

## Electro-Aeration Data sheet: Poly-Aromatic Hydrocarbon disinfection water application With potential for PFAS remediation in drinking water

Electro-Aeration has introduced a technology based on the electro-catalytic principles of disinfection through anodic reactions. Electro-Aeration advances take this nascent science to the next innovative level. This overall breakthrough is called Electro-Aeration and as the name implies utilizes electricity in water to generate oxygen or aeration in a body of water.

The chemical reactions generated by Electro-Aeration's specific and patent pending anodic coatings, spatial geometry and current density allows us to accomplish the following:

- 1. Efficient disinfection avoids the generation of Disinfectant By Products (DBP) by concurrent generation of Reactive Oxygen Species, thus completing redox reactions.
- 2. Very rapid flow decontamination or oxidation through without the addition of NaCL or other chemical compounds.
- 3. As a complete reaction and depending on initial water quality, we attain lower turbidity levels without the need for media or filtration.
- 4. By monitoring flow and current density, we can accomplish BOD reduction on waters of any conductivity.
- 5. Scalability to any quantity of water by use of our modular 20-foot containers in parallel.
- 6. Low energy consumption attained through spatial geometry of the anodes/cathodes.
- 7. Increased DO levels which concurrently lower BOD, such as bacteria, Nitrogen species and organic COD.

The original testing notes are as follows:

Notes on Stena water test results.

A tote (1m<sup>3</sup>) was delivered to our laboratory in Sweden for processing with our reactor system.

## Measurement Notes:

Analyses: DO: Dissolved Oxygen increased 2.61 mg/l. Increased DO in water indicates a proportional decrease in BOD-bacteria and N compounds. Increased DO saturation is also vital for remediation and increasing sea life potential. The ship ultimately becomes a wastewater treatment plant discharging oxygen rich water.

ORP dropped 374 mV to minus (-) 145. A negative ORP reading indicates that a substance is a reducing agent. The lower the reading, the more anti-oxidizing it is. This drop indicates that we created an anti-oxidant rich water. Turbidity-self-explanatory, clearer water means less particulates.

Results: flow through roughly 100 l/m 1-minute residence time.

Electro-Aeration™ Incorporated 1736 N. Van Ness Los Angeles, CA, USA



## Device Model = Aqua TROLL 600

| Date Time                                               | DO<br>Mgl | DO<br>(%Sat) | Oxygen<br>(Torr) | рН   | pH<br>mV | ORP<br>(mV) | Turbidity<br>(NTU)   | Conductivity<br>(µS/cm) |
|---------------------------------------------------------|-----------|--------------|------------------|------|----------|-------------|----------------------|-------------------------|
| 7/3/20 Before                                           | 12.43     | 111.36       | 171.05           | 8.59 | (89.42)  | 229.05      | 31.94                | 103.33                  |
| 7/3/20 After                                            | 15.04     | 134.71       | 206.92           | 8.15 | (64.47)  | (145.44)    | 20.75                | 94.92                   |
| Resultat & Dataö<br>ST2008687   Er<br>(copy available o | referens  | : Stena-\    |                  |      |          |             |                      |                         |
| ELEMENT                                                 |           |              |                  |      |          | SAMPLE      | Open Loop-<br>Before | Open Loop-<br>After     |
| Sampling Date                                           |           |              |                  |      |          |             | 2020-07-01           | 2020-07-01              |
| SO <sub>4</sub> , sulphate                              |           |              |                  |      |          | mg/L        | 1750                 | 43.1                    |
| Sulphite as SO <sub>3</sub> <sup>2-</sup>               |           |              |                  |      |          | mg/L        | 5.9                  | <5.0                    |
| Naphtalene                                              |           |              |                  |      |          | μg/L        | 0.485                | <0.030                  |
| Fluorene                                                |           |              |                  |      |          | μg/L        | 0.022                | 0.024                   |
| Phenantrene                                             |           |              |                  |      |          | μg/L        | 0.026                | <0.020                  |
| Sum PAH 16                                              |           |              |                  |      |          | μg/L        | 0.533                | 0.024                   |
| Sum carcinogen PAH                                      |           |              |                  |      |          | μg/L        | <0.035               | <0.035                  |
| Sum other PAH                                           |           |              |                  |      |          | μg/L        | 0.533                | 0.024                   |
| Sum PAH L                                               |           |              |                  |      |          | μg/L        | 0.485                | <0.025                  |
| Sum PAH M                                               |           |              |                  |      |          | μg/L        | 0.048                | 0.024                   |
| Sum PAH H                                               |           |              |                  |      |          | μg/L        | <0.040               | <0.040                  |
| S, sulphur                                              |           |              |                  |      |          | mg/L        | 686                  | 14.1                    |
| nitrite as N                                            |           |              |                  |      |          | mg/L        | 0.0770               | <0.0020                 |
| NO <sub>3</sub> -N, nitrate as N                        |           |              |                  |      |          | mg/L        | <0.060               | 0.820                   |
| Nitrite                                                 |           |              |                  |      |          | mg/L        | 0.253                | <0.0050                 |

Electro-Aeration is in the process of conducting further testing as well as designing a 20-foot standard container that could process  $8-10,000~\text{m}^3$  of scrubber water per 24-hour day. Or (7 m³/minute) with an energy consumption: (+/)20 Kw/H total daily cost: 500~Kw/H