

Global Surgical AI Healthcare, Inc.

Contact Information: mhkembel@outlook.com

Company

Global Surgical AI Healthcare, Inc. ("GS-AI") is developing a next-generation, AI-enabled **Operating System for real-time visualization and simulation across displays**—including surgical monitors, computers, iPads, and smart-glasses devices. The platform is designed to support high-risk, high-precision environments where professionals must visualize, test, and execute complex procedures with accuracy and speed.

Originally founded to support AI-assisted surgery and operating-room intelligence, GS-AI has expanded its architecture to serve both **healthcare and advanced engineering markets**, including aerospace and complex manufacturing.

The Problem

Healthcare and advanced engineering teams rely on fragmented tools to visualize workflows, test new designs, and guide real-time operations. Current platforms lack:

- a unified display operating environment,
- native Digital Twin simulation, and
- real-time AI guidance integrated across devices.

This leads to slower validation, higher development and operational risk, and limited real-time decision support during critical procedures and testing.

Our Solution – GS-AI Display Operating System™

GS-AI is building a proprietary, display-first operating system that enables professionals to:

- visualize live data, imaging, and system telemetry across multiple display devices,
- receive AI-driven instructions and workflow guidance in real time, and

- deploy secure applications through a standardized developer platform.

The operating system acts as a unified runtime layer for visualization, simulation, and execution across clinical and engineering environments.

Digital Twin & Simulation Platform

At the core of the platform is an integrated **Digital Twin engine** that allows users to create real-time virtual replicas of:

- organs, surgical tools, operating rooms, and clinical workflows, and
- industrial systems such as aircraft engines, robotics systems, and complex manufacturing equipment.

This enables surgeons and engineers to **test procedures and prototypes first—before physical execution or manufacturing**, improving safety, reducing cost, and accelerating innovation.

Primary Markets & Use Cases

GS-AI serves two initial verticals:

- **Healthcare and Surgery**: surgical planning and rehearsal, real-time procedural visualization, training, and simulation.
- **Advanced Engineering and Aerospace**: prototype validation, Digital Twin testing of complex systems, and workflow simulation for safety-critical environments.

Business Model

GS-AI will generate revenue through:

- enterprise and institutional **subscription licensing** (per user, team, or facility), and
- **platform and OEM licensing** to device manufacturers, system integrators, and hardware partners.

Additional revenue includes developer platform access, Digital Twin compute services, and enterprise customization and support.

Regulatory & Commercial Strategy

For healthcare use, the platform is being designed under a phased regulatory strategy beginning

with visualization, planning, and simulation use cases, followed by regulated clinical decision-support capabilities under FDA software-as-a-medical-device frameworks.

This staged approach enables early commercial adoption while managing regulatory risk.

Competitive Advantage

GS-AI differentiates by delivering:

- an operating-system-level platform rather than a single application,
- native Digital Twin and simulation capabilities,
- multi-device deployment, and
- real-time AI-driven workflow guidance designed for regulated and safety-critical environments.

Leadership

The company is led by **Mark Kembel, Founder & CEO**, a technology executive and serial entrepreneur with experience in large-scale software platforms, operating-system development, AI, and enterprise technology.

Offering Summary

- **Issuer:** Global Surgical AI Healthcare, Inc.
- **Securities:** Preferred Stock (or Common Stock, subject to final legal structuring)
- **Target Raise:** Up to **\$10,000,000**
- **Minimum Investment:** **\$100,000**
- **Offering Type:** Private placement to accredited investors under Regulation D

Use of Proceeds

Funds will be used to complete core operating-system development, build the Digital Twin and simulation engine, execute healthcare and engineering pilot programs, advance regulatory readiness, secure intellectual property, and establish strategic industry partnerships.

Growth Strategy

The Company's go-to-market approach includes:

- **initial pilots with surgical and engineering partners**
- **academic and enterprise validation programs**
- **device manufacturer and display hardware partnerships**
- **developer ecosystem enablement**
- **strategic alliances in healthcare and aerospace sectors**

Risk Factors (Summary)

Investment in the Company involves substantial risks, including:

- **technical development and integration risk**
- **regulatory approval timelines for clinical use**
- **competitive pressure from large platform providers**
- **dependency on customer adoption of new display and spatial technologies**
- **funding and execution risk**

Leadership & Vision

The Company is led by its Founder and CEO, **Mark Kembel**, a serial technology entrepreneur and executive with experience in:

- large-scale software platforms,
- operating system and systems-level development,
- AI and advanced visualization technologies,
- and regulated and enterprise technology environments.

GS-AI is built around a long-term vision to create the foundational operating system for real-time, AI-assisted visualization and simulation across both healthcare and advanced engineering industries.

Vision

GS-AI is building the foundational operating system for AI-assisted visualization, simulation, and execution across healthcare and advanced engineering—enabling professionals to validate complex procedures and systems before they are deployed in the real world.