bound inactive conformation.

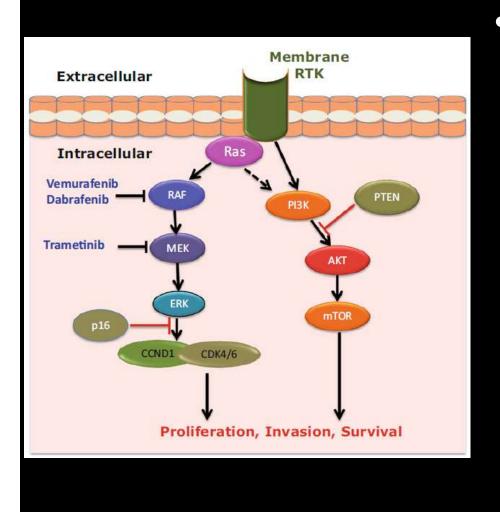
IMAGE

Binimetinib versus dacarbazine in patients with advanced *NRAS* -mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial


Lancet Oncology, The.

Dummer, Reinhard, Prof, Schadendorf, Dirk, Prof... Show all. Published March 31, 2017. Volume 18, Issue 4. Pages 435-445. @ 2017.

Figure 2


Kaplan-Meier estimates of progression-free survival (A) and overall survival (B) Stratified log-rank test and stratified Cox model using strata defined by American Joint Committee on Cancer stage, previous line immunotherapy, and Eastern Cooperative Oncology Group performance status, with one-sided p values. HR=hazard ratio.

- Davies et al. in 2002 (Nature 417:949-954) identified frequent BRAF mutations in human cancers including melanoma (66%).
- BRAF mutations frequently associated with melanomas from intermittently sun-exposed skin (trunk and extremities).
- Most common BRAF mutation is the V600E (substitution of Glu for Val). 75-90% of all BRAFmutant melanomas.
- BRAF is one of the three RAF kinase isoforms.
- Part of the MAPK signal transduction pathway.

- Activation of membrane bound receptor changes inactive GDP-bound RAS to active GTP-bound state.
- RAS activates RAF.
- RAF activates MEK and ERK
- This causes upregulated cell proliferation and growth

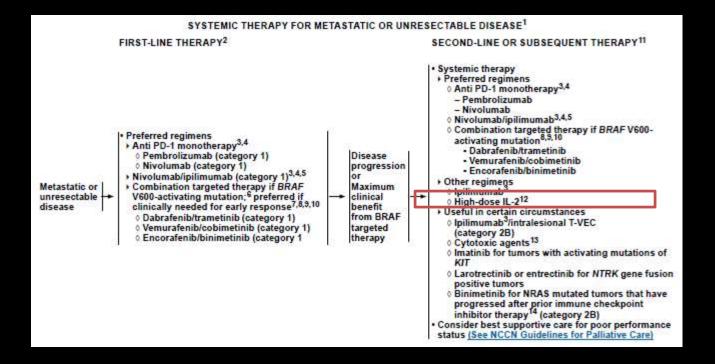
- Mutated BRAF causes constitutive activation of kinase activity.
- The V600E BRAF mutation has tenfold higher kinase activity than wild type.
- Inhibition of mutant BRAF in cell lines leads to decreased ERK activity, resulting in cell arrest, decreased transcription, and ultimately apoptosis. Logic for targeted therapy.
- Interestingly, BRAF mutations are also found in benign nevi.
- BRAF mutation only thought to be possible initial step in the development of malignancy. Thus additional genetic mutations are necessary for melanoma oncogenesis.

- BRAF targeted monotherapy has issues with resistance.
 - 1. MEK-dependent resistance, acquisition of new mutations.
 - 2. MEK-independent resistance, upregulation of membrane receptor tyrosine kinase and bypass through mTOR pathway.

- BRAF monotherapy relapse within 6 months.
- Based on BRAF-inhibitor resistance, combined approach with MEK inhibitor suggests superior to BRAF inhibitory monotherapy.

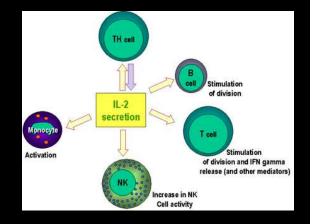
Table 19. BRAF/M	EK Inhibito	r Combinat	ion in A	dvance	d Mela	anoma ^a : Key Trials	84 -			
	Trial		P	atients				Efficacy Result	S ^b	
Name and References	Phase Design	Median follow-up (months)	Prior BRAFi	Tx Naive	Brain Mets	Treatment Arms	Response Rate	Median PFS (months)	Median OS (months)	AEs Grade 3–4°
BRIM-7 ⁶⁰⁷⁻⁶⁰⁹ NCT01271803	lb OL, dose escalation	26 8	0 ^d 100% ^d	Some ^d	NR ^e	Vem + cobi (n = 63) Vem + cobi (n = 66)	87% 15%	13.8 2.8	31.2 8.5	78% 47%
NCT02296996611	II OL	6.8	100% ^f	0	68%	Dab + tram (n = 25)	32%	4.9	NR	8%
NCT01072175527	I/II OL	35.3 27.4	100% ⁹ 100% ⁹	0	23% 9%	Dab + tram (n = 26) Dab + tram (n = 45) _	15% 13%	3.6 3.6	10.0 11.8	61% 44%
NCT01072175 Part C ^{596,612}	II R	66.5	0 0 0	Some ^h		Dab (150 mg BID) + tram (2 mg QD) (n = 54) Dab (150 BID) + tram (1 mg QD) (n = 54) Dab (150 mg BID)	76% <i>P</i> = .03 50% <i>P</i> = .77 54%	 9.4 <i>P</i> < .001 9.2 <i>P</i> = .006 5.8 	25.0 22.5 20.2	67% 54% 47%
NCT01619774610	II	5.9	100% ^g	0	e	Dab + tram (n = 23)	10%	3.0	10.2	71%
COMBI-d ^{411,603} NCT01584648	III RDB	20 16	0 0	100%	e	Dab + tram (n = 211) Dab + pbo (n = 212)	^{69%} 53% <i>P</i> = .0014	11.0 8.8 P = .0004	25.1 18.7 P = .0107	48% ⁱ 50% ⁱ
COMBI-v ⁴¹² NCT01597908	III R, OL	11 10	0	100%	e	Dab + tram (n = 352) Vem (n = 352)	64% 51% P < .001	11.4 7.3 P < .001	NR 17.2 P = .005	52% 63%
Co-BRIM ^{413,597,604} NCT01689519	III RDB	14.2; 18.5 ^j	0	100%		Vem + cobi (n = 247) Vem + pbo (n = 248)	70% 50% P < .0001	12.3 7.2 P < .0001	22.3 17.4 P = .005	75% 61%
COLUMBUS ^{605,606} NCT01909453	lii R, OL	32.1 (PFS) 36.8 (OS)	0 0 0	70% ^k 70% ^k 70% ^k	5% ^e ^e 2% ^e	Encor + bini (n = 192) Encor (n = 194) Vem (n = 191)	64% 52% 41%	14.9 <i>P</i> < .0001 ¹ 9.6 <i>P</i> = .0038 ¹ 7.3		64% 67% 66%

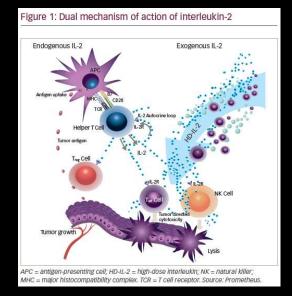
• Dabrafenib/Trametinib


 \bigvee

- Vemurafenib/Cobimetinib
- Encorafenib/Binimetinib

Table 21. BRAF and MEK Inhi																		
Studies	: C	OMBI-	-d ^{b,524,6}	03		COME	3I-v ⁴¹²			Co-Bl	RIM ⁵⁹⁷			C	COLUN	IBUS ⁶	06	
Agent	: D	ab	Dab/	Tram	Ve	m	Dab/	Tram	Ve	em	Vem	Cobi	Ve	m	En	cor	Enco	r/Bini
Grade	: 3–5	Any	3-5	Any	3–5	Any	3–5	Any	3-5	Any	3-5	Any	3-4°	Any	3-4°	Any	3-4°	Any
All types	50	97	48	97	59	99	49	98	61	98	75	99	66		67		64	
General, symptomatic:																		
Pyrexia	2	***	7	*****	1	**	4	*****	0	**	1	***	0	***	1	*	4	**
Chills	1	**	1	***	0	*	1	***	0	*	0	*	5 0.0 0				8	
Headache	1	***	1	***	1	**	1	***	2	**	<1	**	1	**	3	***	2	***
Fatigue	1	****	1 4	****	2	***	1	***	3	***	5	****	2	***	1	***	2	***
Asthenia	1 ^b	*b	<1 ^b		1	**	1	**	1	**	2	**	4	**	3	**	2	**
Decreased appetite	1 ^b	*b	<1 ^b	*b	0	**	1	*	<1	**	0	**	1	**	1	**	0	*
Peripheral edema	1	*	1	**	<1		<1	*	<1		0	*	1	*	0	*	2	*
Cough	0	**	0	**	0	*	0	**	0		0	*	1	*	1	*	1	*
General, lab results:						8	8	1	3				0		3			21
Hypertension	6	**	6	**	10	**	14	***	3	*	6	**	3	*	3	*	6	*
ALT increased	1	*	2	*	4	**	3	*		**	11	***	2	*	1	*	5	*
AST increased	1	11	3	* U	3	*	01	*(5	2	*	9	**	2	*	1		2	*
GGT increased		+							10	**	15	**	3	*	5	*	9	**
Blood CPK increased									<1		12	****	0		0		7	***
Blood ALP increased		\ \		14					2	*	5	**	1	*	0		1	*
Lipase increased		\ `	\	- L		U)	04	- 6	1	5	3	/ /	1		1		2	
Anaemia		\	\		-	1	- C		3	*	2	**	3	*	3	*	5	**
Musculoskeletal/Pain:			1															
Arthralgia		***		***		****	1	**	5	****	2	****	6	****	9	****	1	***
Myalgia	0 ^b	*b	<1 ^b	*b	1		0		2		<1	**	1	**	10	***	0	**
Pain in extremity				-	<1	*	1	*	2	**	1	*	1	*	1	**	1	*
Pain				\					<1		0		0		4	*	1	
Musculoskeletal pain									<1	*	1		1	*	3	**	0	*


Table 21 (Continued)									
Studies:	COMBI-	d ^{b,524,603}	COME	BI-v ⁴¹²	Co-B	RIM ⁵⁹⁷		COLUMBUS	506
Agent:	Dab	Dab/Tram	Vem	Dab/Tram	Vem	Vem/Cobi	Vem	Encor	Encor/Bini
Grade:	3–5 Any	3–5 Any	3–5 Any	3–5 Any	3–5 Any	3–5 Any	3–4° Any	3–4° Any	3–4° Any
Gastrointestinal:									
Diarrhea	1 **	1 ***	<1 ****	1 ***	1 ***	7 *****	2 ***	2 *	3 ****
Nausea	1 ***	1 ****	1 ****	<1 ***	1 ***	1 ****	2 ***	4 ****	2 ****
Vomiting	1 *	1 ***	1 **	1 ***	1	2 ***	1 **	5 ***	2 ***
Constipation	0 ^b * ^b	<1 ^b *b	<1 *	0 *	0 *	0 *	1 *	0 **	0 **
Cutaneous:			s 23 si			11	8		
Rash	1 **	0 ***	9 ****	1 **	6 ****	5 ****	3 ***	2 **	2 *
Pruritis	0 ^b *b	0 ^b *b	1 **	0 *	<1 **	1 **	0 *	1 **	1 *
Rash maculo-papular	/)	i	CO		5 **	7 **	4 *	1*	0
Rash generalized	/ /		36			<1	4 *	1 *	0
Alopecia	0 ***	1 *	<1 ****	0 *	<1 ***	<1 **	0 ****	0 *****	0 *
Dry skin	0 ^b *b	0 ^b * ^b	<1 **	0 *	0 **	1 **	0 **	0 ***	0 **
Hyperkeratosis	1 ****	0 *		0	2 ***	<1 *	0 ***	4 ****	1 **
Keratosis pilaris			0 *	OLE	0 *	0	0 **	0 **	0
Palmoplantar					<1	0 *	1 *	14 *****	0 *
erythrodysesthesia syndrome		12.7.20	<1 ^d **d	0 ^d d	121.1			10 A	1.00
Palmoplantar keratoderma	1 **	1 *	NO.		0 *	0	1 **	2 ***	0 *
Skin papilloma	0 **	0				0 *	0 **	0 *	0 *
Photosensitivity reaction	0	0	<1 **		0	3 ***	1 **	0	1
Keratoacanthoma	1 *	2			9 *	1	3 *	0 *	1
cSCC		11	<1	0	13 *	4	4 *	0	0
Basal cell carcinoma	1 *	3			2	6 *	1	1	0

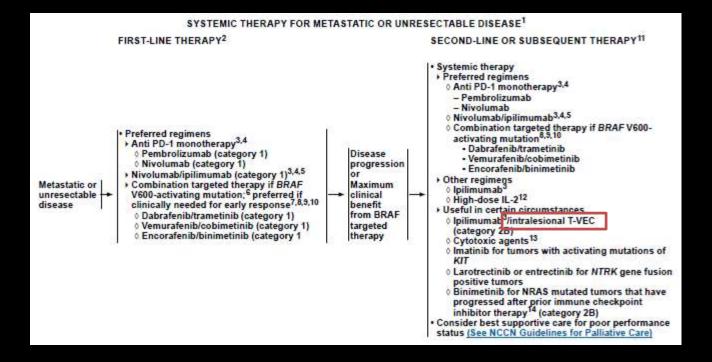

- BRAF monotherapy and MEK monotherapy is not beneficial.
- BRAF inhibitor and MEK inhibitor combined therapy is showing promising results for targeted therapy of advanced melanoma.
- There is great interest in investigating combined BRAF inhibitors with inhibitors of the mTOR pathway.

- Boyd KU et al. J Surg Oncol 2011:711-717
- Weide B et al. Cancer Immuno Immunother 2011:487-493

- Antitumor activity of IL-2 is believed to be immune based; however, exact mechanism is unclear.
 - Binding of IL-2 receptor expressed on immune cells, IL-2 induces a cytokine cascade:
 - interferons
 - Interleukins
 - Tumor necrosis factors
 - These cytokines further stimulate proliferation and differentiation of B and T cells, monocytes/macrophages, and NK cells.
- Through stimulation of the immune system, IL-2 induces antitumor cytotoxicity (nonspecific and ?specific).

- High dose IL2 has been used to treat metastatic melanoma.
- Overall response rare (ORR) are modest at <20%.
- But those with complete response (<10%) tend to have high rates of long term survival.
- Median OS is usually 11-12 mo with 10% achieving long term survival >5years.

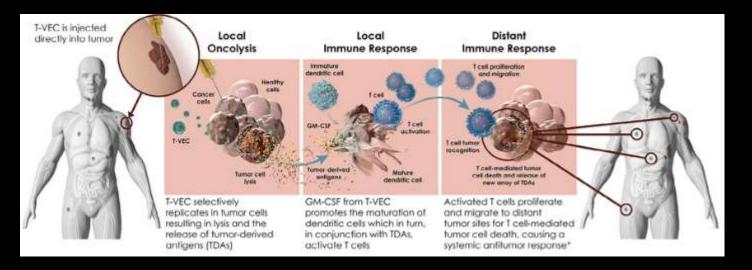
- IL-2 however is associated with significant toxicities.
- Therefore, due to low response rate and high toxicity, IL-2 is less preferred compared to checkpoint inhibitors and BRAF-targeted options.
- However, Intralesional IL-2 injection is far less toxic and has high complete response rate for cutaneous lesions.


KAISER PERMANENTE

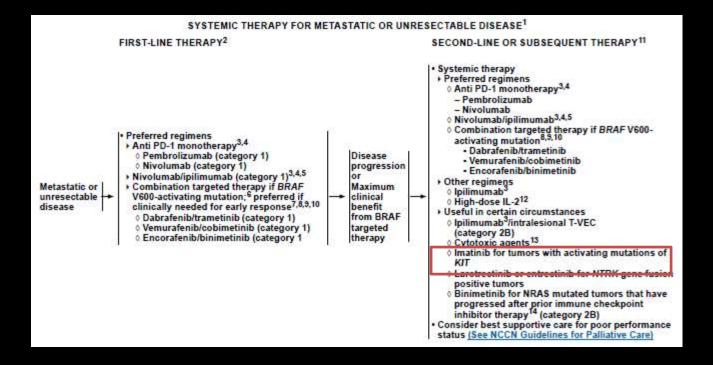
Interleukin-2

Table 8. Intralesional Injection

Injustion Agent	Kay Published Clinical Studies	Response	e Rates
Injection Agent	Key Published Clinical Studies	Injected Lesions	Uninjected Lesions
Talimogene laherparepvec (T-VEC)	• Phase III trial ^{450,451}	<u>≥50% decrease in size</u> : 64%	 ≥50% decrease in size: 32% of non-visceral 15% of visceral
Interleukin-2	 >5 non-comparative studies, including several phase II trials^{452,453} and retrospective/observational analyses⁴⁶³⁻⁴⁶⁶ 2014 systematic reviews and meta-analysis⁴⁵⁴ 	<u>CR</u> : 67%–96% •80% for dermal •73% for subcutaneous	No responses seen in two phase 2 trials
Bacillus Calmette-Guérin (BCG)	 >10 prospective pilot/retrospective studies^a 1 prospective randomized study⁴⁵⁹ 	<u>CR</u> . •90% for dermal •45% for subcutaneous	Occasional responses observed
Rose Bengal	Phase I trial ⁴⁶¹ Phase II trial ⁴⁶²	<u>OR</u> : 46%–58%	<u>OR</u> : 27%

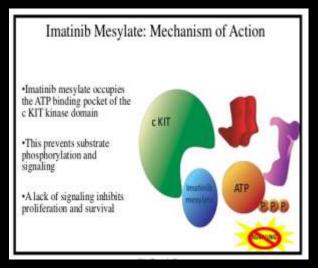

Intralesional T-VEC

- Andtbacka RH et al. J clin Oncol 2015:2780-2788
- Andtbacka RHI et al. ASCO meeting Aabstracts 2015;33:TPS9094

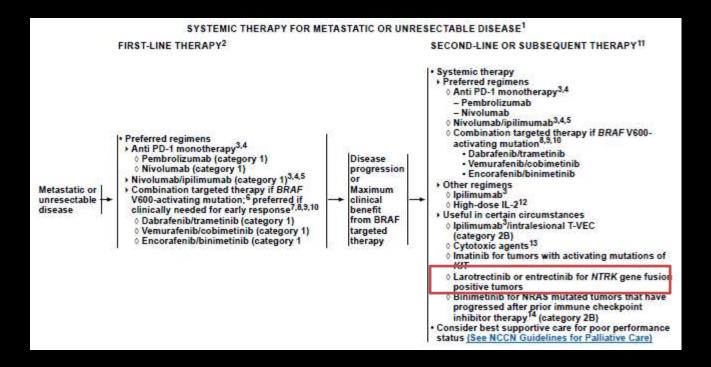

Intralesional T-VEC

 Talimogene laherparepvec (T-VEC), is an agent that uses modified herpes simplex virus to induce tumor cell lysis and to deliver localized expression of GM-CSF to injected lesions.

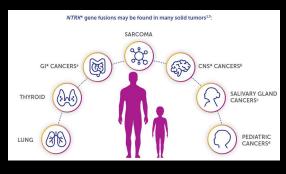
Intralesional T-VEC

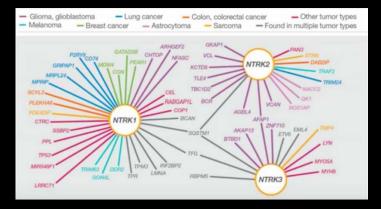

Iaherparepvec (T-VEC) • Phase III trial 55, 51 Interleukin-2 • >5 non-comparative studies, including several phase II trials 452,453 and retrospective/observational analyses 463-466 • 2014 systematic reviews and meta-analysis 454 CR: 67%-96% • 80% for dermal • 73% for subcutaneous No responses seen in phase 2 trials Bacillus Calmette-Guérin (BCG) • >10 prospective pilot/retrospective studies ^a 1 prospective randomized study ⁴⁵⁹ <u>CR</u> : • 90% for dermal • 90% for dermal • 45% for subcutaneous Occasional response observed	Talimogene laherparepvec (T-VEC) Phase III trial ^{450,451} ≥50% decrease in size: 64% ≥50% decrease in 32% of non-visce • 15% of visceral Interleukin-2 • >5 non-comparative studies, including several phase II trials ^{452,453} and retrospective/observational analyses ^{463,466} CR. 67%–96% No responses see phase 2 trials Bacillus Calmette-Guérin (BCG) • >10 prospective pilot/retrospective studies ^a CR: 90% for dermal • 1 prospective randomized study ⁴⁵⁹ Occasional respon observed Base Bengal • Phase I trial ⁴⁶¹ OR: 46%–58% OR: 46%–58% OR: 27%
Talimogene laherparepvec (T-VEC) • Phase III trial ^{450,451} ≥50% decrease in size: 64% • 32% of non-visceral • 15% of visceral Interleukin-2 • >5 non-comparative studies, including several phase II trials ^{452,453} and retrospective/observational analyses ^{463,466} CR. 67%–96% No responses seen in phase 2 trials Bacillus Calmette-Guérin (BCG) • >10 prospective pilot/retrospective studies ^a CR: • 90% for dermal • 1 prospective randomized study ⁴⁵⁹ Occasional response observed	Talimogene laherparepvec (T-VEC) • Phase III trial ^{450,451} ≥50% decrease in size: 64% • 32% of non-visce • 15% of visceral Interleukin-2 • >5 non-comparative studies, including several phase II trials ^{452,453} and retrospective/observational analyses ^{463,466} CR: 67% -96% No responses see phase 2 trials Bacillus Calmette-Guérin (BCG) • >10 prospective pilot/retrospective studies ^a CR: • 90% for dermal • 1 prospective randomized study ⁴⁵⁹ Occasional respon observed Bose Bengal • Phase I trial ⁴⁶¹ OR: 46% -58% OR: 27%
Interleukin-2 trials ^{452,453} and retrospective/observational analyses ⁴⁶³⁻⁴⁶⁶ •80% for dermal No responses seen in phase 2 trials Bacillus Calmette-Guérin (BCG) •>10 prospective pilot/retrospective studies ^a •R: •90% for dermal Occasional response • Phase I trial ⁴⁶¹	Interleukin-2 trials ^{452,453} and retrospective/observational analyses ^{463,466} •80% for dermal No responses see phase 2 trials •2014 systematic reviews and meta-analysis ⁴⁵⁴ •73% for subcutaneous •Responses see phase 2 trials Bacillus Calmette-Guérin (BCG) •>10 prospective pilot/retrospective studies ^a •Responses to the phase 1 trials •Responses to the phase 1 trials Bose Bengal •Phase I trials ⁴⁶¹ •Phase I trials ⁴⁶¹ •OR: 46%–58% •OR: 27%
(BCG) • Phase I trial ⁴⁶¹ • Phase I trial ⁴⁶¹	Bacilius Calmette-Guerin (BCG) • 1 prospective randomized study ⁴⁵⁹ • 90% for dermal • 45% for subcutaneous • Phase I trial ⁴⁶¹ • Phase I trial ⁴⁶¹ • Phase I trial ⁴⁶¹
• Phase I trial ⁴⁶¹	
Rose BengalOR: 46%-58%OR: 27%• Phase II trial462• OR: 27%	Phase II trial ⁴⁶² On. 40%-50% On. 27%

- Lee et al. Multicenter Trial of Korean Cancer Study Group (UN10-06) Oncologist 2015.
- Guo et al. Phase II TEAM Trial. Ann Oncol 2017
- MORE REFERENCES NEEDED


- KIT mutations are rarely seen in melanoma and mostly associated with mucosal and acral subtypes.
- KIT is a transmembrane receptor tyrosine kinase activating MAPK, PI3K, phospholipase C-gamma, and JAK/STAT pathways.
- Two most common KIT mutations are L576P(34%) and K642E(15%) in exon 11 and 13, respectively.
- Most KIT mutations occur in exon 11 (70%) which encodes a domain that inhibits the receptor.

- This results in constitutive activation of the associated signaling pathway.
- Imatinib designed to inhibit kinase activity


 KIT mutations or increased copy number of KIT is seen in 39% mucosal melanoma, 36% acral melanomas, and 28% of melanomas on high cumulative sun-damaged skin, unlike BRAF and NRAS mutation associated melanomas.

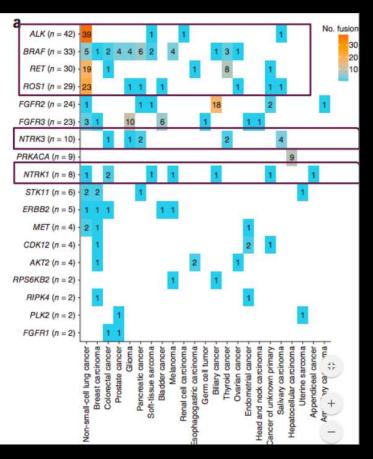

- In metastatic melanomas Phase II studies with imatinib or nilotinib inhibitors of KIT demonstrated 17%-30% ORR and 35%-57% Disease control rate.
- In phase II study in 43 Asian patients with metastatic melanoma with KIT mutation or amplification were treated with imatinib:
 - 23% partial response.
- In phase II study in 9 Asian patients with metastatic melanoma with KIT aberration were treated with nilotinib:
 - 2 patients had partial response.

- Drilon A et. al. Efficacy of Larotrectinib in TRK fusion-positive cancers in adults and Children. N Engl J Med 2018.
- Drilon A. et al. Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib. Combined results from two phase 1 trials (ALKA-3720991 and STARTRK-1) Cancer Discov 2017.

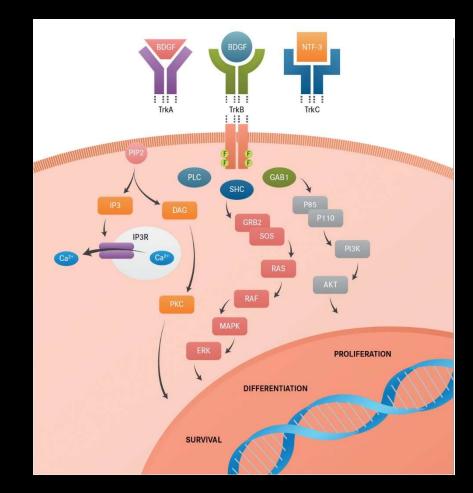
- Neurotrophic Receptor Tyrosine Kinase Genes: – NTRK1, NTRK2, NTRK3.
- Melanoma and other diverse cancers have shown recurrent chromosomal fusion events involving the carboxy-terminal kinase domain of TRK and various upstream amino-terminal partners.

Article | Published: 08 May 2017

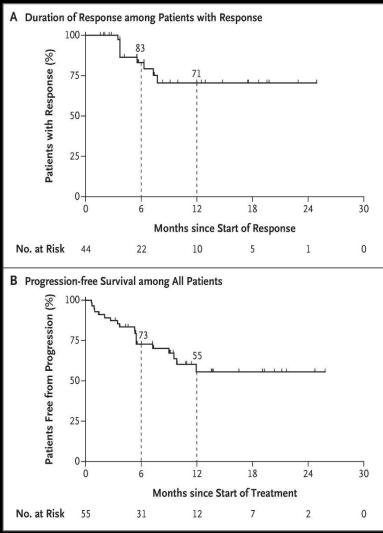
Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients


Ahmet Zehir, Ryma Benayed [...] Michael F Berger 🐱

Nature Medicine 23, 703–713 (2017) 🕴 Download Citation 🛓


Among metastatic cancers, gene fusions were reported in 1,597 individuals (15%)

The most famous gene fusions: ALK, RET, ROS


Behind them : NTRK3 and NTRK1

 Fusion leads to overexpression of the chimeric protein and constitutive ligandindependent activation.

Larotrectinib igodolKaplan-Meier **Plots of Duration** of Response among 44 patients with a **Response and Progression-free** Survival among all 55 patients.

• Entrectrinib notably also used for NSCLC with ROS1 rearrangement .

KAISER PERMANENTE

		Low UV radiation	exposure/CSD		High UV radiation exposure/CS		
Pathway		1			Ш	ш	
Endpoint of pathway		Low-CSD mel	anoma/SSM		High-CSD melanoma/LMM	Desmoplastic melanoma	
Benign neoplasms (naevi)		Nae	vus		? IMP	? IMP	
Intermediate/low-grade dysplasias and melanocytomas	Low-grade dysplasia	BIN	DPN		? IAMP/dysplasia	? IAMP/dysplasia	
Intermediate/high-grade dysplasias and melanocytomas	High-grade dysplasia/MIS	BAP1-inactivated melanocytoma/ MELTUMP	Deep penetrating melanocytoma / MELTUMP	PEM/MELTUMP	Lentigo maligna (MIS)	MIS	
Malignant neoplasms	Low-CSD melanoma/SSM (VGP)	Melanoma in BIN (rare)	Melanoma in DPN (rare)	Melanoma in PEM (rare)	LMM (VGP)	Desmoplastic melanoma	
Common mutations ^{a,b}	BRAF p.V600E; NRAS TERT; CDKN2A; TP53; PTEN	BRAF or NRAS + BAP1	BRAF, MAP2K1, or NRAS + CTNNB1 or APC	BRAF + PRKAR1A or PRKCA	NRAS; BRAF (non-p.V600E); KIT; NF1 TERT; CDKN2A; TP53; PTEN; RAC1	NF1; ERBB2; MAP2K1; MAP3K1; BRAF; EGFR; MET TERT; NFKBIE; NRAS; PIK3CA; PTPN11	

	Low	to no (or variable/incidental)) UV radiation exposure / C	SD	
IV	v	VI	VII	VIII	IX
Malignant Spitz tumour/ Spitz melanoma	Acral melanoma	Mucosal melanoma	Melanoma in CN	Melanoma in BN	Uveal melanoma
Spitz naevus	? Acral naevus	? Melanosis	CN	Blue naevus	? Naevus?
Atypical Spitz tumour (melanocytoma)	IAMP/dysplasia	Atypical melanosis/ dysplasia/IAMPUS	Nodule in CN (melanocytoma)	(Atypical) CBN (melanocytoma)	?
STUMP/MELTUMP	Acral MIS	Mucosal MIS	MIS in CN	Atypical CBN	?
Malignant Spitz tumour/ Spitz melanoma (tumorigenic)	Acral melanoma (VGP)	Mucosal lentiginous melanoma (VGP)	Melanoma in CN (tumorigenic)	Melanoma in blue naevus (tumorigenic)	Uveal melanoma
HRAS; ALK; ROS1; RET; NTRK1; NTRK3; BRAF; MET	KIT; NRAS; BRAF; HRAS; KRAS; NTRK3; ALK; NF1	KIT, NRAS, KRAS or BRAF	NRAS; BRAF p.V600E (small lesions); BRAF	GNAQ; GNA11; CYSLTR2	GNAQ, GNA11, CYSLTR2, or PLCB4
CDKN2A	CDKN2A; TERT; CCND1; GAB2	NF1; CDKN2A; SF3B1; CCND1; CDK4; MDM2		BAP1; EIF1AX; SF3B1	SF3B1; EIF1AX; BAP1

• WHO Classification of Skin Tumors 4th.