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1  |  OBSERVATION

Cold environmental conditions reduce the activity and me-
tabolism of many species in temperate regions (Geiser,  2020; 
Hut et  al.,  2002; Nordberg  & Cobb,  2016, 2017; Staples,  2016; 
Taylor  & Nol,  1989; Tøien et  al.,  2011; Turbill  & Geiser,  2008). 
As lower temperatures reduce the physiological and behavioural 

performance of ectotherms (Huey  & Stevenson,  1979; Taylor 
et  al.,  2021), individuals may brumate until the surrounding en-
vironment warms, and normal function can resume (DeGregorio 
et  al.,  2017; Grobman,  1990). For preferentially aquatic species, 
such as freshwater turtles, overwintering in water may offer the 
added advantage of thermal buffering from freezing surface tem-
peratures (Taylor & Nol, 1989) and refuge from predation during 
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Abstract
Frozen water bodies provide a physiological challenge to fauna by physically limiting 
access to atmospheric oxygen. To tolerate low temperatures, reptiles use brumation 
as a physiological strategy in winter. Cryptodira vary in their tolerance to freezing 
conditions but the extent of tolerance in pleurodirans is largely unknown. Australia's 
freshwater turtles inhabit warmer regions with less severe winters and have well-
developed mechanisms to cope with high temperatures and drying waterbodies, 
rather than extreme cold tolerance. Chelodina longicollis is a widespread Australian 
freshwater turtle species that tolerates high temperatures and desiccation during hot, 
dry periods while also undergoing brumation during winter months. Despite extensive 
research, limited observations exist on their behaviour during severe winter periods 
at the extremes of their range. In an 11-month tracking study, we monitored adult C. 
longicollis, noting their movements, locations, and temperature weekly. We observed 
an adult female C. longicollis which, during a seven-month period within a single creek 
pool, survived brumation in extreme cold water including a 15-day period of total 
freezing of the surface water. After the ice melted following a rain event, the turtle 
was recaptured alive. This marks the first observation of brumation for an Australian 
chelid species under ice.
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periods of inactivity (Greaves & Litzgus, 2007). However, aquatic 
environments may pose challenges for overwintering turtles 
due to water surfaces freezing and preventing the exchange of 
atmospheric oxygen with the water (St. Clair  & Gregory,  1990). 
Additionally, dissolved oxygen decreases under ice, and animals 
may encounter anoxic sediments when burying as a mechanism 
to buffer against cold temperatures (Brown  & Brooks,  1994; 
Jackson & Ultsch, 2010).

While the winter activities of North American freshwater tur-
tles are well documented (Robichaud et al., 2023), observations of 
Australian chelids have largely been limited to areas where winters 
are relatively mild (Seebacher et  al.,  2004, Van Dyke et  al.,  2023) 
or in laboratory settings (Chessman,  2019). Freshwater turtles 
are widespread along coastal Australia, with 25 native freshwater 
species across the continent (Van Dyke et  al.,  2018). The eastern 
long-necked turtle, Chelodina longicollis, has an extensive distribu-
tion, ranging from the Fitzroy River in Northern Queensland to Port 
Lincoln, South Australia, at its most southwestern extent (Kennett 
et  al.,  2009). Introduced populations have become established 
in the cold climates of Tasmania and on islands of the Bass Strait, 
largely due to the release of domestic pets (Fearn, 2013; Ferronato 
et al., 2015). Despite the potential for eastern long-necked turtles to 
endure icy winters, little is known of the brumation activity of adult 
C. longicollis outside of brumating both terrestrially and underwater 
(Kennett et al., 2009). Here, we describe the brumation of an adult 
C. longicollis female in a pool with a continually frozen water surface 
for a period of at least 15 days. Our observations were made during 
a study of the spatial ecology of C. longicollis in the New England 
area of New South Wales (NSW), Australia. The New England 
Region of NSW likely represents the upper elevation limit of C. lon-
gicollis (Kennett et al., 2009), with populations recorded at 1340 m 
(−30.4014, 151.6289; D.S. Bower & E.J. Nordberg unpublished data). 
Turtles in this study were captured from Duval and Sandy Creeks 

on the University of New England's Newholme SMART farm from 9 
October 2022 to 4 December 2022. These turtles were fitted with 
GPS data loggers (Advanced Telemetry Systems W510 Wildlink) 
and released at the point of capture. Data loggers recorded ambient 
temperature, percentage of time spent moving in the 15 min prior to 
logging via accelerometer, elevation, and GPS location if out of water 
and the logger could connect to satellites.

Following its release on 19 November 2022, a C. longicollis 
moved 590 m south-west from its original point of capture and re-
lease, Sandy Creek (−30.4248, 151.6511), to a small, shallow pool 
(−30.4265, 151.6482) in an ephemeral creek line (Figure  1). This 
creek pool measured 11 m2 and had a depth that fluctuated between 
0.3 and 0.5 m throughout the period of observation. The creek pool 
was located at the bottom of a highly eroded gully and was approx-
imately 2.5 m below the average ground level of the surrounding 
countryside. To the north, a moderately wooded hillside shaded the 
pool from direct sunlight for most of the day during winter months. 
Additionally, Broadleaf Cumbungi (Typha orientalis C. Presl) grew 
thickly throughout the pool and provided significant shade from di-
rect sunlight. The turtle displayed high site fidelity, spending a total 
of 7 months (7 February 2023–28 September 2023) in the vicinity 
of this pool. During this time, the turtle aestivated for 5 weeks (28 
March 2023–2 May 2023) in thick grass directly adjacent to a fallen 
log, 35 m north of the pool. Following this brief period of aestivation, 
the turtle returned to the water where it was relocated the following 
week (9 May 2023) and stayed for the rest of the study.

We first observed the surface water of the pool had frozen on 
23 May 2023. However, at the time, higher temperatures melted 
the surface ice daily. The pool's surface froze on 29 May 2023, with 
a considerably thicker ice layer (approximately 8 mm). The pool re-
mained frozen between 5 and 9 June 2023, with significantly thicker 
ice than in surrounding pools which received direct sunlight and were 
located outside of deep gullies. The thickness of ice in the pool in 

F I G U R E  1 The turtle's movement 
path, reconstructed through GPS fixes 
on the attached data logger and weekly 
relocations, largely followed the creek 
line of Sandy Creek from the release 
point (white circle) to its last relocation 
point (black circle). The final relocation 
point falls within the creek pool in which 
the turtle overwintered, and the cluster 
of movement surrounding this point 
encompasses the movement within the 
pool itself and the area in which the turtle 
aestivated.
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which the turtle was located (>15 mm) suggested it had been frozen 
for an extended period compared to the other waterbodies (Figure 2). 
On 17 June 2023, the ice reached its thickest depth, estimated to be 
25–30 mm. During this time, surface water temperatures beneath the 
ice (taken from the top 5 cm of water using Cason ABS professional 
thermometer) ranged from 0.2 to 2.1°C. Shaded air temperatures 
(measured 1 m above ground level) ranged from 8.3 to 11.4°C when 
measured during observation periods at 10–11 am (Figure 3).

Rainfall on 22 June 2023 increased the water temperatures 
(6.7°C) and melted the ice that had previously covered the creek 
pool. The creek pool refroze on 30 June 2023, when water tempera-
ture fell to 2.8°C; however, during that time, the ice thawed daily.

We located and recovered the turtle on 10 July 2023. It was lo-
cated at a depth of 0.3 m and was partially buried in the sediment 
of the creek bed. The turtle was alive despite experiencing extreme 
drops in water temperature. Data downloaded from the attached 
GPS data logger recorded water/substrate temperatures ranging 
from 8 to 12°C throughout the period in which the creek pool had 
been continuously under ice (Figure  3). This may reflect the sedi-
ment temperatures, in which the turtle was partly buried, provid-
ing an insulative buffer from the colder surface water temperatures 
(Taylor & Nol, 1989). After this observation, we validated our logger 
temperature measures against our handheld thermometer at a range 
of temperatures including an ice bath. The logger and handheld ther-
mometer returned temperatures within 0.5°C of each other.

We observed four additional instances of turtles in water bod-
ies where we measured surface water temperatures below 2°C 
throughout the study period. The environmental conditions of the 
locations in which turtles brumated were generally similar; creek 
pools with water depths between 0.4 and 0.7 m and dominated by 
reeds with surrounding surface vegetation exceeding 50%. While 
the surface of these creek pools did not appear to freeze completely, 
water at pool edges froze for brief periods.

To our knowledge, this is the first record of a pleurodiran tur-
tle overwintering under ice for an extended period. Reports of 
aquatic brumation/hibernation in Australian freshwater turtles 
have been limited to two species which use bimodal respiration to 
survive extended submersions (Fielder, 2012; Gordos et al., 2003). 
While our observation demonstrates the ability of C. longicollis to 
survive low water temperatures, further research would be useful 
to unravel the extent of cold tolerance in pleurodirans and how 
this compares to the broad tolerance of Cryptodira, which may 
be ancestral to turtles generally (Packard et  al.,  1999). Further 
investigation is also warranted to assess the extent of vertical 
temperature stratification under ice and how partial burial in sed-
iment affects turtle survival during severe winters. In the face of a 
changing climate, understanding species' thermal tolerance range 
is critical for predicting responses to not only increasing tempera-
tures but also more intense and frequent extreme weather events, 
including frosts and cold snaps (Zhang et  al.,  2016). Additional 

F I G U R E  2 Surface ice thickness on 9th 
June 2023, recovered from within 2 m of 
the turtle's location. Ice at the edges of 
the water body exceeded this thickness by 
10 mm in following weeks.

F I G U R E  3 Recorded temperatures 
measured at the water's surface (green) 
and downloaded from the data logger 
(blue) throughout the tracking period for 
turtle 823. Activity (red) represents the 
proportion of time (%) that the data logger 
accelerometer registered movement in the 
15 min prior to data logging. The period of 
brumation beneath the ice (light blue) is 
shown in addition to the observations in 
which the creek pool routinely froze and 
melted daily.
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experimental trials of the extent of cold tolerance of Chelodina 
longicollis would enable a greater mechanistic understanding of 
their physiological limits.
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