2019 KOPANA 18th Spring Seminar

Genomic Pathology for Surgical Pathologists

March 15, 2019

Jason Park, MD, PhD

Associate Professor, Department of Pathology & the Eugene McDermott Center for Human Growth and Development UT Southwestern Medical Center Medical Director, Advanced Diagnostics Laboratory Children's Health System of Texas jaspar@childrens.com

Genomic Medicine

Patient

Specimen

DNA Testing of Many Genes

Diagnosis

Treatment/ Management

Pathologist

'Genomic Pathologist'

Test Selection

Global Evaluation (Large deletions)

Targeted Evaluation (Mutation in a gene)

Specific Rearrangement (Translocations)

Genomic - Multiple Gene Next Generation Panels (Syndromic) Sequencing

CGH Microarray

Sanger Sequencing

FISH

DNA Variants

- Single nucleotide variants (SNV)
 REFERENCE GGCCTTAACC C CCGATTATCAG
 PATIENT GGCCTTAACC C CCGATTATCAG
- Small insertions/deletions (INDEL)
 REFERENCE GGCCTTAACCCCC GATTATCAG
 PATIENT GGCCTTAACC --- GATTATCAG
- . Structural variants (Chromosomal)
 - Large insertions/deletions
 - Copy number variants
 - Translocations

Nucleotide change resulting in NO change in amino acid:

SynonymousSilent

Nucleotide change resulting in CHANGE in amino acid:

Non-SynonymousMissense

Question:

Is a non-synonymous variant (change in amino acid) a mutation? Answer:

Only some are pathogenic (mutation)

Each non-synonymous variant is interpreted by using databases and literature

Genetic Diversity

Each 'disease-free' person has: Thousands of rare or unique DNA variants that change the amino acids at a single position •Hundreds of rare frameshift DNA variants that result in truncated proteins

Clinical Case 1

- 13 month-old female presented with nystagmus; imaging showed an optic-hypothalamic mass
- Surgically debulked, pathology showed pilocytic astrocytoma
- 4 chemotherapy regimens over 3 years
- No response

Drobysheva et al 2017 J Natl Compr Canc Netw

Further Progression

- Radiation therapy recommended
- Family declined radiation due to long-term morbidity concerns
- BRAF molecular testing
 - BRAF-KIAA1549 fusion
 - NEGATIVE (FISH)

- BRAF V600E NEGATIVE (IHC)

Identified: BRAF c.1799_1800delinsAT, p.Val600Asp

- V600D, rare variant not previously described in LGG (2015)
- Melanoma cell line data indicated V600D inhibited similarly as V600E (Gentilcore 2013)
- Subsequent studies show V600D in infantile ganglioglioma/ astrocytoma

BRAF - B-Raf proto-oncogene, serine/threonine kinase

Gentilcore G et al 2013 BMC Cancer Greer A et al 2017 Pediatr Blood Cancer Wang AC et al 2018 Mol Cancer Res

Frequent BRAF gene alterations in pediatric high and low grade gliomas

	BRAF- KIAA1549	
	fusion	BRAF V600E
Pilocytic astrocytoma	78%	6%
Pilomyxoid astrocytoma	63%	5%
Pleomorphic xanthoastrocytoma	50%	50%
Ganglioglioma	26%	21%
Diffuse fibrillary astrocytoma	3%	8%
Anaplastic astrocytoma	0%	16%
Glioblastoma multiforme	0%	9%

BRAF signaling

- RAF kinase which effects:
 - growth factor signaling
 - cell cycle progression
 - proliferation
- Part of the mitogen activated protein kinase (MAPK) pathway

https://www.mycancergenome.org/content/disease/melanoma/braf/54/

Question: How should the BRAF variant be interpreted?

- A. Variant of Strong Clinical Significance
- B. Variant of Potential Clinical Significance
- C. Variant of Unknown Clinical Significance
- D. Benign or Likely Benign Variant

Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer *AMP, ASCO, CAP (2017)*

Tier I: Variants of Strong Clinical Significance

Therapeutic, prognostic & diagnostic

Level A Evidence

FDA-approved therapy Included in professional guidelines

Level B Evidence

Well-powered studies with consensus from experts in the field

Tier II: Variants of Potential Clinical Significance

Therapeutic, prognostic & diagnostic

Tier III: Variants of Unknown Clinical Significance

Tier IV: Benign or Likely Benign Variants

Level C Evidence

FDA-approved therapies for different tumor types or investigational therapies

Multiple small published studies with some consensus Not observed at a significant allele frequency in the general or specific subpopulation databases, or pan-cancer or tumor-specific variant databases

No convincing published evidence of cancer association Observed at significant allele frequency in the general or specific subpopulation databases

> No existing published evidence of cancer association

Level D Evidence

Preclinical trials or a few case reports without consensus

Li et al 2017 J Mol Diagn 19:4-23

Question: How should the BRAF variant be interpreted?

A.Tier 1: Strong Clinical SignificanceB. Tier 2: Potential Clinical SignificanceC. Tier 3: Unknown Clinical SignificanceD. Tier 4: Benign or Likely Benign Variant

Answer: B, Tier 2 Potential Clinical Significance

- BRAF V600D variant is biologically significant
- FDA approved therapies in other cancers
- No data on BRAF or MEK inhibitors for V600D in LGG (2015)

Question: Should off-label therapy be recommended?

<u>PROS</u>

- No other therapy options (family resistant to radiation therapy)
- BRAF V600E responds to targeted inhibition

<u>CONS</u>

- Limited data on V600E (no data on V600D)
- BRAF inhibitors have high rate of toxicity in adult studies of melanoma

Question: Should off-label therapy be recommended?

Answer:

Off-label dabrafenib was initiated

3 mo: dabrafenib 🔓 6 mo: dabrafenib

) mo: dabrafenib/ trametinib

 >40 months stable disease on combination dabrafenib/trametinib

Clinical Case Summary

Tier I: Variants of Strong Clinical Significance Therapeutic, prognostic & diagnostic	Tier II: Variants of Potential Clinical Significance Therapeutic, prognostic & diagnostic	Tier III: Variants of Unknown Clinical Significance	Tier IV: Benign or Likely Benign Variants
---	---	---	--

- Patient with low grade glioma and novel BRAF variant (BRAF V600D)
- 2017 somatic interpretation guideline (CAP/ASCO/AMP) is a useful framework
- Uncertain whether V600D response will be broadly applicable
- LGG routine testing of BRAF fusions and V600 variants is recommended

Clinical Case 2

- 60 year-old man with colon adenocarcinoma identified as mismatch repair deficient (MSH2/MSH6 loss by immunohistochemistry)
- MSH2 gene sequencing identifies: c.1A>C (p.Met1_Gly25del)

Truta et al 2008 Familial Cancer 7:267-74 Rosenthal et al 2015 Clin Genet 88:533-541

MSH2 c.1A>C (p.Met1_Gly25del) mutS homolog 2

Lynch Syndrome Familial Testing

- Patient's *MSH2* c.1A>C reported as <u>likely pathogenic</u>
- MSH2 is one of the DNA mismatch repair genes (MLH1, MSH6, and PMS2) associated with Lynch Syndrome
- Lynch syndrome is an autosomal dominant cancer syndrome associated with early colorectal, endometrial and ovarian cancers
- Patient's children tested

Two Years Later...Revised Classification: c.1A>C is no longer considered "likely pathogenic"

- Clinical genetics laboratories noted new evidence
 - -Multiple cases of same variant seen
 - -Alternative start codon is proven
 - Low penetrance with an inheritance pattern inconsistent with pathogenicity
- New interpretation: <u>variant of uncertain</u> <u>significance</u>

Rosenthal et al 2015 Clin Genet 88:533-541

Question: If all children are tested and two are positive, which of the following are important next steps?

Previous Answer: Counsel/screen only gene test positive Revised Answer: Counsel/screen all gene test positive and negative

Genomic Test Results are Dynamic

- •New discoveries require corrections
- Laboratory needs to provide dynamic reporting
- •Pre-genomic Example:
 - Harvard Partners
 noted 214
 changes over 7
 years
 - >100 corrected reports

Aronson 2012 Genet Med

Medical Literature is Constantly Growing

- <u>27% of mutations</u> cited in literature (2011) were found to be common population variants or incorrectly reported
- Traditional human genetic studies (pre-2010) used <u>100s</u> of control genomes to define a novel or rare disease variant

- High rate of calling benign variants as mutations

 Recent studies use <u>>100,000</u> control genomes (gnomAD, 1000 Genomes)

JAMA | Original Investigation

Prevalence of Variant Reclassification Following Hereditary Cancer Genetic Testing

JAMA. 2018;320(12):1266-1274. doi:10.1001/jama.2018.13152

- •UT Southwestern study of 1.45 mil patients tested at Myriad Genetics (2006-2016)
- •Hereditary cancer genetic testing (56.6% with personal history)
- •59,955 amended reports because of variant reclassification
- •Overall, 6.4% of variants were reclassified
- 24.9% of Uncertain (VUS) variants were changed

JAMA Pediatrics | Original Investigation

Clinical Utility of Reinterpreting Previously Reported Genomic Epilepsy Test Results for Pediatric Patients

JAMA Pediatr. doi:10.1001/jamapediatrics.2018.2302

- •UT Southwestern study of 309 patients tested at GeneDx (2012-2015)
- •Genomic pediatric epilepsy testing
- •Overall, 36.2% of patients had variants reclassified
- •31.3% of reclassified variant changed the diagnosis

Emerging Diagnostic Split Decisions

 Clinical labs interpret variants differently
 Example: ClinVar database for Hereditary Cancer-Predisposing Syndrome Genetics

Diagnoses from one laboratory

	pathogenic	likely pathogenic	uncertain significance	likely benign	benign
pathogenic	0	595	93	3	0
likely pathogenic	266	0	246	1	1
uncertain significance	39	97	0	1019	227
likely benign	3	1	2149	2	1883
benign	0	1	411	1012	0

Other Labs

https://clinvarminer.genetics.utah.edu/

Final Question: How do you manage patients with the <u>same genetic change</u>, but tested by different labs with <u>different</u> <u>interpretations</u>?

A.Create internal consensus opinion and treat the patients the same

- B.Treat patients based on the different lab interpretations
- C.Share discordant information with patients and let them decide
- D.I don't know

Summary

- •Genomic testing and interpretation are critical for advanced malignancies
- Genomic test interpretations are dynamic over time
- •The practice of genomic medicine requires pragmatic judgment despite diagnostic uncertainty (i.e., surgical pathologist)

