

COGNITIVE DIFFERENCES IN AUTISM AND LEARNING:

Professional Development for Physical Therapists

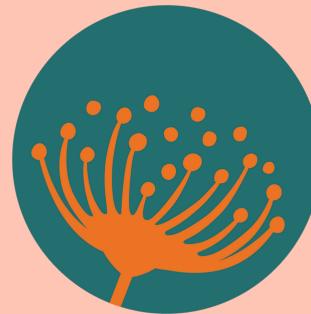
Student name: Emma Norton

Student number: s5098917

Assessment: Task 2 – Cognitive differences in autism and learning

Word Count: 1456

Course: Autism, Thinking, and Learning (7177EDN)


Lecturer: Raechel Smart

PHYSICAL THERAPY, LEARNING AND AUTISM

In this presentation:

- Take a dive into the theories and concepts underpinning cognitive differences in autism
- Explore how these differences influence learning and skill acquisition
- Recognise how autistic learning profiles may differ from neurotypical populations
- Highlight the role of physical therapists in building functional capacity and facilitating new skill learning
- Present strategies to:
 - Adapt interventions
 - Maximise engagement and success

EXECUTIVE FUNCTIONING IN AUTISM

Definition: Higher-order cognitive processes for goal-directed behaviour

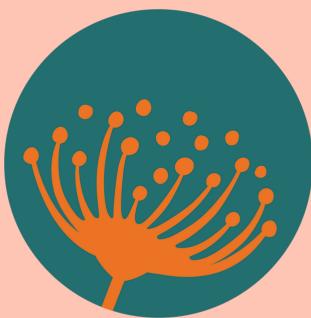
Includes: inhibition, working memory, cognitive flexibility, planning

- **Inhibition**

- Challenge in ~50% of autistic adults
- Worse under time constraints; better with visual cues
- More pronounced if Attention Deficit Hyperactivity Disorder (ADHD) co-occurs

- **Working Memory**

- Mixed findings; challenges mainly on complex/spatial tasks
- Some perform comparably to neurotypical peers


- **Cognitive Flexibility**

- ~50% experience challenges adapting to change
- Repetitive choices highlight preference for familiarity
- Clear, explicit task instructions can improve performance

- **Decision-Making**

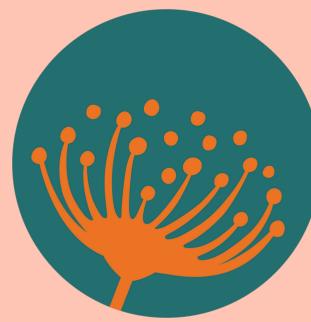
- Challenges less frequent but include slower choices, risk aversion, difficulty using contextual info
- Strengths: less influenced by societal pressures → potentially better decisions



EXECUTIVE FUNCTION AND PHYSICAL THERAPY

- **Motor-EF Link**
 - Poorer sensory-motor skills → greater executive dysfunction (Alsaedi, 2025)
 - Clinical assumption: greater motor challenges = greater EF regulation challenges
- **Behavioural Outcomes** (Fernandez-Prieto et al., 2020)
 - EF difficulties → anxiety, isolation, aggression, rule-breaking
 - Poor balance, endurance, body awareness → emotional regulation & social challenges
- **Exercise Benefits** (Jia et al., 2024)
 - Strong evidence for improvements in motor, cognitive & social skills

Key question: How do we support learning skills in therapy?

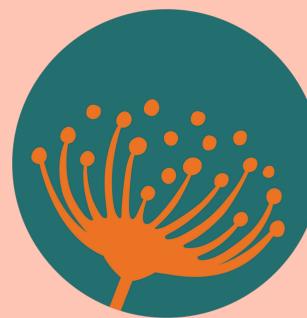


THE DOUBLE EMPATHY PROBLEM

- **Definition:** Mutual breakdown in communication between autistic & non-autistic individuals (Milton, 2012)
 - Differences in expressing, perceiving, and interpreting social/emotional cues
 - Challenges reflect differences in neurotypes, not deficits
- **Bidirectional Impact** (Milton, 2012):
 - Misunderstandings occur because each neurotype experiences the world differently
 - Empathy gap is two-way, not a one-sided deficit
- **Behavioural Adaptations** (Ekdale, 2023):
 - Autistic individuals may adapt behaviour around neurotypical people
 - Human development is shaped by reciprocal interactions
- **Consequences** (Mitchell et al., 2019):
 - Negative perceptions from neurotypical peers → systematically lower expectations
 - Can lead to social isolation, reduced sense of belonging
 - Ultimately impacts self-worth and quality of life

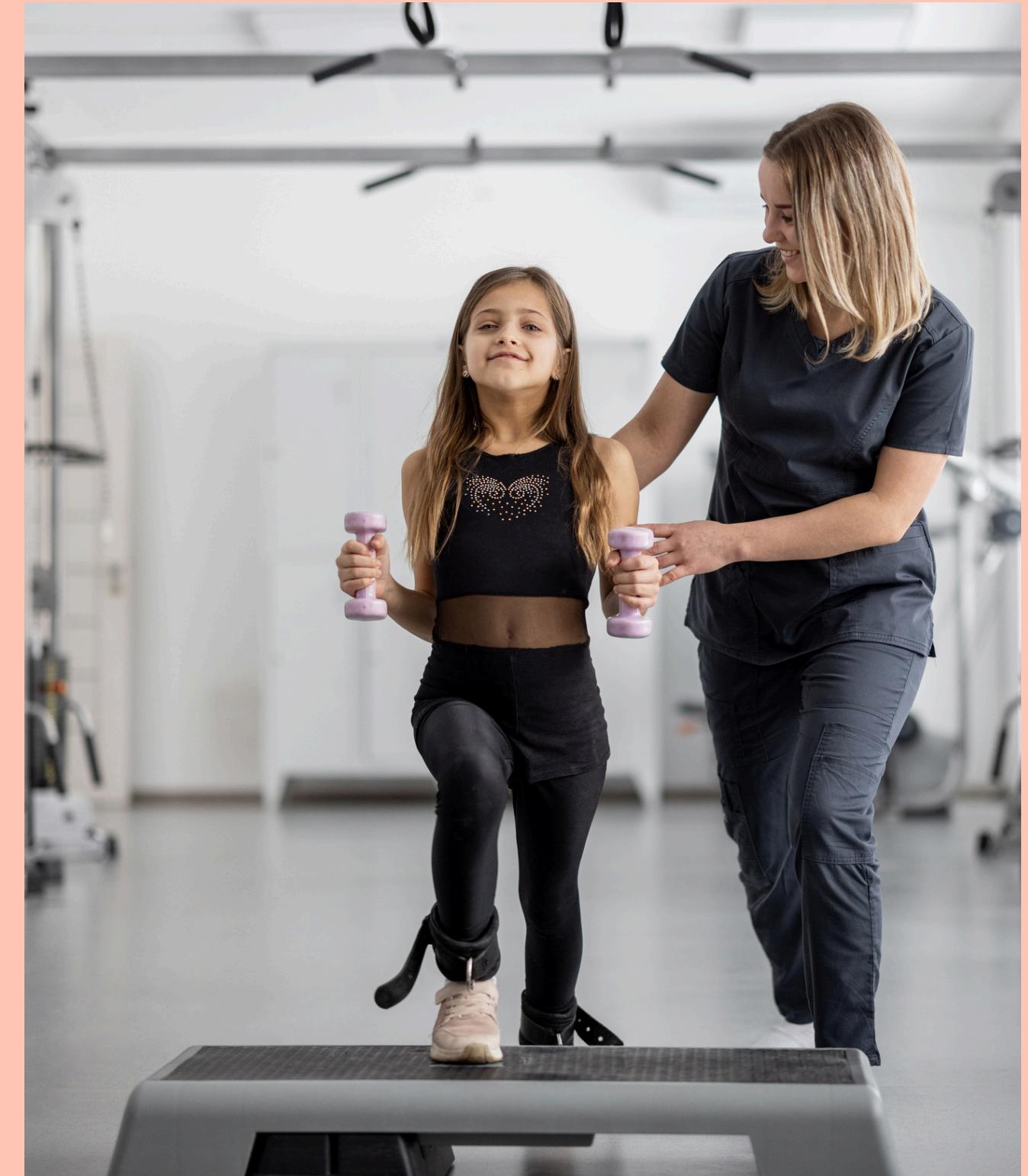
THE DOUBLE EMPATHY PROBLEM AND PHYSICAL THERAPY

- **Role of Allied Health Professionals:**
 - Observations & client reports guide treatment and progression
 - Understanding mechanism of DEP helps ensure clear, meaningful communication of expectations
- **Educational Impact** (Hummerstone & Parsons, 2022):
 - Poor understanding of preferences
 - Autistic strengths overlooked
 - Limited autism knowledge among staff
 - Minimal input from the child
- **Peer Engagement** (Chen, Schneider, & Patten, 2022):
 - Barriers: limited participation negotiation & differing interests
 - Success when participation aligns with strengths and shared interests are mutually meaningful


STRATEGIES FOR SUCCESS IN THERAPY

Evidence-Based Strategies for Supporting Autistic Individuals (Sandbank et al., 2021):

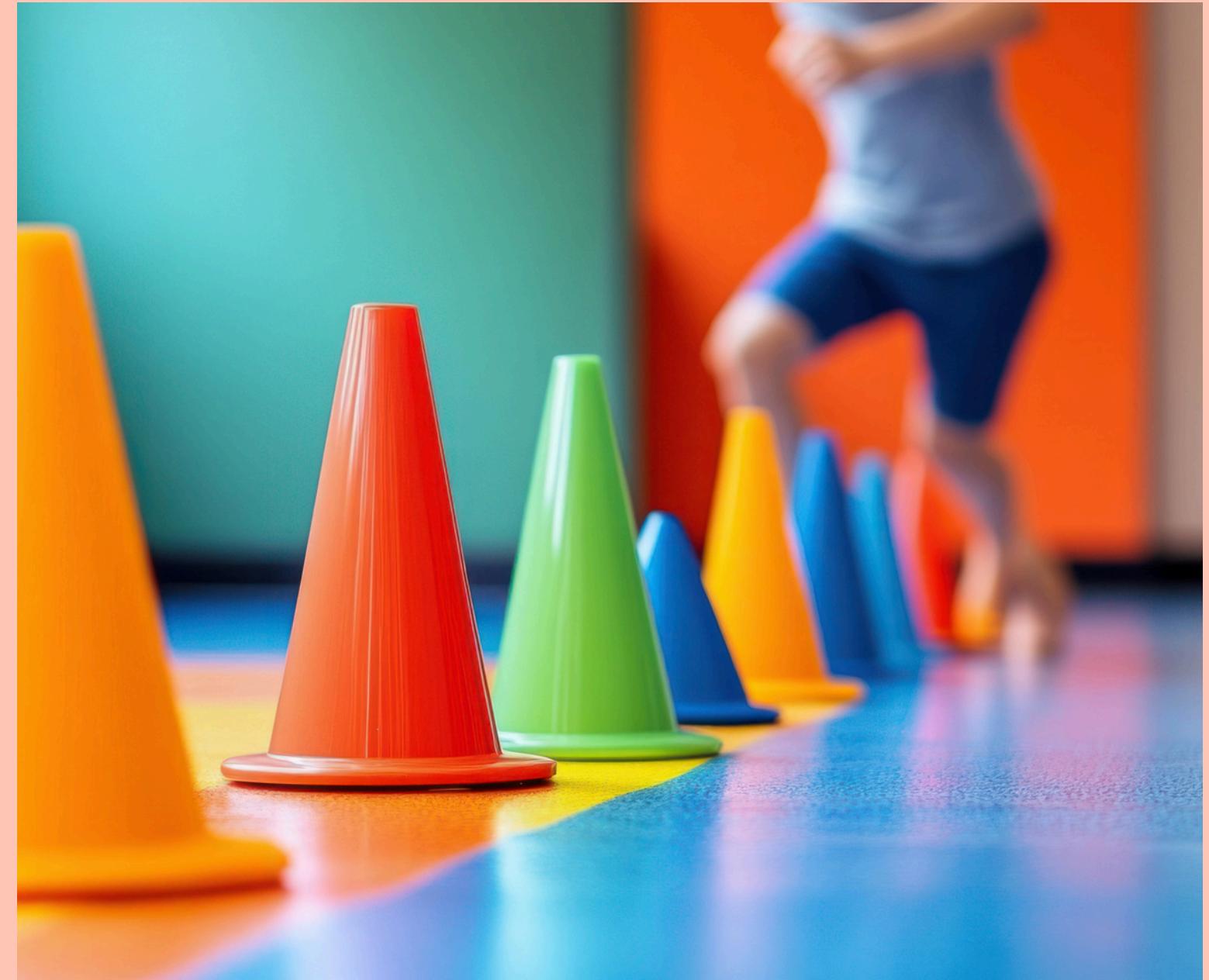
- Selecting appropriate, evidence-based strategies is crucial for effective support
- Autism research has evolved:
 - Changes in definitions & diagnostic criteria
 - Shifts in stereotypes and treatment approaches
- Many therapies used historically **lack evidence and effectiveness**
- Misconceptions persist about how to support autistic individuals across their lifespan



STRATEGY 1 - EXERCISE/PHYSICAL ACTIVITY

Rehabilitation Interventions for EF (Li et al., 2025)


- **Meta-analysis:** 23 high-quality rehabilitation studies on EF
- **Key finding:** Exercise interventions had the strongest effect on EF, especially:
 - Cognitive processing
 - Cognitive flexibility
- **Mechanisms of Benefit:**
 - Enhanced motor function & cognitive performance via dopamine modulation
 - Increased neurotransmitter activity & cerebral blood flow
 - Strengthened sensory-motor integration, improving attention
 - Improved self-regulation, supporting overall EF
 - Increased arousal and engagement

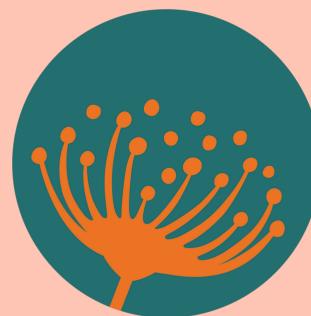

Key question: How do we design exercise sessions that specifically target EF?

STRATEGY 1 CONT.

APPLICATION OF EXERCISE FOR EF

- **Sung, Ku, Leung, and MacDonald (2022)**
 - Session Duration: ≥ 60 min, 3–5x/week → decreased fMRI activation in prefrontal cortex → improved neural efficiency
 - Exercise as Learning: Requires attention, memory, and inhibition of irrelevant behaviours
 - Aerobic Exercise: Produces greatest cognitive improvements vs. resistance, stretching, or HIIT
 - Task-Specific Challenges: e.g., kicking only a certain coloured ball → targets inhibitory control
- **Jia et al. (2024)**
 - Ball Games & Complex Tasks: Demand sustained attention, visual-spatial awareness, rapid decision-making → supports EF development
- **Clinical Applications:**
 - Use game-like activities requiring attention, memory, and inhibition
 - Provide clear, simple instructions, sequences, and reactive tasks
 - Encourage social engagement in sports
 - Incorporate variety, accounting for client strengths and interests to boost engagement and enjoyment

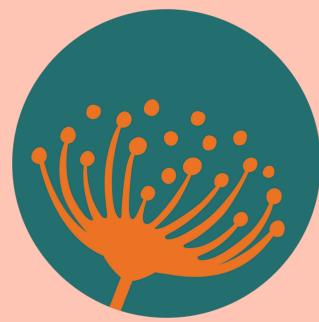
STRATEGY 2- VISUAL SUPPORTS


Double empathy problem = challenges in communicating information, building rapport, and delivering effective therapies (Morris et al, 2025)

- Explore alternative communication methods tailored to the client's preferences
- Autistic clients are more likely to:
 - Feel understood and validated
 - Express genuine feelings
 - Reduce masking or challenging behaviours

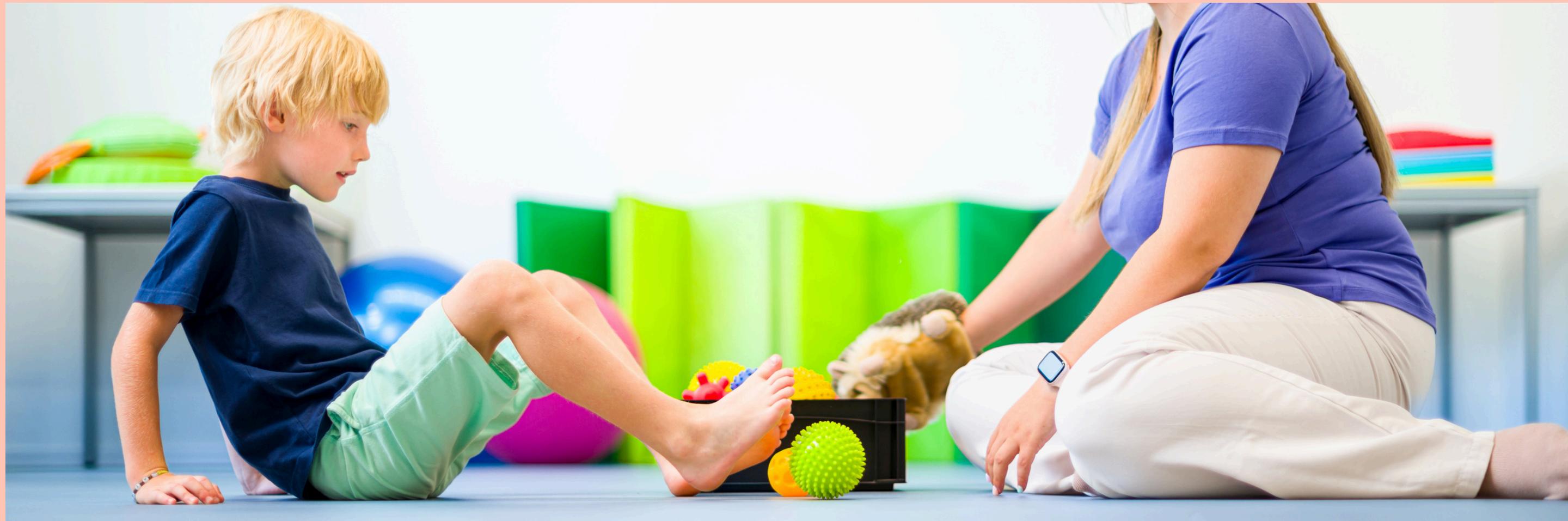
Support strategies enhance motor learning in children with autism (Holloway et al, 2022):

- Visual aids, Verbal prompts, Modelling, Immediate feedback
- Benefits:
 - Improved motor performance
 - Better acquisition of new skills



STRATEGY 2 CONT.

VISUAL AIDS & IMPROVED COMMUNICATION IN THERAPY


- **Forbes and Yun (2023):**
 - Picture task cards, visual activity schedules, and video prompting may enhance motor performance, improve task comprehension, reduce challenging behaviours
- **Al-Saadi and Al-Thani (2023):**
 - Mobile apps to identify and recognise emotions
 - Support emotional expression and regulation
 - Improved interpersonal and communicative skills

TAKE HOME MESSAGE

- **Understand cognitive differences:** EF and DEP shape learning, behaviour, and communication
- **Link motor skills & EF:** Poor motor performance can indicate EF challenges
- **Use evidence-based strategies:** Exercise, game-like tasks, and visual supports improve EF, motor skills, and engagement
- **Adapt communication:** Co-construct methods that respect autistic perspectives and reduce masking
- **Focus on meaningful outcomes:** Enhance learning in therapy, school, community, and daily life
- **Goal:** Foster neuro-affirming, empowering, and effective interventions for lasting impact

REFERENCES

Al-Saadi, A. M., & Al-Thani, D. (2023). Mobile application to identify and recognize emotions for children with autism: A systematic review. *Frontiers in Child and Adolescent Psychiatry*, 2, Article 1118665. <https://doi.org/10.3389/frcha.2023.1118665>

Alsaedi, R. H. (2025). Relation between executive functioning, sensory processing, and motor performance in children with autism. *BMC Pediatrics*, 25(457). <https://doi.org/10.1186/s12887-025-05756-9>

Duvall, L., May, K. E., Waltz, A., & Kana, R. K. (2023). The neurobiological map of theory of mind and pragmatic communication in autism. *Frontiers in Psychiatry*, 14, 1094949. <https://doi.org/10.3389/fpsyg.2023.1094949>

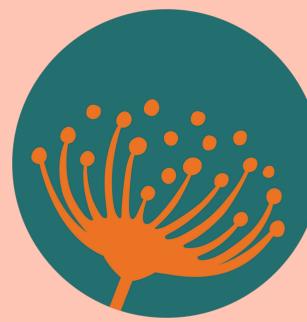
Fernandez-Prieto, M., Moreira, C., Cruz, S., Campos, V., Martínez-Regueiro, R., Taboada, M., & Sampaio, A. (2021). Executive functioning: A mediator between sensory processing and behaviour in autism spectrum disorder. *Journal of Autism and Developmental Disorders*, 51(6), 2091–2103. <https://doi.org/10.1007/s10803-020-04648-4>

Forbes, A. S., & Yun, J. (2023). Visual supports for children with autism in physical activity. *Adapted Physical Activity Quarterly*, 40(4), 781–806. <https://doi.org/10.1123/apaq.2022-0157>

Fletcher-Watson, S., Happe, F., & ProQuest. (2019). *Autism: A new introduction to psychological theory and current debates*. Routledge.

Gambra, L., Magallón, S., & Crespo-Eguílaz, N. (2024). Weak central coherence in neurodevelopmental disorders: A comparative study. *Frontiers in Psychology*, 15, 1348074. <https://doi.org/10.3389/fpsyg.2024.1348074>

Hedlund, Å., Andersson, A., Lindberg, M., & Jordal, M. (2025). Experiences and perceptions of physical healthcare among adult autistic patients: A scoping review. *International Journal of Nursing Studies Advances*, 9, 100366. <https://doi.org/10.1016/j.ijnsa.2025.100366>


Holloway, J. M., Tomlinson, S. M., & Hardwick, D. D. (2022). Strategies to support learning of gross motor tasks in children with autism spectrum disorder: A scoping review. *Frontiers in Psychology*, 13, 842724. <https://doi.org/10.3389/fpsyg.2022.842724>

Hummerstone, H., & Parsons, S. (2022). Co-designing methods with autistic students to facilitate discussions of sensory preferences with school staff: Exploring the double empathy problem. *International Journal of Research & Method in Education*, 46(1), 70–82. <https://doi.org/10.1080/1743727X.2022.2071864>

Jia, M., Hu, F., & Yang, D. (2024). Effects of different exercise modalities on pediatric and adolescent populations with developmental disorders: A network meta-analysis of randomized controlled trials. *European Journal of Pediatrics*, 184(1), 18. <https://doi.org/10.1007/s00431-024-05858-z>

Jia, R., Li, L., Lin, L., Zhang, J., & Ma, R. (2024). Benefits of exercise for children and adolescents with autism spectrum disorder: A systematic review and meta-analysis. *Frontiers in Psychiatry*, 15, 1462601. <https://doi.org/10.3389/fpsyg.2024.1462601>

REFERENCES

Ko, C.-L., Lin, C.-K., & Lin, C.-L. (2024). Relationship between executive function and autism symptoms in preschoolers with autism spectrum disorder. *Research in Developmental Disabilities*, 147, 104692. <https://doi.org/10.1016/j.ridd.2024.104692>

Li, L., Wang, C., Wang, Z., Wang, Y., & Xiao, Q. (2025). A network meta-analysis of the effects of different rehabilitation intervention strategies on executive function in children and adolescents. *European Journal of Pediatrics*, 184(637). <https://doi.org/10.1007/s00431-025-06372-6>

Milton, D. E., Waldock, K. E., & Keates, N. (2023). Autism and the 'double empathy problem'. In *Conversations on empathy: Interdisciplinary perspectives on empathy, imagination and othering* (pp. 78–97).

Mitchell, P., Cassidy, S., & Sheppard, E. (2019). The double empathy problem, camouflage, and the value of expertise from experience. *Behavioral and Brain Sciences*, 42, e100. <https://doi.org/10.1017/S0140525X18002212>

Morris, A. M., Kasdin, R. G., Shah, S., Hill, I., Bao, K. H., Singletary, W., & Rice, T. (2025). Autism spectrum disorder in child and adolescent inpatient psychiatric settings: Presentation, clinical strategies, and application of the double empathy problem. *Southern Medical Journal*. <https://doi.org/10.14423/smj.0000000000001857>

Rajendran, G., & Mitchell, P. (2007). Cognitive theories of autism. *Developmental Review*, 27(2), 224–260. <https://doi.org/10.1016/j.dr.2007.02.001>

Sandbank, M., Chow, J., Bottema-Beutel, K., & Woynaroski, T. (2021). Evaluating evidence-based practice in light of the boundedness and proximity of outcomes: Capturing the scope of change. *Autism Research*, 14(8), 1536–1542. <https://doi.org/10.1002/aur.2527>

St. John, T., Woods, S., Bode, T., Ritter, C., & Estes, A. (2022). A review of executive functioning challenges and strengths in autistic adults. *The Clinical Neuropsychologist*, 36(5), 1116–1147. <https://doi.org/10.1080/13854046.2021.1971767>

Sung, M.-C., Ku, B., Leung, W., & MacDonald, M. (2022). The effect of physical activity interventions on executive function among people with neurodevelopmental disorders: A meta-analysis. *Journal of Autism and Developmental Disorders*, 52(3), 1030–1050. <https://doi.org/10.1007/s10803-021-05009-5>

Vermeulen, P. (2015). Context blindness in autism spectrum disorder: Not using the forest to see the trees as trees. *Focus on Autism and Other Developmental Disabilities*, 30, 182–192. <https://doi.org/10.1177/1088357614528799>

Wood, R. (2021). Autism, intense interests and support in school: From wasted efforts to shared understandings. *Educational Review*, 73(1), 34–54. <https://doi.org/10.1080/00131911.2019.1566213>