

Diocese of Fresno Office of Catholic Education

In Partnership with

Present

MATHEMATICS POWER STANDARDS 2021-2022

ALGEBRA

Introduction

In June 2021, a committee comprised of teachers and administrators led by Dr. Bill Sternberg from Creative Leadership Solutions worked over a period of three days to identify math Power Standards in Kindergarten through 8th Grade (and Algebra). This work, grounded in research from Doug Reeves, Larry Ainsworth, Dylan Wiliam and others offered the opportunity to collaboratively identify those standards that would be consistently focused upon throughout the year for maximum learning impact in math. The following three criteria were used in the identification of these standards:

Leverage: Does this indicator apply to other subjects?

Endurance: Will this indicator be taught over multiple years of instruction?

Essentiality: Is this indicator an essential skill students need to know and be able to do as soon as they enter their next level of instruction?

Over the course of three days, our committee met in grade level teams to first identify those indicators that possessed leverage. From this list, grade level teams then identified indicators that also possessed endurance, effectively reducing the number of indicators from the original list. Lastly, grade level teams were paired with their vertical counterparts (e.g., Kindergarten was paired with First Grade) to identify indicators that possessed essentiality. Thus, from a list of 30 (or more) grade level math indicators, teams were able to identify 8-12 (depending upon grade level) indicators that would become Power Standards for their specific grade level.

As explained during this process, the intent is to focus consistently on these Power Standards through multiple units of instruction. In reviewing grade level math indicators, there are some that do not require an equal amount of focus as others: In other words, there are supporting standards that may only need to be taught for a smaller time period (e.g., 4-6 weeks) in order for a student to demonstrate mastery of that specific indicator. However, Power Standards identified in this process are those that will require a much more concerted focus throughout the academic year to better prepare students in their learning journey. Under each Power Standard identified, you'll note graphic organizers that identify the *Concepts* (nouns or noun phrases) of each Power Standard along with *Skills* (what we want students to know and be able to do). As well, there is a section labeled *"Topics"* which allows other content area teachers to identify units of instruction where these specific Power Standards can be inserted as a means of building cross-curricular connections. The *"Topics"* section is one that should continually be added to over time as there will undoubtedly be multiple opportunities for insertion of these Power Standards in other content areas.

The last piece you'll note under each identified Power Standard is a table listing *"Big Ideas"* and *"Essential Questions"*. The *"Big Ideas"* are those critical understandings of the purpose and meaning behind learning the Power Standard that we want students to possess in *their own words*. In essence, students should know the *why* of what they are learning, not just the *what*. The *"Essential Questions"* are those questions teachers use during instruction encompassing these Power Standards as a means to build interest and understanding from their students. We would expect student replies to these *"Essential Questions"* to resemble the *"Big Ideas"* within this table.

Contents

Power Standard #1:	5
Explain how the definition of the meaning of rational exponents follows from extend the properties of integer exponents to those values, allowing for a notation for radio in terms of rational exponents. For example, we define 51/3 to be the cube root of because we want (51/3)3= 5(1/3)3 to hold, so (51/3)3 must equal 5.	ling als 5 5
Power Standard #2:	8
Use units as a way to understand problems and to guide the solution of multi-ste problems; choose and interpret units consistently in formulas; choose and interpr the scale and the origin in graphs and data displays	p ret 8
Power Standard #3:	11
Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the origin equation has a solution. Construct a viable argument to justify a solution method.	nal 11
Power Standard #4:	14
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.	14
Power Standard #5:	17
Understand that polynomials form a system analogous to the integers, namely, they are close under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials	ed y 17
Power Standard #6:	20
Explain why the x-coordinates of the points where the graphs of the equations y = f and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solution approximately, e.g., using technology to graph the functions, make tables of values find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.	f(x) is , or 20
Power Standard #7:	23
Distinguish between situations that can be modeled with linear functions and with exponential functions	h 23
Power Standard #8:	26
Summarize categorical data for two categories in two-way frequency tables. Interpretentive frequencies in the context of	ret 26
the data (including joint, marginal, and conditional relative frequencies). Recogniz possible associations and trends in the	ze 26

data.	26
Power Standard #9:	29
Represent data with plots on the real number line (dot plots, histograms, and box plots).	29
Power Standard #10:	32
Solve a simple system consisting of a linear equation and a guadratic equation i	in two

adratic equation in

32

Power Standard #1:

variables algebraically and graphically.

Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1/3}$ to be the cube root of 5 because we want $(5^{1/3})^3 = 5^{(1/3)}3$ to hold, so $(51/3)^3$ must equal 5.

Concepts: Need to Know	Skills: Be Able to Do
Rational numbers	• Explain meaning of rational exponents
 Rational Exponents 	 Explain properties of exponent
Properties Integers	integers
Integer Exponent	Explain relationship rational
Notation	exponents and properties of exponent
Radicals	integers.
• Root	Explain notation for radicals
	• Explain radicals in terms of rational
	exponents
• •	<u>pics</u>

Big Ideas	Essential Questions
 Any form of exponents impacts the	 Why do we need to understand
base number	exponents?

Bloom's Taxonomy Level: Understand	
Depth of Knowledge Level: Level 1	

Assessment Item:

Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT	TEACHER ASSESSMENT	

Point Value Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT			TEACHER ASSESSMENT
	3	2	1	
	3	2	1	
	3	2	1	

EXPECTATION	3	2	1

Power Standard #2:

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays

<u>Skills</u>		
 Use units to understand problem 		
 Use units to guide solutions 		
 Use unites to guide multi-step 		
problems		
 Chose units consistently in formula 		
 Interpret units consistently in formula 		
Chose the scale		
 Interpret the scale 		
 Choose the origin in graphs 		
 Interpret the origin in graphs 		
 Chose the data display 		
 Interpret the data display 		
<u>pics</u>		
ab.		
process		
tio		
Essential Questions		
• vvny do you bleak down		

into simple units to find solution	multi-step problems?
 Formulas help to solve specific 	What is the relationship between
problems	formulas and the expression?
• Graphs show a picture of the results	 Why do we have to graph
· ·	information?

Bloom's Taxonomy Level: Understand

Depth of Knowledge Level: Level 3

Assessment Item:

Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT	TEACHER ASSESSMENT

Point Value Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT			TEACHER ASSESSMENT
	3	2	1	
	3	2	1	
	3	2	1	

EXPECTATION	3	2	1

Power Standard #3:

Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

Concepts Simple equations steps of an equation equality assumptions original equation solution viable arguments justify	 Skills Explain each step in solving simple problem Explain steps from the equality of numbers for previous step Construct a viable argument Construct a viable argument to justify solution method
• <u>Top</u>	<u>pics</u>

Big Ideas	Essential Questions
 Equations are solved by using a step-by-step process Solutions must be able proven 	 Why can't I solve the equation in one step? How do I know my answer is right?

Bloom's Taxonomy Level: Evaluate Depth of Knowledge Level: Level 3

Assessment Item:

Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT	TEACHER ASSESSMENT

Point Value Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT			TEACHER ASSESSMENT
	3	2	1	
	3	2	1	
	3	2	1	

EXPECTATION	3	2	1

Power Standard #4:

Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

<u>Concepts</u>	<u>Skills</u>
Produce	 Produce an equivalent form of an
Equivalent	expression
 Equivalent form 	 Reveal properties of the quantity
Expression	represent of the expression
 Properties 	 Explain properties of the quantities of
 Properties of the expression 	the expression
Quantity	 Choose an equivalent form of an
 Quantity of the expression 	expression
Top	<u>pics</u>
•	

Big Ideas	Essential Questions
 Equations can be written in different	 What is the purpose of writing
ways and still have the same value.	equations in different ways?

Bloom's Taxonomy Level: Apply	
Depth of Knowledge Level: Level 4	

Assessment Item:

Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT	TEACHER ASSESSMENT

Point Value Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT			TEACHER ASSESSMENT
	3	2	1	
	3	2	1	
	3	2	1	

EXPECTATION	3	2	1

Power Standard #5:

Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials

<u>Concepts</u> Polynomials System Analogous Integers Closed Operations of Addition, Subtraction, and Multiplication	 <u>Skills</u> Understand a polynomial Understand polynomial form a system of analogous (simpler monomials) Understand that they are closed operations of addition Understand that they are closed operations of subtraction Understand that they are closed operations of subtraction
<u>Тор</u>	<u>pics</u>

Big Ideas	Essential Questions
 Polynomial form a simpler system based on adding, subtracting, and multiplying 	 How do you solve a polynomial?

Bloom's Taxonomy Level: Understand
Depth of Knowledge Level: Level 1

Assessment Item:

Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT	TEACHER ASSESSMENT

Point Value Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT		- MENT	TEACHER ASSESSMENT
	3	2	1	
	3	2	1	
	3	2	1	

EXPECTATION	3	2	1

Power Standard #6:

Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

<u>Skills</u>
 Explain x-coordinates of points
 Explain where the graphs intersect
 Explain that they are solutions to an
equation
 Find solutions for linear
 Find solutions for polynomial
 Find solutions for rational
 Find solutions for absolute value
 Find solutions for exponential
 Find solutions for logarithmic
functions
 Find estimated solutions for linear
 Find estimated solutions for
polynomial
 Find estimated solutions for rational
• Find estimated solutions for absolute
value
 Find estimated solutions for
exponential
 Find estimated solutions for
logarithmic functions
C C
<u>pics</u>

Big Ideas	Essential Questions

 In an equation Y=a variable that variable equals itself. Graphing tables will show a picture of the result Technology is a tool that can support finding 	 Why do we graph? Why do we use technology? How can y= two different functions?
--	--

Bloom's Taxonomy Level: Apply	
Depth of Knowledge Level: Level 2	

Assessment Item:

Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT	TEACHER ASSESSMENT

Point Value Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT		MENT	TEACHER ASSESSMENT
	3	2	1	
	3	2	1	
	3	2	1	

EXPECTATION	3	2	1

Power Standard #7:

Distinguish between situations that can be modeled with linear functions and with exponential functions

Concepts Situation Linear Functions Exponential Functions 	 Skills Distinguish between situation Distinguish ways of modeling with linear functions Distinguish ways modeling with exponential function 	
•		

Big Ideas	Essential Questions
 Linear function increase at a slower rate than an exponential function Modeling linear and exponential function make a clearer picture of results 	 What is the difference between linear function and exponential functions? What's the purpose of modeling a function?

Bloom's Taxonomy Level: Analyze	
Depth of Knowledge Level: Level 2	

Assessment Item:

Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT	TEACHER ASSESSMENT

Point Value Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT		MENT	TEACHER ASSESSMENT
	3	2	1	
	3	2	1	
	3	2	1	

EXPECTATION	3	2	1

Power Standard #8:

Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the

data.

 Categorical Categorical Data Frequency Frequency table two-frequency Relative Frequency Context of data Joint frequencies Marginal frequencies conditional Relative frequencies association data data trends 	 Summarize Categorical data Summarize two-way frequency table Interpret relative frequencies Interpret joint frequencies Interpret marginal frequencies Interpret conditional relative frequencies Recognize association data recognize trends in data
<u>Tor</u>	<u>pics</u>

Big Ideas	Essential Questions
 Tables and graphs show a clear picture of the relationships of data 	 What is the importance of data? Why do we use the data to show trends?

Bloom's Taxonomy Level:Understand	
Depth of Knowledge Level: Level 2	

Assessment Item:

Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT	TEACHER ASSESSMENT

Point Value Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT			TEACHER ASSESSMENT
	3	2	1	
	3	2	1	
	3	2	1	

EXPECTATION	3	2	1

Power Standard #9:

Represent data with plots on the real number line (dot plots, histograms, and box plots).

<u>Concepts</u> Data Plots Real Numbers Dot Plots Histograms Box Plots	<u>Skills</u> • Represent data with dot plots • represent data with histograms • represent data with box plots
•	<u>pics</u>

Big Ideas	Essential Questions
 Information from tables and graphs	 Does it matter which type of
can represent data in different form	graph to use?

Bloom's Taxonomy Level: Analyze	
Depth of Knowledge Level: Level 3	

Assessment Item:

Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT	TEACHER ASSESSMENT

Point Value Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT			TEACHER ASSESSMENT
	3	2	1	
	3	2	1	
	3	2	1	

EXPECTATION	3	2	1

 1	
1	

Power Standard #10:

Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.

Concenta	Ckille
<u>concepts</u>	
• System	 Solve simple system
 Simple System 	 Solve simple system using linear
 Linear equation 	equation
 Quadratic equation 	 Solve simple system using linear
variables	equation with two variables
 two variables 	algebraically
	 Solve simple system using linear equations with two variables graphically
	 Solve simple system using quadratic equation
	 Solve simple system using quadratic equation with two variables algebraically
	 Solve simple system using quadratic equation with two variables graphically
Top	<u>pics</u>
▼	

Big Ideas	Essential Questions
	What's the difference between
 Linear equations have few steps than quadratic equations 	linear and quadratic equations?
	 What's difference in solving a
 Linear equation always graphs as a line 	linear versus a quadratic equation?
 Quadratic equation always graphs as a parabola 	
	 Why do linear and quadratic
	equations look different on a
	graph?

Bloom's Taxonomy Level: Apply	
Depth of Knowledge Level: Level 1	

Assessment Item:

Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT	TEACHER ASSESSMENT

Point Value Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT		- MENT	TEACHER ASSESSMENT	
	3	2	1		
	3	2	1		
	3	2	1		

EXPECTATION	3	2	1