2019 KOPANA 18th Spring Seminar March 15-16, 2019, National Harbor, Maryland

Digital pathology and pathology informatics

Kyoungbun Lee, MD Department of Pathology, Seoul National University Hospital

• I have no conflict of interest

Introduction of digital pathology

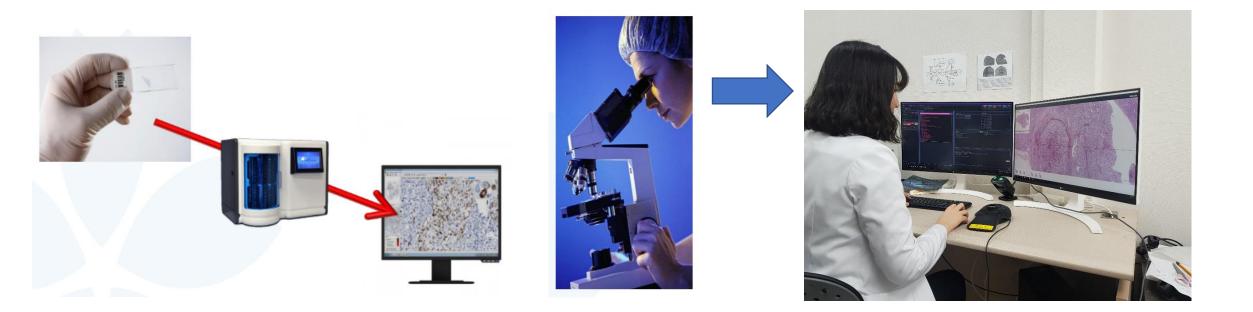
• Digital pathology for primary diagnosis

Component of digital pathology system for primary diagnosis Digital pathology workflow, SNUH Issues in implementation of digital pathology system

Digital pathology for research

Computational pathology : quantification, discrimination, prediction Reconstruction

New technique for digital pathology


Slide-free non-destructive pathology

What is digital pathology?

> Wikipedia [https://en.wikipedia.org/wiki/Digital_pathology]

image-based information environment which is enabled by **computer technology** that allows for the management of information generated from a **digital slide**. Digital pathology is enabled in part by **virtual microscopy**, which is the practice of **converting glass slides into digital slides** that can be viewed, managed, shared and analyzed **on a computer monitor**. With the advent of Whole-Slide Imaging, the field of digital pathology has exploded and is currently regarded as one of the most promising avenues of diagnostic medicine in order to achieve even better, faster and cheaper diagnosis, prognosis and prediction of cancer and other important disease

JS Song, Korean medical education 2006. Pantanowitz L. Journal of pathology informatics 2010 J Oral Maxillofac Pathol 2016;20: 284-288

What can we do with digital pathology?

> What can we do with glass slide?

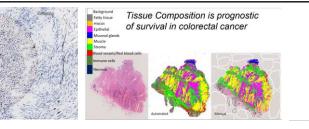
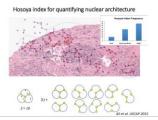


Figure 3: Whole slide images help create a "virtual multiheaded microscope" that supports interactive education (Image courtesy of BioImagene)


Research & bioindustry

Prognosis factor
Classification
Biomarker development
Toxicology
Drug development
: semi-quantitative grading
consensus meeting

Segmentation, quantification, computation, prediction

hot of the virtual microscope. The ImageScope viewer shows a histopathologic thumbnail at the right upper corner and the magnifier at the center.

Primary diagnosis

Teleconference & -consult

Introduction of digital pathology

Digital pathology for primary diagnosis

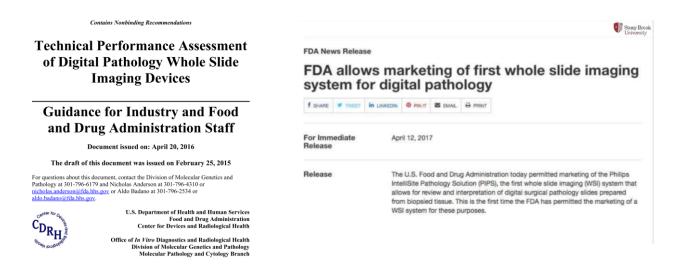
Component of digital pathology system for primary diagnosis Digital pathology workflow, SNUH Issues in implementation of digital pathology system

Digital pathology for research

Computational pathology : quantification, discrimination, prediction Reconstruction

New technique for digital pathology

Slide-free non-destructive pathology



Regulation of whole slide image for primary diagnosis

• US

Philips IntelliSite Pathology Solutions for primary pathology diagnosis

: 2000 surgical pathology cases (15,925 readings) : optical interpretation rate difference of 0.4% with a 95% confidence interval (-0.3–1.0) indicating noninferiority for digital versus optical reads

Korea's Drug Ministry approves Philips digital pathology solution

By Sohn Ji-young

Published : Jul 10, 2018 - 16:08 Updated : Jul 10, 2018 - 16:08

A 🗛 🥈 🗾 🖾 🖶

Philips Korea announced Tuesday that South Korea's Ministry of Food and Drug Safety has approved its digital pathology solution, the Philips IntelliSite Pathology Solution, for diagnostic use in the country.

Pathologists in Korea can now use the digital pathology technology from Philips to assess and diagnose clinical histology cases digitally, instead of with a microscope, with the aim to enhance laboratory efficiency and quality, the firm said.

Fully digitalized pathology lab.

2018, 8.17, University Medical Center Utrecht, Netherland, Amsterdam

- > 1,000 beds, > 10,000 employes
 20,000 /yr histopathology requests
 156,000 slides/yr
 15 pathologists , 10 residents
- ➔ 6 scanner running

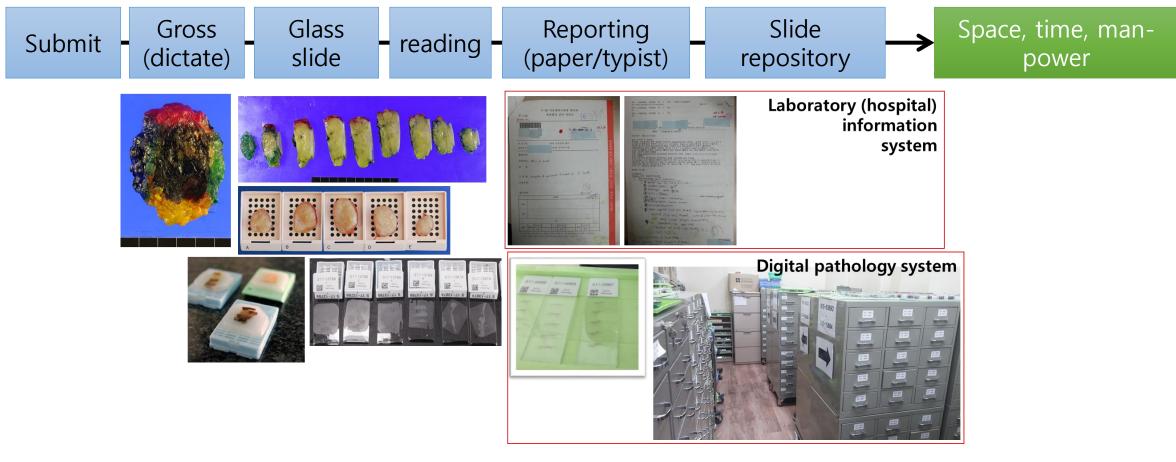
2018.8.16, Linkoping University Hospital, Linkoping, Sweden

30,000/yr histopathology requests 180,000 slides/yr

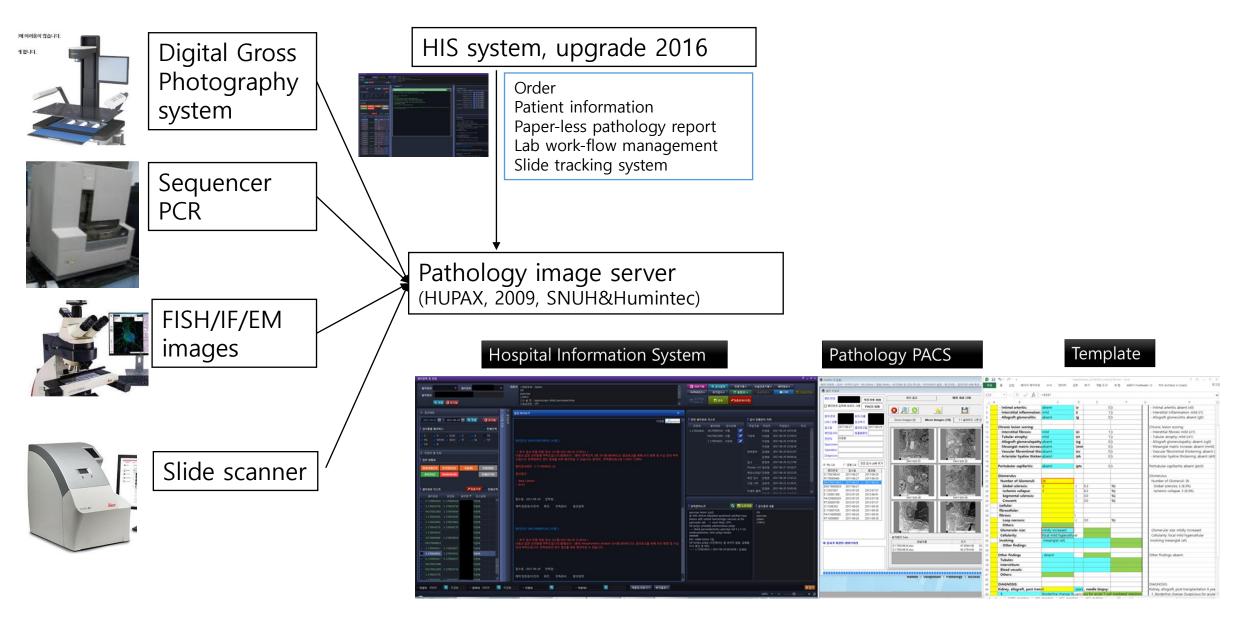
20 pathologists

→ 27 digital work stations
 > 1,000,000 slides 440TB
 Start in 2010, full digital in 2017

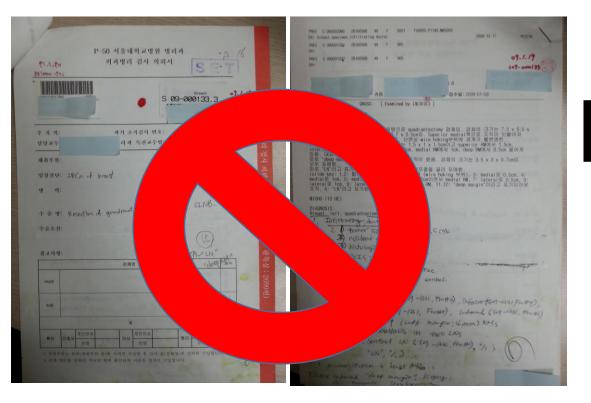
Components of digital pathology

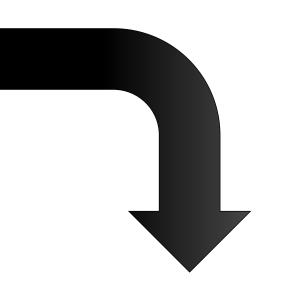

- Slide scanner : image acquisition
- Image management : data, messages, integration in LIS
- Viewer software and image storage system
- Image evaluation and analysis system
- Hardware of users : user workstation and viewing monitor

Implementation of digital pathology & workflow, SNUH

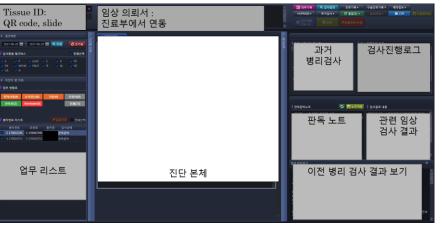


Change of pathology workflow

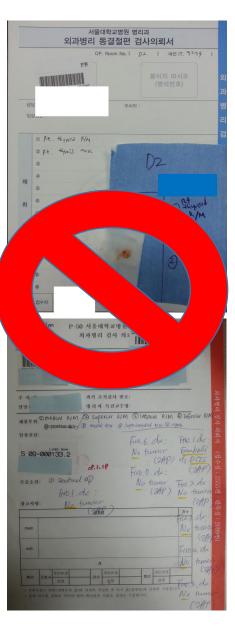



1st step : Traditional paper-based work-flow → paper-less workflow

Pathology PACS and HIS system: SNUH



HIS: main report



- 1. Order ancillary test
- 2. QA & QC
- 3. Statistics

HIS: Frozen report

수술일	자				
수술명		Salpingo-oophorectomy (left ,	/ laparotomy)		
임상진	단 (Ovarian cyst			
입력	된 채취부위	위 리스트	🗑 라벨 재출력	💾 수정내용저장	前 선택식
	순번	채취부위	상태	인계자	비고
	1	LSO (Lt salpinx ovary)	판독완료	박희	
	1	LSO (Lt salpinx ovary)	판독완료	박희	

* 블럭생	성일자 2017-0	6-26 🗎	~ 2017-06-26 🛅 🖸	\ 조회		• 병리번호										
수술방 의		블럭	채취부위		성태	불력 리스트										
D1			Lt. Non-sentinel #1		÷.	동결번호	채취순번	블럭번호	채취부위	블럭상태	크기1	크기2	크기3		진단	변혼
D1			Sentinel node2 (Lt)			FR170003313			entinel node1 (Lt)	판독완료	1.5	1.2		No tumor		/ 변
D1	S 170034559	Fro 1	Sentinel node1 (Lt)			FR170003313		Fro 2 S	entinel node2 (Lt)	판독완료	1.5	1.2		No tumor	5	 ✓ 변
E2	S 170034558	Fro 2	Rt.thyroid mass			FR170003313	3	Fro 3 L	Non-sentinel #1	판독완료	1.2	1.0		No tumor		/ 변
E2	S 170034558	Fro 1	Rt.central node													
5	S 170034557	Fro 1	Liver													
E5	S 170034470	Fro 5	R/O Rt.lower parathyro													
E3	S 170034490	Fro 6	Lt. base margin													
E3	S 170034490	Fro 5	Inferior margin (Lt)													
E3	S 170034490	Fro 4	Lateral margin (Lt)													
	S 170034490	Fro 3	Medial margin (Lt)			동결절편 결과	입력									
	S 170034490	Fro 2	Superior margin (Lt)				_	_								
D3	S 170034494	Fro 3	proximal R/M			● 구분 : Mair	ו (1) 가판	ŧ.								
D3	S 170034494	Fro 2	left R/M						5 x 1.2 cm sized soft t tumor (이경분)	issue.						
D3	S 170034494	Fro 1	distal R/M						tumor (이경문) 5 x 1.2 cm sized soft ti	issue.						
A2	S 170034493	Fro 1	Lttube			Diagnosis: Se	entinel nod	e2 (Lt) : No	tumor (이경분)							
E3	S 170034490	Fro 1	Lt. inguinal L/N						2 x 1.0 cm sized soft t tumor (이경분)	issue.						
F3	S 170034486	Fro 2	Bronchial R/M			biogriosis, et										
	S 170034486	Fro 1	RLL mass													
F1	\$ 170034472	Fro 6	Sentinel node6 (Lt)													

HIS: Automatic text loading

1. Cytology > Heading, screening result

MICRO (PAP(1),) DIAGNOSIS: Cervicovaginal, cytology: (liquid based cytology) Satisfactory for evaluation Negative for Intraepithelial Lesion or Malignancy Shift in flora suggestive of bacterial vaginosis

2. Immunohistochemistry / special study> antibody item

병리검사번호 : S 17-0033968 (16)						
검사결과:						
- Cytokeratin (Pan CK) : - Vimentin :						
- ERG :						
- CD31:						
- CD34 :						

3. Gross examination, small tissue > gross text & heading

K32B 74 211 212 213 म्प 104% 2010 1 E V 1 E V 1 E V 1 E V 1 E V E E V E E V E E V E E V E E V E V E V E E V E E V E E V E E V E E V E E V E E V E E V E E V E E V E E V E E V E E V E	1.채취부위 : #1 AV 40cm #2 AV 35cm #3 AV 30cm #4 AV 20cm 2수 술 명 : Bx 3.임상진단 : #1 granular mucosal change #2-4 erosion & ulcer 4.수술소견 및 기타 : 5.오더비고 :
	<mark>관련 검사결과</mark> 2017-06-27 : Sigmoidoscopy(병동)(소독) AV 40cm 까지 관찰함. AV 40cm 상방에 easy touch bleeding을 동반하는 granular mucosal change가 관찰되어 Bx(#1) 시행함. AV 35cm, 30cm 상방에 luminal narrowing과 easy touch bleeding을 동반하는 diffuse mucosal erosion이 관찰되어 Bx(#2, #3) 시행함.
과문 변환 내용 / 결과문 미	A)/ 20cm AHBAU musescal adams III several small ulcoration 01 河井口(01 Dv(#4) しからい
상진한 : 은 조직은 총 4 부분임: 포트말린에 고정된 매우 작은 생검조직임. 개수 : 1개 전부포매함. 포트말린에 고정된 매우 작은 생검조직임. 개수 : 1개 전부포매함. 포트말린에 고정된 매우 작은 생검조직임. 개수 : 1개 전부포매함. SRO (2 HE) GNOSIS :	지 등 확인하였음. 제p) R/O ischemic colitis R/O CMV colitis

월수왕부 🕒 월유범자 : 10] [[5 비교 병원번호 위고

S 17-000104

I TRANSPORTATION OF

S 17-0001042

I HAIWFARDERING

\$ 17-0001043

S 17-0001044

s 17-0001045

LUNNINGHUNALU

S 17-0001046

S 17-0001047

S 17-0001048

S 17-0001049

2

3

5 17-0001034

S 17-000103

\$ 17-0001033

\$ 17-0001034

I BANNET DE MANTE IN

\$ 17-0001035

CUMMENTALIS

\$ 17-0001036

S 17-0001037

I A DE IMARA DA MANA DA

S 17-0001038

TRIMAL ANALYSIS

Reporting template, SNUH

Check-list electronic file > Excel-based

	A	В	С	D	E	F	G	[
2		Kidney biopsy						Descripti
3		Microscopic findings						Microsco
4								
5		Acute lesion scoring:						Acute les
6		- Tubulitis:	absent 🕁	(t	0)		- Tubuli
7		- Intimal arteritis:	absent	(v	0)		- Intima
8		- Interstitial inflammation:	absent	(i	0)		- Interst
9		- Allograft glomerulitis:	absent	(g	0)		- Allogr
10								
11		Chronic lesion scoring:						Chronic I
12		- Interstitial fibrosis:	absent	(ci	0)		- Interst
13		- Tubular atrophy:	absent	(ct	0)		- Tubula
14		- Allograft glomerulopathy:		(cg	0)		- Allogr
15		- Mesangial matrix increase		(mm	0)		- Mesan
16		- Vascular fibrointimal thicl	absent	(cv	0)		- Vascul
17		- Arteriolar hyaline thickeni	absent	(ah	0)		- Arteric
18								
19		Peritubular capillaritis:	absent	(ptc	0)		Peritubul
20								
21		Glomerulus						Glomeru
22		Number of Glomeruli:						
23		Global sclerosis:		(%)		
24		Ischemic collapse:		(%)		
25		Segmental sclerosis:		(%)		
26		Crescent:		(%)		
27		(cellular:		,				
28		fibrocellular:		,				
29		fibrous:)				
30		Loop necrosis:		(%)		

Text join Copy & paste

Text report : semi-structured text

vicroscopic findings:

Acute lesion scoring: - Tubulitis: mild (t1) - Intimal arteritis: absent (v0) - Interstitial inflammation: mild (i1) - Allograft glomerulitis: mild (g1)

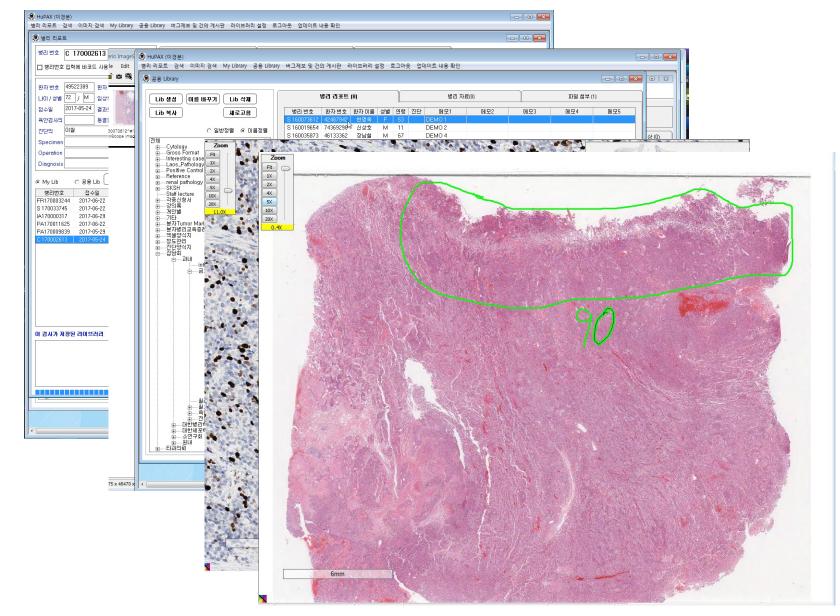
Chronic lesion scoring:

Interstitial fibrosis: mild (ci1)
Tubular atrophy: mild (ct1)
Allograft glomerulopathy: absent (cg0)
Mesangial matrix increase: absent (mm0)
Vascular fibrointimal thickening: mild (cv1)
Arteriolar hyaline thickening: mild (ah1)

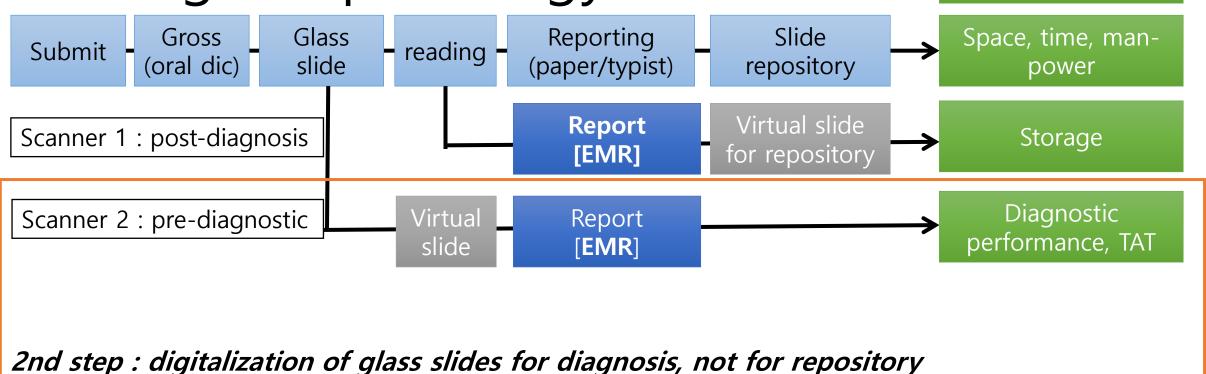
Peritubular capillaritis: mild (ptc1)

Glomerulus

Number of Glomeruli: 24 Global sclerosis: 8 (33.3%) Glomerular size: mildly increased Cellularity: normal - Other findings: focal ischemic wrinkling,

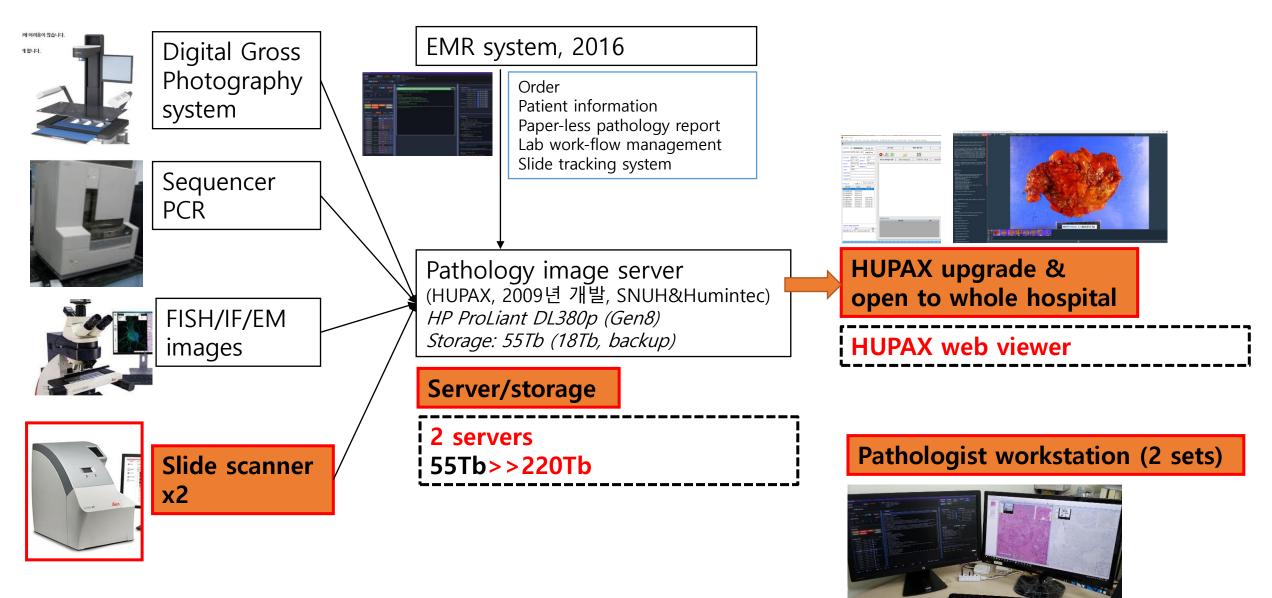

Other findings: absent

DIAGNOSIS:

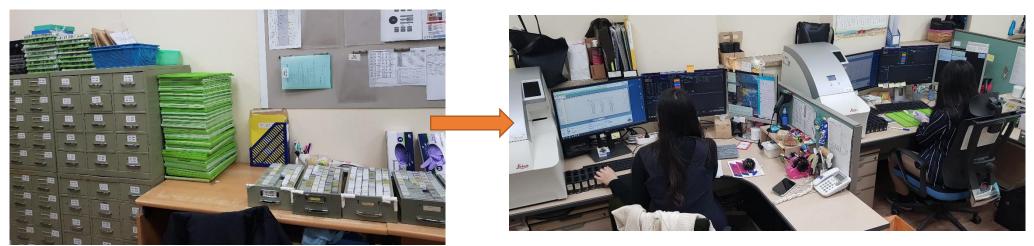

Kidney, allograft, post-transplantation 6 years, needle biopsy.
Borderline change (Suspicious for acute T-cell-mediated rejection)
Interstitial fibrosis and tubular atrophy, grade I
(t1, v0, i1, g1 / ci1, ct1, cg0, mm0, cv1, ah1 / ptc1)

Pathology PACS: virtual slide

- 1. Previous slide review
- 2. Conference
- 3. Image analysis
- 4. Tumor marking
- 5. Research
- 6. Permanent storage



Change of pathology workflow



Issues

Digital pathology project: SNUH, 2017-2018

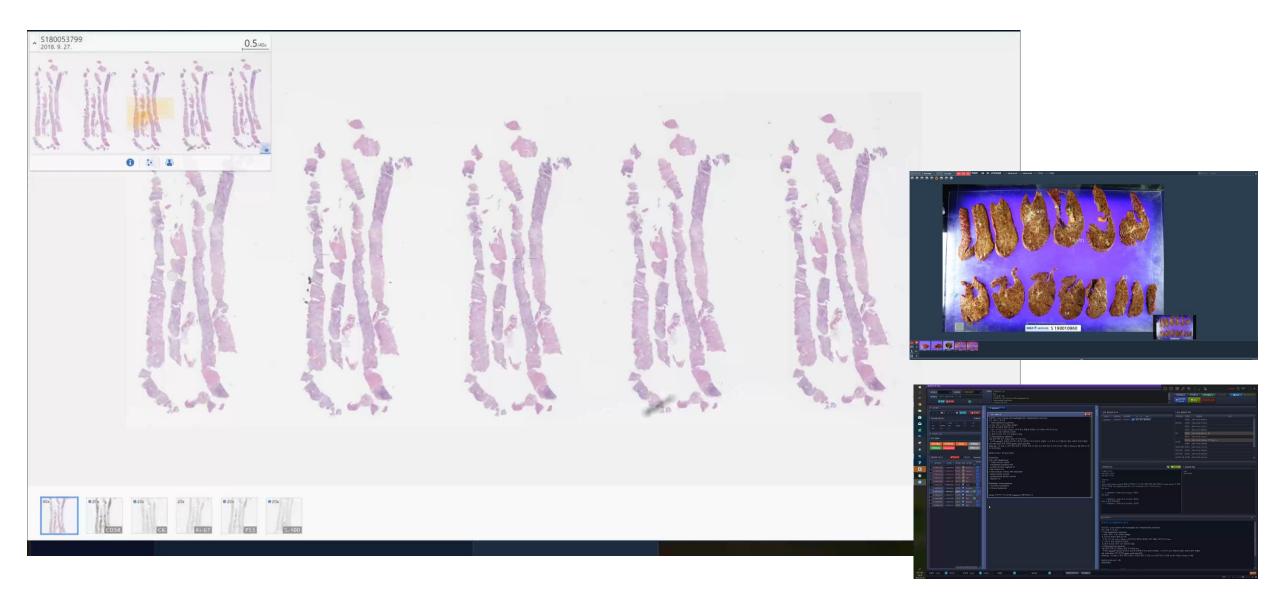
Scanning

> Objects

post-diagnostic : selected glasser for conference, key slides for molecular test pre-diagnosis : image analysis, hepatobiliarypancreas, urology, medical kidney, bone and soft tissue, skin, CNS, pediatric cases

Scan volume : File/data : 288,055 glass slides / 73Tb, 40% /total slides, 2018

 Scan protocol and quality cover slide mounting -> drying for 20min -> loading one rack (40 slides /rack)
 Rescan rates
 >5% [SNUH 6.3% -> 2%] stripe, focusing out
 histotechnical procedure : tissue fold, air bubbles, dirt on slides
 cannot find out tissue on autofocusing : limited tissue / too little, no positive stain
 automatic file loading to server by barcode system : no additional manual work for file management
 Slides can be seen within 1-3hr after loading


Pathology workstation

- > VS monitor : 4096x2160 resolution medical imaging display
- HIS monitor
- Secondary monitor for ancillary images 4096x2160 resolution medical imaging display HUPAX web viewer
- > 3D mouse : navigation of vs
- > PC : Intel i7-7700k, GTX1080, 8G RAM

Primary diagnosis by WSI, SNUH

Diagnostic performance : SNUH

• Consecutive 235 건

장기	biopsy	operation	total
AOV	2		2
bile duct	6	1	7
bone	2	4	6
colon	74		74
duodenum	3		3
gallbladder		2	2
general		5	5
H&N	1		1
liver	13	7	20
LN	1		1
lung		2	2
medical kidney	12		12
ovary		2	2
pancreas	8	9	17
placenta	1	1	2
soft tissue	2	10	12
stomach	64	1	65
uterus ovary		2	2
총합계	189	46	235

- x20 / x40(medical kidney)
- Concordant rate : 91%

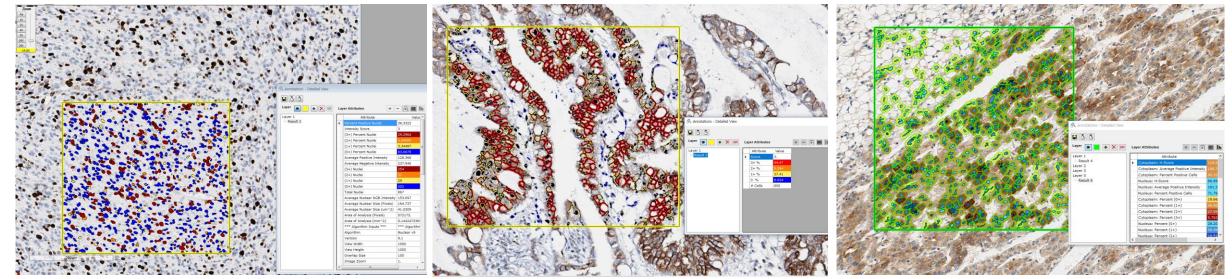
• Discordant rates : 9 % (20/235)

Activity	8
Dysplasia grade	1
H. pylori	8
H. pylori, Activity	3

- active inflammation : neutrophil
- dysplasia grade : low grade > high grade
- Helicobacter pylori : x20 > x400
- No missed case : malignancy, reactive atypia

- Introduction of digital pathology
- Digital pathology for primary diagnosis
 Component of digital pathology system for primary diagnosis
 Digital pathology workflow, SNUH
 Issues in implementation of digital pathology system

Digital pathology for research

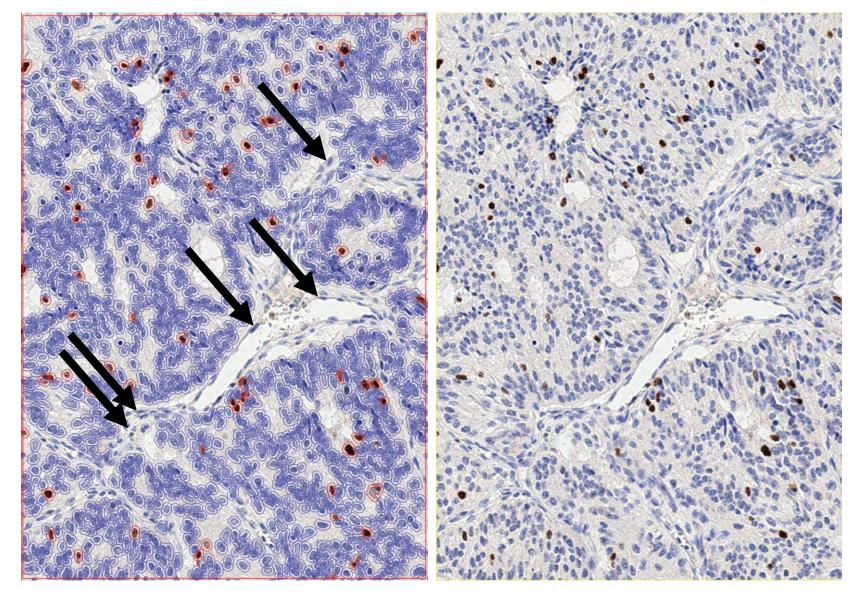

Computational pathology : quantification, discrimination, prediction Reconstruction

New technique for digital pathology

Slide-free non-destructive pathology

Quantification (I) : Biomarker

Nuclear staining, Ki-67


Membrane staining, Her-2

Cytoplasmic staining, Hep-par1

Usage : biomarker evaluation eg. Hormone receptor, HER2, proliferation index, PD-L1

Limitation:

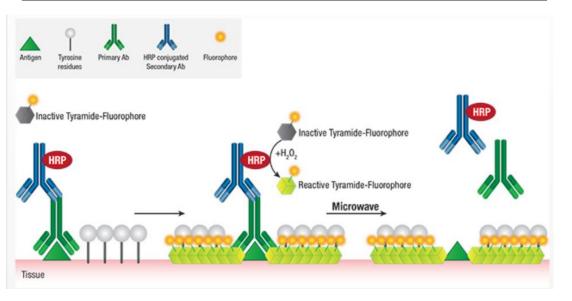
- automatic tumor cell identification among various cells
- Artifact : tissue, staining
- → Need manual correction

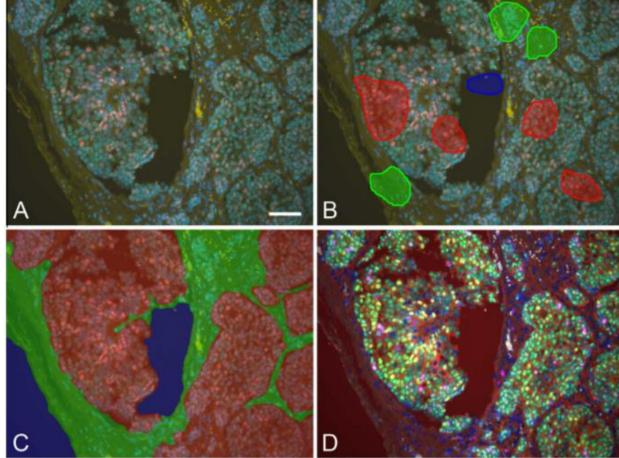
Segmentation by QuPath (free software) Manual removal of nontumor cells or artifact → 4.24% 75/1770, Neuroendocrine tumor, G2 : tumor grading

Quantification (II): multiplex IHC

E.C. Stack et al. / Methods 70 (2014) 46-58

Methods 70 (2014) 46-58

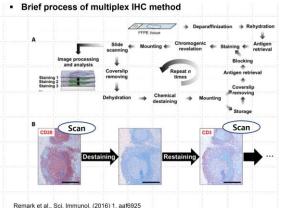

Contents lists available at ScienceDirect

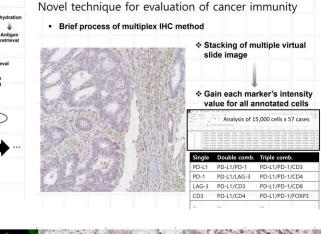

Methods

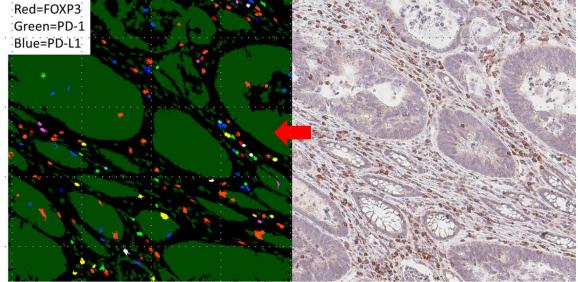
journal homepage: www.elsevier.com/locate/ymeth

Multiplexed immunohistochemistry, imaging, and quantitation: A review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis

Edward C. Stack, Chichung Wang, Kristin A. Roman, Clifford C. Hoyt* PerkinElmer, Inc., Waltham, MA 02451, USA






ER /PR / Her2 / Ki67

Quantification (II): multiplex IHC

multiplex IHC in CRC patients

♦ PD-L1			· ·	HR (95% C.I.)
	Cluster group		1.76	1.76 (0.93-3.31)
CD4/PD-1/PD-L1+ and	CD4/PD-1/PD-L1			1.67** (1:2-2.31)
	CD3/PD-1/PD-L1	1.10		1.16* (1.01-1.32)
FOXP3/PD-1/PD-L1+ TIL	CD4/FOXP3/PD-L1	1.15		1.15 (0.92-1.44)
	CD8/FOXP3/PD-L1	1.14	· · · ·	1.14 (0.95-1.37)
shows different prognostic	CD3/LAG-3/PD-L1	1.08		1.13 (0.97-1.32)
	CD8/PD-L1	1.08	• : : -	1.08 (0.87-1.33)
implication	CD3/FOXP3/PD-L1	1,04		1.08 (0.91-1.28)
	FOXP3/PD-L1	1.02		1.04 (0.93-1.17)
	LAG-3/PD-L1	1.01		1.02 (1-1.05)
1 1 1 1	PD-1/PD-L1			1.01 (0.99-1.02)
	PD-L1			1 (0.99-1)
	CD3/CD4/PD-L1	0.99		1 (0.82-1.23)
- a ca fa ca ca ca ca fa ca ca ca ca fa ca ca ca ca fa c	LAG-3/PD-1/PD-L1	0.94	· · · · · · · · · · · · · · · · · · ·	0.99 (0.87-1.12)
	CD3/PD-L1	0.93	•	0.94 (0.87-1.02)
i i i i	FOXP3/LAG-3/PD-L1	0.93		0.93 (0.74-1.16)
1 1 1 1	CD3/CD8/PD-L1	0.92	• • • • • • • • • • • • • • • • •	0.93 (0.74-1.19)
	CD8/LAG-3/PD-L1	0.86*		0.92 (0.69-1.21)
i i i i	CD4/PD-L1	0.84	÷	0.86* (0.76-0.97)
	CD8/PD-1/PD-L1	0.76	· · · ·	0.84 (0.66-1.07)
	CD4/LAG-3/PD-L1	0.73*		0.76* (0.61-0.95)
i i i	FOXP3/PD-1/PD-L1			0.73* (0.57-0.95)
	• •			÷
	1 1	0.57 1.07	1.57 2.07 2.573.07	:
. The plan state of process is to process in the pro-		······································	rd Ratios	

Courtesy by YJ Kwak, Department of pathology, Seoul National university Hospital presented in the 7-th annual fall meeting of the Korean society of pathologists

Discrimination (I) : quantitative image feature

J Pathol Inform

Editor-in-Chief: Liron Pantanowitz, Anil V. Parwani Pittsburgh, PA, USA Pittsburgh, PA, USA

OPEN ACCESS HTML format

For entire Editorial Board visit : www.jpathinformatics.org/edit

Research Article

Quantitative nucleic features are effective for discrimination of intraductal proliferative lesions of the breast

Masatoshi Yamada¹, Akira Saito², Yoichiro Yamamoto³, Eric Cosatto⁴, Atsushi Kurata¹, Toshitaka Nagao⁵ Ayaka Tateishi⁶ Masahika Kuroda¹

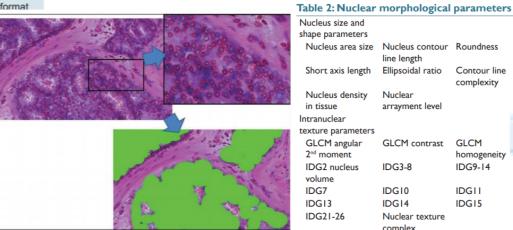


Figure 2: Example of nuclear contour extraction results. The Average; variance; standard deviation; median, mode; 10%, 30%, 50% 70%, and 90% tile enlarged partial position is on the upper right. Red lines indicate the data; 80% based average variance, standard deviation, median, mode. GLCM: Gray level automatically extracted nuclear contour line. Yellow dots indicate co-occurrence matrix, IDG: Integrated diffusion gradient, IDG1: Ratio of nucleus area the nuclear center position. The lower image is a manually created masked image. Nuclear features were measured only on selected volume over each threshold intensity level, IDG15-20: Counts for each threshold intensity nuclei indicated in green areas

size and rectangle box area (long × short axis), IDG2: Ratio of nucleus 3D volume to cuboid volume. IDG3-8:Total volume over 6 threshold intensity levels. IDG9-14: Increased level cluster, IDG 21-26: Image fractal dimensions for each threshold intensity level

GLCM contrast GLCM

line length

Nuclear arrayment level

IDG3-8

IDG10

IDG14

Nuclear texture complex

Ellipsoidal ratio

Long axis

area size

GLCM

entropy

IDG12

IDG16

IDG15-20

length

Contour line IDGI complexity

homogeneity

IDG9-14

IDGII

IDG15

	Normal	UDH (%)	ADH (%)	LG-DCIS (%)	IM-DCIS (%)	HG-DCIS (%)
Normal		97.3	84.8	93.0	97.9	97.6
UDH			87.2	90.1	97.8	99.3
ADH				88.1	94.7	96.7
LG-DCIS					81.8	97.0
IM-DCIS						96.0
HG-DCIS						

Table 4b:Accuracy table

UDH: Usual ductal hyperplasia, ADH: Atypical ductal hyperplasia, LG-DCIS: Low-grade ductal carcinoma in situ, IM-DCIS: Intermediate-grade ductal carcinoma in situ, HG-DCIS: High-grade ductal carcinoma in situ

Discrimination (I) : quantitative image feature

• Discrimination by digitalized image feature >

Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image feature. Nat commun. 2016;7:12474

- Extract quantitative image feature : 790 items

AreaShape_Zernike_8_6.0.5.1
AreaShape_Zernike_8_6.0.6.1
Texture_DifferenceEntropy_MaskedHWithoutOverlap_3_90.0.7.1
Texture_DifferenceEntropy_MaskedHWithoutOverlap_3_45.0.8.1
Texture_DifferenceEntropy_MaskedHWithoutOverlap_3_90.0.8.1
Texture_Contrast_MaskedHWithoutOverlap_3_90.0.9.1
Texture_InfoMeas2_MaskedHWithoutOverlap_3_90.0.1.2
Texture_SumVariance_MaskedHWithoutOverlap_3_45.0.3.2
AreaShape_Zernike_6_0.0.4.2

Quantitative image features cannot be understood or perceived by pathologist

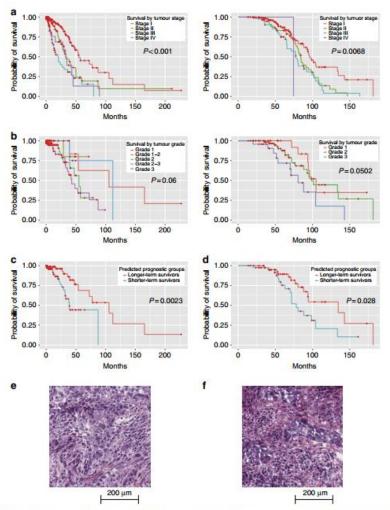
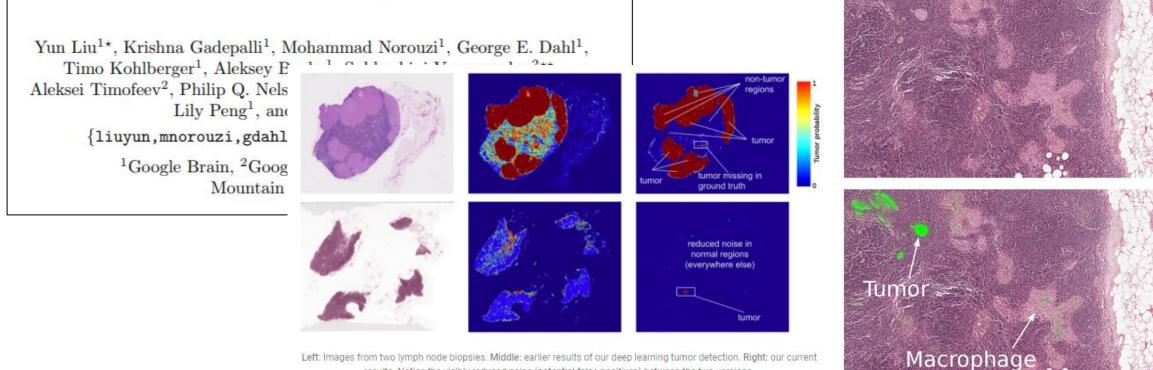



Figure 3 | Quantitative image features predicted the survival outcomes of stage I lung adenocarcinoma patients. (a) Kaplan-Meier curves of lung

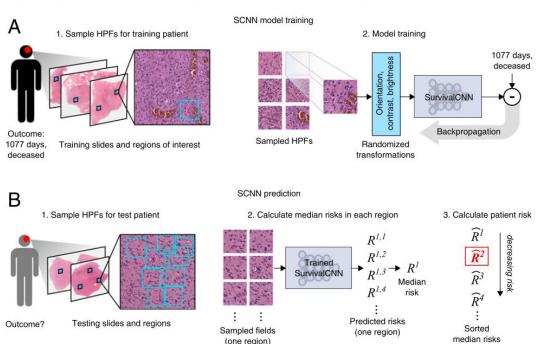
Discrimination (II) : Deep learning

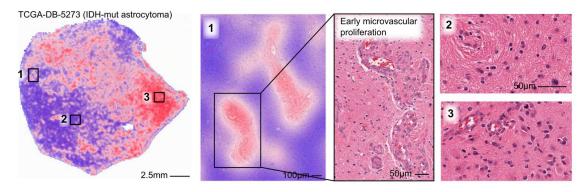
Detecting Cancer Metastases on Gigapixel Pathology Images

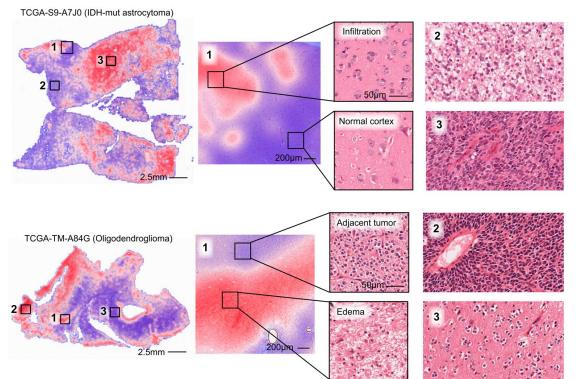
Left: Images from two lymph node biopsies. Middle: earlier results of our deep learning tumor detection. Right: our current results. Notice the visibly reduced noise (potential false positives) between the two versions.

- More sensitive than pathologist, but some false _ positive result
- Lack of other disease pattern -
- Assisting pathologist, not primary role -

A closeup of a lymph node biopsy. The tissue contains a breast cancer metastasis as well as macrophages, which look similar to tumor but are benign normal tissue. Our algorithm successfully identifies the tumor region (bright green) and is not confused by the macrophages


Find new prognostic groups


Predicting cancer outcomes from histology and genomics using convolutional networks


Pooya Mobadersany^a, Safoora Yousefi^a, Mohamed Amgad^a, David A. Gutman^b, Jill S. Barnholtz-Sloan^c, José E. Velázquez Vega^d, Daniel J. Brat^e, and Lee A. D. Cooper^{a,f,g,1}

^aDepartment of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA 30322; ^bDepartment of Neurology, Emory University School of Medicine, Atlanta, GA 30322; ^cCase Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106; ^dDepartment of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322; ^bDepartment of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; ^fWinship Cancer Institute, Emory University, Atlanta, GA 30322; and ^gDepartment of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322

Edited by Bert Vogelstein, Johns Hopkins University, Baltimore, MD, and approved February 13, 2018 (received for review October 4, 2017)

- Introduction of digital pathology
- Digital pathology for primary diagnosis
 Component of digital pathology system for primary diagnosis
 Digital pathology workflow, SNUH
 Issues in implementation of digital pathology system
- Digital pathology for research Computational pathology : quantification, discrimination, prediction Reconstruction
- New technique for digital pathology

Slide-free non-destructive pathology

Slide-free non-destructive pathology

biomedical engineering

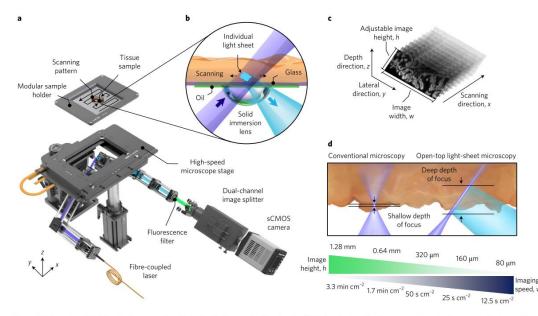
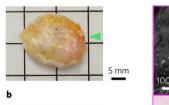
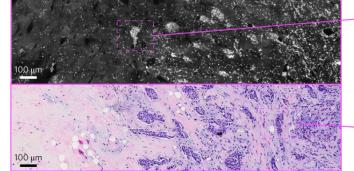
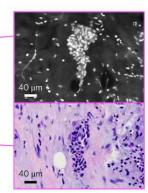
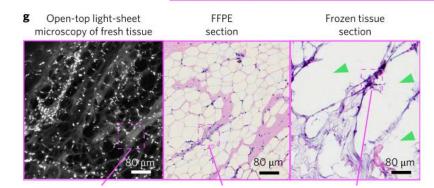
ARTICLES PUBLISHED: 26 JUNE 2017 | VOLUME: 1 | ARTICLE NUMBER: 0084

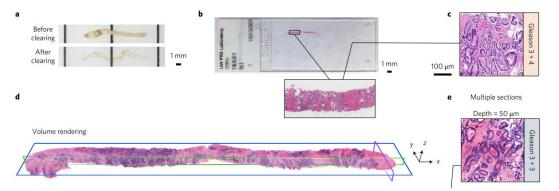
Light-sheet microscopy for slide-free nondestructive pathology of large clinical specimens

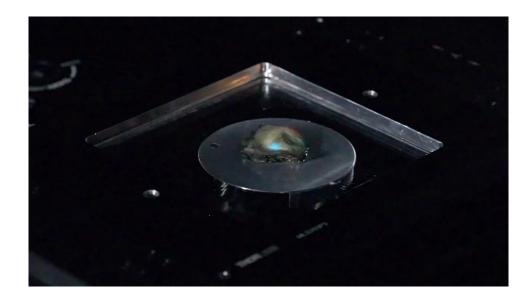
Adam K. Glaser^{1†}, Nicholas P. Reder^{2†}, Ye Chen¹, Erin F. McCarty², Chengbo Yin¹, Linpeng Wei¹, Yu Wang¹, Lawrence D. True² and Jonathan T. C. Liu^{1*}

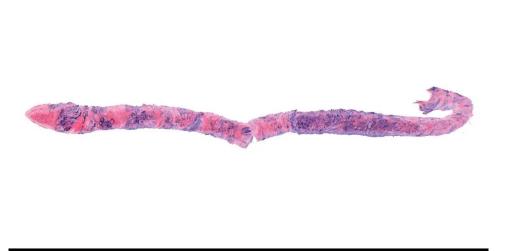
For the 1.7 million patients per year in the US who receive a new cancer diagnosis, treatment decisions are largely based on

athelesian engineer eveningtions. Unfortunately, the self standard of alide based misuses are astheless, suffere from


Figure 1 | Open-top light-sheet microscope for clinical pathology. a, An illumination light sheet enters the bottom surface of a tissue sample at an oblique 45° angle (purple). The specimen is placed on a modular glass-plate sample holder, which is inserted into a two-axis translation stage and scanned in a





- Virtual slide : replaceable system of light microscopy: practical problems remained
- Numerous research algorisms vs few clinical use: standization of images
- Future of digital pathology
 - To save pathologist's time
 - : find tumor, mitosis, micro-organism
 - → quantification, measurement, reporting
 - To help pathologist's decision
 - : segmentation and classification of cell and tissue
 - → support diagnosis, grading, pattern recognition
 - To find new histologic feature or subtype
 - : survival, genetic information

