
E. MAGNETIC PROPERTIES OF COORDINATION COMPOUNDS 

 

Introduction: 

 

Electrons have a magnetic moment that can be aligned either with/or in opposition to an applied 

magnetic field, depending on whether the spin magnetic quantum number, ms, is +1/2 or –1⁄2. For an 

atom or ion with only paired electrons, the individual electron contributions to the overall spin 

magnetic quantum number, Ms, cancel one another, giving a zero net value of the overall spin quantum 

number; i.e., S = 0. Such a species is said to be diamagnetic. If a diamagnetic material is placed 

between the poles of a strong magnet it will experience a repulsion for the applied field. The repulsion 

arises from circulation of the electrons caused by the applied field, resulting in an induced magnetic 

field in opposition. Suppose the sample is suspended between the poles of the magnet and is connected 

to the pan of an analytical balance. This is the experimental arrangement of a Gouy balance.  As a 

result of the induced diamagnetic repulsion, the sample will appear to weigh less in the magnetic field, 

compared to its true weight outside the field. When removed from the applied field, the sample has no 

residual magnetic moment, and its apparent weight will be its true weight. 

 

If the sample contains one or more unpaired electrons, the overall spin quantum number will be greater 

than zero; i.e., S > 0. Such a species is said to be paramagnetic. If a paramagnetic species is placed 

between the poles of a strong magnet it will experience an attraction for the field, due to the alignment 

of the permanent paramagnetic moment with the applied field. If the sample is weighed with a Gouy 

balance, it will appear to be heavier in the magnetic field, compared to its true weight outside the field. 

With the exception of monatomic hydrogen, all atoms or ions with unpaired electrons also have paired 

electrons. In an applied field, these paired electrons and their associated induced diamagnetic moment 

slightly mitigate the paramagnetic attraction for the applied field. Nonetheless, the paramagnetic 

moment is always stronger than the opposing diamagnetic moment, so the net effect is an attraction for 

the field. However, whenever we refer to a substance as paramagnetic, owing to an electronic 

configuration having unpaired electrons, we must realize that there is also a subtractive diamagnetic 

contribution to the overall magnetic moment of the sample. 

 

Transition metals, by definition, have at least one oxidation state with an incompletely filled d or f 

subshell and are consequently paramagnetic. The magnetic moment, μ, results from both the spin and 

orbital contributions of these unpaired electrons. The presence of coordinated ligands around the metal 

ion quenches the orbital contribution to greater or lesser degree, making the spin contribution most 

important. As an approximation, the expected magnetic moment for an ion with a certain number of 

unpaired electrons can be estimated from the spin-only magnetic moment, μs, which disregards orbital 

contributions: 

 

     μs = g [S(S+1)]   (1) 

 

In equation (1), g is the gyromagnetic ratio (g = 2.00023) and S = n (1⁄2), where n is the number of 

unpaired electrons in the configuration. Substituting g = 2 and S = n (1⁄2) into equation (1), we can 

calculate the spin-only moment in terms of the number of unpaired electrons from the expression: 

 

    μs = [n(n+2)]   (2) 

 

Thus, for a d
1
configuration, such as Ti

3+
, we obtain μs = [1(1 + 2)] = 3 = 1.73. The units of the 

magnetic moment are Bohr magnetons (BM). Actual magnetic moments tend to be somewhat larger 

than the spin-only values obtained from either equation (1) or (2), owing to incomplete quenching of 

the orbital contribution. Nonetheless, the experimentally obtained value of the effective magnetic 

moment, μeff, taken as approximately the spin-only value, often serves as a practical means of 

determining the number of unpaired electrons on the transition metal in a complex. This, in turn, gives 

information about the spin state of the metal and can suggest its oxidation state or mode of bonding. 

 

Magnetic moments are not measured directly. Instead, they are calculated from the measured magnetic 



susceptibility, . Over the years there have been a number of techniques used to determine magnetic 

susceptibilities of transition metal complexes. These include the Gouy method, the Faraday method, 

and the NMR method. Of these, only the Faraday and NMR techniques are suitable for microscale 

samples of 50 mg or less. In 1974, D. F. Evans2 of Imperial College, London, developed a new type of 

magnetic susceptibility balance suitable for semi-microscale samples, which is commercially available 

from Johnson Matthey. The Evans balance employs the Gouy method in a device that is compact, 

lightweight, and self-contained. It does not require a separate magnet or power supply, and is therefore 

portable. The instrument has a digital readout that provides quick and accurate readings, with 

sensitivity matching traditional apparatus. It can be used with solids, liquids, and solutions. As such, 

the Evans balance is ideal for our purposes. 

 

In the Gouy method, as previously noted, the balance measures the apparent change in the weight of 

the sample created by the sum of the diamagnetic repulsion and paramagnetic attraction for the applied 

field. The Evans balance uses the same principle, but instead of measuring the force that the magnet 

exerts on the sample, it measures the equal and opposite force the sample exerts on a suspended 

permanent magnet. The Evans balance determines this force by measuring the change in current 

required to keep a set of suspended permanent magnets in balance when their fields interact with the 

sample. The magnets are on one end of a balance beam, and when interacting with the sample change 

the position of the beam. This change is registered by a pair of photodiodes set on opposite sides of the 

balance beam's equilibrium position. The diodes send signals to an amplifier that in turn supplies 

current to a coil that will exactly cancel the interaction force. A digital voltmeter, connected across a 

precision resistor in series with the coil, measures the current directly. This current is displayed on the 

digital readout. 

 

The sample's magnetic susceptibility per gram is called the mass magnetic susceptibility, g. For the 

Evans balance, the general expression for the mass magnetic susceptibility is 

  g = L/m [C(R-Ro) + v' A]   (3) 

where 

g : mass (gram) magnetic susceptibility 

L :  sample length in centimeters 

m : sample mass in grams 

C : balance calibration constant of the instrument 

R : reading from the digital display when the sample (in the sample tube) is in  place in the balance 

Ro : reading from the digital display when the empty sample tube is in place in the balance 

v' : volume susceptibility of air (0.029 x 10
-6

 erg . G-2
 . cm

-3
) 

A : cross-sectional area of the sample 

 

The volume susceptibility of air is usually ignored with solid samples, so equation (3) can be rewritten 

as: 

   C.L.(R - Ro)    g = -----------------      (4) 
     m . 10

9
 

 

Equation (4) gives the mass magnetic susceptibility in the cgs-units of erg . G
-2

 . cm
-3

 (where G is 

Gauss). The calibration standards usually employed in magnetic susceptibility measurements are 

Hg[Co(SCN)4] or [Ni(en)3]S2O3, which have g values of 1.644 x 10
-5

 and 1.104 x 10
-5

 erg . G-2
 . cm

-3
, 

respectively. A preferred method to evaluate C in equation (4) is to perform the experiment with one 

of these calibration standards employing the appropriate value of χg. In order to avoid the use of a 

mercury compound we will use the [Ni(en)3]S2O3. 

 

The molar magnetic susceptibility, M , is obtained from the mass magnetic susceptibility by 

multiplying by the molecular weight of the sample in units of g/mol; i.e.,  

 

   M = Mg      (5) 

 



The units of M are erg . G-2
. This experimentally obtained value of χM includes both paramagnetic 

and diamagnetic contributions, which we may identify as χA and χα, respectively. All sources of 

paired electrons (e.g., ligands, counter ions, core electrons on the paramagnetic species) contribute to 

the diamagnetic portion of the overall susceptibility. In 1910, Pascal observed that these contributions 

were approximately additive and consistent from sample to sample. Consequently, the diamagnetic 

contribution to the observed molar susceptibility can be estimated as the sum of constants (called 

Pascal's constants) for each diamagnetic species in the sample. We are interested in the paramagnetic 

molar susceptibility, which can be obtained by removing the diamagnetic contributions from M. Thus 

we may write 

   M
corr

 = M -       (6) 

 

Values of M
corr

, called the corrected magnetic susceptibility, are inherently positive, while those of  

are inherently negative. Thus, for a paramagnetic substance, it must be that M
corr

 > M 

   μeff = [3kTM
corr

 / N]      (7) 
 

The value of the effective magnetic moment, μeff, can be determined from M
corr

 by the Curie Law 

equation where k is the Boltzmann constant, T is the absolute temperature (K), N is Avogadro's 

number, and  is the Bohr magneton. If the appropriate constants are substituted, equation (7) becomes 

   μeff = 2.828 [M
corr 

. T] = [n.(n + 2)] (8) 

 

where n is the numper of unpaired electrons on metal.  

 

From μeff = [n.(n + 2)] Bohr Magneton (BM) the expected values of μeff for transition-metal 

complexes with n = 1–5 unpaired electrons are as follows. 

 

n S μeff  (BM) 

1 1/2 1.73 

2 1 2.83 

3 3/2 3.87 

4 2 4.90 

5 5/2 5.92 



Experiment 8. 

 

 

Experimental Procedure: 

 

This experiment uses a modified form of the Guoy balance method, using a microscale apparatus 

devised by D. F. Evans and manufactured by Johnson-Matthey.  

 

 
 

A moveable magnet attached to a torsion balance detects the force created by diamagnetic and 

paramagnetic moments in the sample. Diamagnetic moment makes the magnet move down. 

Paramagnetic moment makes the magnet move up.  

 

The first measurement have been made with the calibration standard [Ni(en)3]S2O3 in order to obtain a 

value of instrument constant, C, and the instrument constant in equation (4) has been calculated as 

1.30. The following procedure will be completed for i) [Co(NH3)6]Cl2, (product material of 

experiment #5 part-I), ii) [Co(NH3)5NO2]SO4 (product material of experiment #5 part-II), iii) 

[Ni(NH3)6]Cl2 (product material of experiment #2 part-I), iv) FeCl3.6H2O, iv) VO(acac)2 (product 

material of experiment #7), and vi) K[Cr(ox)2(H2O)2].2H2O, (product material of experiment #5), the 

compounds you have already produced and stored in previous experiments.  

 

1. Turn the RANGE knob on the balance to ×1 and allow the balance to warm up for 30 min. 

 

2. Adjust the ZERO knob until the display reads 000. The zero should be readjusted if the range is 

changed. 

 

Note: The zero knob on the balance has a range of 10 turns. It is best to operate the balance in the 

middle of this range. This can be accomplished by turning the knob 5 turns from one end and then, 

ignoring the bubble level, adjusting the back legs of the balance until the digital display reads about 

zero. Once this is done at the beginning of the laboratory, all further adjustments can be made with 

the knob on the front of the instrument. 

 

3. Place an empty tube of known weight (analytical balance) into the tube guide on top of the 

instrument and take the reading Ro. 

 

Note: The instrument can drift over short periods of time and should be rezeroed before each 

measurement. On the ×1 setting the digital display should fluctuate by no more than ±1. However, 

when you record R or Ro take a "visual average" of this fluctuation and use this as your reading. 

 



4. Carefully fill the sample tube with the solid so that the height will be at least 2 cm after packing. A 

lesser amount will not give a stable reading of R. Gently tap the bottom of the tube on a hard surface 

(not the table the balance is on) to pack the sample. When it is well packed, measure the sample length 

in centimeters to obtain the value of L. Then, obtain the mass of the sample in grams. 

 

Note: If necessary, use a mortar and pestle to grind the sample into a fine powder before attempting to 

fill the sample tube. 

 

5. Rezero the instrument, place the packed sample tube into the tube guide, and take the reading R. A 

negative reading indicates a diamagnetic sample. If the reading is off-scale, change the RANGE knob 

to ×10, rezero, and multiply the reading by 10. 

 

Note: A critical part of the technique is correctly packing the well-powdered solid in the sample tube. 

To be sure you have the true value of R after the first reading, repeatedly tap the bottom of the tube 

firmly but gently on a hard surface for about 30 - 60 seconds. Then, take another reading of R. 

Continue this until you have three values that agree within ±1. Also, during the tapping process ensure 

that the solid forms an even surface in the tube and is not sloped to one side. 

 

6. Using a thermometer placed or suspended near the instrument, determine the temperature in  
o
C. 

 

7. Remove the sample from the tube by inverting it and gently tapping it on a piece of weighing paper 

on a hard surface. Do not tap too hard, since the glass lip can be easily broken. After the tube is empty, 

rinse with an appropriate solvent from a disposable pipette with a fine tip (Pasteur pipette).  

 

 

 

 

Calculating Magnetic Moment: 

 

1. Using equation (4), calculate the gram susceptibility, Xg by using the mass susceptibility (sample) 

from your recorded values of L, Ro, R, m, and C. You will need the value of T for the calculation of μ 

from the Curie Law, equation (8). 

 

2. The molar magnetic susceptibility, XM, is obtained from Xg by multiplying by the molecular weight 

of the sample in units of g/mol. 

XM = M.Xg 
Units of XM are erg.G

–2
. 

 

3. Diamagnetic corrections need to be applied to this measured molar magnetic susceptibility. The 

diamagnetic contributions arise from core paired electrons, ligand electron pairs, and counter ion 

electron pairs. Therefore, 

 

XM
corr

 = XM – { XM (core) + XM (ligand) + XM (ion)}  

 

Each ligand or ion correction factors should be multiplied by stoichiometric number in the chemical 

formula. The diamagnetic correction factors are tabulated values, called Pascal's constants (values 

from G. A. Bain and J. F. Berry, J. Chem. Educ., 2008, 85, 532).  

 

4. Apply Curie Law, equation (8) in order to find  the number of unpaired electrons, n, 

 

μeff = 2.828 [M
corr 

. T] = [n.(n + 2)] 

 

Do not forget to take the temperature (in Kelvin) at the time of the measurements to use in this 

calculation. 



DATA SHEET 

 

Sample Mass (g) Height (cm) Ro R MW n 

 

i) [Co(NH3)6]Cl2 

      

 

ii) [Co(NH3)5NO2]SO4 

      

 

iii) [Ni(NH3)6]Cl2 

      

 

iv) FeCl3.6H2O 

      

 

iv) VO(acac)2  

      

 

vi) K[Cr(ox)2(H2O)2].2H2O 

      

 

 

T=________
o
C= ______ K



 

 


