In Partnership with

Present

MATHEMATICS POWER STANDARDS 2021-2022

FIFTH GRADE

Introduction

In June 2021, a committee comprised of teachers and administrators led by Dr. Bill Sternberg from Creative Leadership Solutions worked over a period of three days to identify math Power Standards in Kindergarten through 8th Grade (and Algebra). This work, grounded in research from Doug Reeves, Larry Ainsworth, Dylan Wiliam and others offered the opportunity to collaboratively identify those standards that would be consistently focused upon throughout the year for maximum learning impact in math. The following three criteria were used in the identification of these standards:

Leverage: Does this indicator apply to other subjects?

Endurance: Will this indicator be taught over multiple years of instruction?

Essentiality: Is this indicator an essential skill students need to know and be able to do as soon as they enter their next level of instruction?

Over the course of three days, our committee met in grade level teams to first identify those indicators that possessed leverage. From this list, grade level teams then identified indicators that also possessed endurance, effectively reducing the number of indicators from the original list. Lastly, grade level teams were paired with their vertical counterparts (e.g., Kindergarten was paired with First Grade) to identify indicators that possessed essentiality. Thus, from a list of 30 (or more) grade level math indicators, teams were able to identify 8-12 (depending upon grade level) indicators that would become Power Standards for their specific grade level.

As explained during this process, the intent is to focus consistently on these Power Standards through multiple units of instruction. In reviewing grade level math indicators, there are some that do not require an equal amount of focus as others: In other words, there are supporting standards that may only need to be taught for a smaller time period (e.g., 4-6 weeks) in order for a student to demonstrate mastery of that specific indicator. However, Power Standards identified in this process are those that will require a much more concerted focus throughout the academic year to better prepare students in their learning journey.

Under each Power Standard identified, you'll note graphic organizers that identify the *Concepts* (nouns or noun phrases) of each Power Standard along with *Skills* (what we want students to know and be able to do). As well, there is a section labeled *"Topics"* which allows other content area teachers to identify units of instruction where these specific Power Standards can be inserted as a means of building cross-curricular connections. The *"Topics"* section is one that should continually be added to over time as there will undoubtedly be multiple opportunities for insertion of these Power Standards in other content areas.

The last piece you'll note under each identified Power Standard is a table listing *"Big Ideas"* and *"Essential Questions"*. The *"Big Ideas"* are those critical understandings of the purpose and meaning behind learning the Power Standard that we want students to possess in *their own words*. In essence, students should know the *why* of what they are learning, not just the *what*. The *"Essential*

Questions" are those questions teachers use during instruction encompassing these Power Standards as a means to build interest and understanding from their students. We would expect student replies to these "Essential Questions" to resemble the "Big Ideas" within this table.

Contents

Power Standard #1:	5
5.OA.2.1 Express a whole number in the range 2–50 as a product of its prime factors For example, find the prime factors of 24 and express 24 as 2 × 2 × 2 × 3. CA	5
Power Standard #2:	6
5.NBT.7. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used	8
Power Standard #3:	12
5.NF.1. Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, 2/3 + 5/4 = 8/12 + 15/12 = 23/12. (In general, a/b + c/d = (ad + bc)/bd.	2
Power Standard #4:	15

5.NF.6. Solve real-world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.

15

Power Standard #5:

5.MD.1. Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real-world problems 18

Power Standard #6:

5.MD.3. Recognize volume as an attribute of solid figures and understand concepts of volume measurement. a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.

Power Standard #7:

5.G.1. Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel from travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate)

Power Standard #8:

5.G.2. Represent real-world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. 28

Power Standard #1:

5.OA.2.1 Express a whole number in the range 2–50 as a product of its prime factors. For example, find the prime factors of 24 and express 24 as 2 × 2 × 2 × 3. CA

Concepts • Whole Number • range • product • prime factors	 <u>Skills</u> Express prime factorization of whole numbers 2-50 		
<u>Topics</u> <u>(Reducing Fractions)</u>			

18

19

24

28

- Cooking Converting between the measuring spoons/cups you have available and what you are told you will need.
- Science Measuring data to interpret on a graph.
- Social Studies Exchanging money.

<u>Big Ideas</u>	Essential Questions
 Understanding a whole number as the product of its parts makes doing long division easier. Understanding a whole number as the product of its parts makes reducing fractions easier. Understanding a whole number as the product of its parts makes writing equivalent fractions easier. Knowing the difference between a prime number and a composite number so that you know when you need to try and simplify a fraction. Understanding how to divide up the number into smaller parts will help when they need to do square roots next year. 	 Why is it important for me to understand a whole number as a product of its parts? Why do I need to know the difference between a prime number and a composite number? Why do I need to understand how to divide a number into smaller parts/pieces?

Bloom's Taxonomy Level: Apply	
Depth of Knowledge Level: DOK 1	

Assessment Item:

Using white boards, give me the prime factorization of 6; 12; 15; 24

Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT	TEACHER ASSESSMENT
Students can correctly give prime factorization. Answers written on wipe boards.	I express prime factors for a given number.	Verbal cues

Point Value Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT			TEACHER ASSESSMENT
Students can correctly give prime factorization. Answers written on wipe boards.	3	2	1	
	3	2	1	
	3	2	1	

EXPECTATION	3	2	1

Power Standard #2:

5.NBT.7. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used

<u>Concepts</u>	<u>Skills</u>
decimals	(ALL operations with decimals)
 hundredths 	Adding decimals
 concrete models 	 Subtracting decimals
 drawings 	 Multiplying decimals
• strategies	Dividing decimals
place value	 Using concrete models
operations	 Using drawings
relationship	 Using strategies
addition	 Using place value
 subtraction 	 Using properties of operations
 written method 	 Using the relationship between
 reasoning 	addition and subtraction
-	 Relate the strategy to a written
	method
	 Explain reasoning used
	Rounding decimals to the nearest
	hundredth

<u>Topics</u>

- Social Studies Money, economy, taxes •
- Science Collecting, analyzing, and interpreting data.
 LA Reasoning and explaining the reasoning used.

Big Ideas	Essential Questions
 Adding and subtracting with decimals will help me keep track of my earnings and spendings in my piggy bank. Multiplying with decimals will help me figure out how much more than one of an item costs. Multiplying with decimals will help me find how much tax there is on an item. Adding decimals will help me find out how much the item costs with tax. Dividing with decimals will help me figure out how much each person gets if we run a business (e.g. bake sale, lemonade stand) together. 	 Why do I need to know how to add and subtract decimals? Why do I need to know how to multiply decimals? Why do I need to know how to divide decimals? Why do I need to understand place value? Why is it important for me to understand properties of operations? Why do I need to be able to put my thinking process into words?

 Understanding place value for 	
decimals will help me to use the	
operations correctly.	
 Understanding properties of 	
operations as they relate to decimals	
will make it easier for me to solve	
multi-step problems later.	
 Being able to put my thinking 	
process into words will help me	
explain my science projects later.	

Bloom's Taxonomy Level: Apply	
Depth of Knowledge Level: DOK 2	

Assessment Item:

Students will individually solve the following equations: \$5 + \$1.32, \$7 - \$3.45, 0.67 x 0.4, 55.318 - 3.4

Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT	TEACHER ASSESSMENT
Students can add and subtract decimals.	I can add and subtract decimals.	Student(s) volunteer to teach the class how to solve the equation.
Students can multiply decimals.	I can multiply decimals.	Student(s) volunteer to teach the class how to solve the equation.
Students can divide decimals.	l can divide decimals.	Student(s) volunteer to teach the class how to solve the equation.

Point Value Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT			TEACHER ASSESSMENT
	3	2	1	
	3	2	1	
	3	2	1	

EXPECTATION	3	2	1

Power Standard #3:

5.NF.1. Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, 2/3 + 5/4 = 8/12 + 15/12 = 23/12. (In general, a/b + c/d = (ad + bc)/bd.

<u>Concepts</u>	<u>Skills</u>
 fractions unlike denominators mixed numbers equivalent fractions equivalent sum equivalent difference like denominators 	 Adding fractions with unlike denominators Subtracting fractions with unlike denominators Common denominators Replacing fractions with equivalent fractions Produce an equivalent sum of fractions Produce an equivalent difference of fractions

<u>Topics</u>

- Cooking Choosing which measuring spoons or cups to use. Doubling or decreasing a recipe.
- Science Measurements.
- Geography Map scales.

Big Ideas	Essential Questions
 Adding and subtracting fractions and	 Why is it important to know how
mixed numbers with unlike	to add and subtract fractions and
denominators will help me convert	mixed numbers with unlike
measurements when cooking.	denominators?

Bloom's Taxonomy Level: Analyze	
Depth of Knowledge Level: DOK 2	

Assessment Item: Solve: ½ - ¼ , ¾ + ¼ , 5 - ⅓ , ½ + ⅔ Think/Pair/Share

Three-Column Rubric

EXPECTATION	STUDENT	TEACHER ASSESSMENT
	SELF-ASSESSMENT	

Students can create equivalent fractions with common denominators.	I can work with a partner to create equivalent fractions with common denominators.	Thumbs up/Thumbs down
Students can add fractions with unlike denominators.	I can add fractions with unlike denominators by creating equivalent fractions.	Thumbs up/Thumbs down
Students can subtract fractions with unlike denominators.	I can subtract fractions with unlike denominators by creating equivalent fractions.	Thumbs up/Thumbs down

Point Value Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT			TEACHER ASSESSMENT
	3	2	1	
	3	2	1	
	3	2	1	

EXPECTATION	3	2	1

Power Standard #4:

5.NF.6. Solve real-world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.

Concepts	Skills
 real-world problems 	 Solve real world problems
multiplication	Solve word problems
fractions	Multiplication of fractions
mixed numbers	 Multiplication of mixed numbers
 visual fraction models 	 Using visual fraction models
equations	 Using equations to represent the
 problems 	problems

<u>Topics</u>

- Cooking Choosing the correct measuring spoons or cups. Increasing a recipe.
- Science Ratios.
- Home Ec. Amount of paint needed. Amount of flooring needed. Amount of material needed to make a project.

Big Ideas Essential Questions

 Being able to multiply fractions will make it easier to increase a recipe. Being able to multiply fractions will allow me to determine how much material I will need for a project. Being able to easily multiply by fractions will make it easier in the next grade. Understanding how to take a real-world problem and make it into a solvable equation will help me in my daily life. 	 Why do I need to know how to multiply fractions? Why do I need to know how to multiply mixed numbers? Why is it important to solve real-world problems with equations?

Bloom's Taxonomy Level: Understand Depth of Knowledge Level: DOK 2

Assessment Item:

Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT	TEACHER ASSESSMENT

Point Value Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT			TEACHER ASSESSMENT
	3	2	1	
	3	2	1	
	3	2	1	

EXPECTATION	3	2	1

Power Standard #5:

5.MD.1. Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real-world problems

<u>Concepts</u>	<u>Skills</u>
 different-sized standard measurement units measurement system conversions multi-step real-world problems 	 Convert standard measurement units using metric system Convert standard measurement units using customary (US) system Use conversions solving multi-step problems Use conversions solving real-world problems

<u>Topics</u>

- Geography Map scales.
- Science Measurements for data values. Measurements in experiments.
- Cooking Which units of measure to use for which ingredients. What to do when you don't have a unit of measure you want.

Big Ideas	Essential Questions

Bloom's Taxonomy Level: Analyze	
Depth of Knowledge Level: DOK 3	

Assessment Item:

Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT	TEACHER ASSESSMENT

Point Value Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT			TEACHER ASSESSMENT
	3	2	1	
	3	2	1	
	3	2	1	

EXPECTATION	3	2	1

Power Standard #6:

5.MD.3. Recognize volume as an attribute of solid figures and understand concepts of volume measurement. a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.

<u>Topics</u>

- Science Measuring liquids. Matter and mass.
- Cooking Measuring liquids.

Big Ideas	Essential Questions
 Understanding that volume is an attribute of a solid figure helps me measure the inside of containers. Understanding that volume is an attribute of a solid figure helps me find the amount of liquid I need for a project. Knowing the volume of something means that I can then find the right sized box for my item that I'm shipping. Knowing the volume of something means that I can find the right sized container to store my toys. 	 Why do I need to understand volume as an attribute of solid figures? Why would I need to understand the concept of volume measurement?

Bloom's Taxonomy Level: Understand	
Depth of Knowledge Level: DOK 3	

Assessment Item:

Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT	TEACHER ASSESSMENT

Point Value Three-Column Rubric

EXPECTATION		STUDENT ASSESS		TEACHER ASSESSMENT
	3	2	1	
	3	2	1	
	3	2	1	

EXPECTATION	3	2	1

Power Standard #7:

5.G.1. Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel from travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate)

Concento	Ckille
<u>Concepts</u>	<u>Skills</u>
 perpendicular 	 Use a pair of perpendicular number
 number lines 	lines as axes
 perpendicular number lines 	 Define a coordinate system
• axes	 Locate the origin on a coordinate
 coordinate system 	system (0,0)
intersection	 Recognize x-axis
• origin	 Recognize y-axis
• line	 Recognize x-coordinate (x,y)
• point	 Recognize y-coordinate (x,y)
• plane	 Use an ordered pair of numbers
 ordered pair 	 Understand first number indicates
numbers	how far to travel (horizontally) from
 coordinates 	the origin on the first axis with the
first number	convention of the axis being called the
• first axis	x-axis
direction	Understand first number indicates
 second number 	how far to travel (horizontally) from
 second axis 	the origin on the first axis with the
convention	

 two axes x-axis y-axis x-coordinate y-coordinate horizontal (not required) vertical (not required) 	 convention of the first point begin called the x-coordinate Understand second number indicates how far to travel (vertically) from the origin on the second axis with the convention of the axis being called the y-axis Understand second number indicates how far to travel (vertically) from the origin on the second axis with the convention of the second number indicates how far to travel (vertically) from the origin on the second axis with the convention of the second point being called the y-coordinate 	
Topics		

• Science - Reading, making, and interpreting graphs.

 Being able to put points on a graph means I can show data that I gathered through science experiments. Being able to put points on a graph will make it easier to find locations on a graph 	 Essential Questions Why do I need to put points on a graph? Why do I need to know how to read points on a graph?
 on a map. Being able to put points on a graph will let me plot a way from one place to another. Being able to put points on a graph means that I can use graphs in my science fair projects. Being able to read points on a graph will help me identify which location is closer. Being able to read points on a graph will allow me to predict what will happen next. 	

Bloom's Taxonomy Level: Analyze	
Depth of Knowledge Level: DOK 3	

Assessment Item:

Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT	TEACHER ASSESSMENT

Point Value Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT			TEACHER ASSESSMENT
	3	2	1	
	3	2	1	

3	2	1	

EXPECTATION	3	2	1

Power Standard #8:

5.G.2. Represent real-world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.

<u>Concepts</u>	<u>Skills</u>		
 real-world problems mathematical problems graphing points quadrant first quadrant coordinate coordinate plane coordinate values context 	 Graphing points in the first quadrant of a coordinate plane Represent real-world problems by graphing Represent mathematical problems by graphing Interpret coordinate values of points Interpret coordinate values of points in the context of the situation 		
 Science - Reading, making, and interpreting graphs. 			

D's Libras	
<u>Big Ideas</u>	Essential Questions
 Being able to put points on a graph means I can show data that I gathered through science experiments. Being able to put points on a graph will make it easier to find locations on a map. Being able to put points on a graph will let me plot a way from one place to another. Being able to put points on a graph means that I can use graphs in my science fair projects. Being able to read points on a graph will help me identify which location is closer. Being able to read points on a graph will allow me to predict what will happen next. 	 Why do I need to be able to graph points on a coordinate plane? What real-world problem would require me to use a graph?

Bloom's Taxonomy Level: Analyze	
Depth of Knowledge Level: DOK 3	

Assessment Item:

Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT	TEACHER ASSESSMENT

Point Value Three-Column Rubric

EXPECTATION	STUDENT SELF-ASSESSMENT			TEACHER ASSESSMENT
	3	2	1	
	3	2	1	
	3	2	1	

EXPECTATION	3	2	1