# DATA COMPARISON AND INTERPRETATION

- Learning Objectives
- Background
- Activities
- Curriculum Mapping

Photo credit: Marilyn Connell







## **CONTENTS**

### PAGE 3

#### LEARNING OBJECTIVES

Here, you will find the learning objectives for this lesson.

## **PAGES 5 - 6**

#### **CLASSROOM ACTIVITIES**

There are three activities for this lesson.

### PAGE 4

#### **BACKGROUND INFORMATION**

Learn about dependent and independent variables

## **PAGES 7 - 8**

#### **CURRICULUM**

See how this lesson maps with the Australian curriculum

## Learning Objectives

At the end of the lesson, students will be able to:

- (1) Compare the data collected from water quality testing and the water bugs survey.
- (2) Graph dependent and independent variables in a line graph and discuss the relationship between the two and interpret findings in relation to wetland health.
- (3) Interpret the results of eDNA sampling (conducted in Lesson 2).





Graph



Interpret

## **Background Information**

**Independent variable:** a variable that is unchanged by other variables being measured.

**Dependent variable:** the variable that changes as a result of the independent variable.



Independent variable

## Classroom Activities

#### **ACTIVITY 1**

- (1A) Guide students in identifying independent and dependent variables in both the water bug survey and water quality testing.
- (1B) Student's graph how the abundance of water bugs is impacted by water quality parameters. Student's learn the difference between dependent and independent variables and how to graph them.
- (1C) Discuss how changes in water bug populations may correlate with changes in water quality parameters.



#### **ACTIVITY 2**

- (2A) Students interpret the results of the eDNA testing.
- (2B) Students should compare their findings with existing literature concerning species distributions. Students should recognise species within their inherent distribution and those that occur outside their expected range.



## **Classroom Activities**

#### **ACTIVITY 3**

- (3A) Involve students in a class discussion around their results.
- Q: What do the sensitivity scores tell us about the health of the wetland?
- Q: What do the water quality results tell us about the health of our local wetland?
- Q: How might the results impact the freshwater turtles at the wetland?
- (3B) Students suggest ways to improve the health of the wetland.



## Australian Curriculum addressed in this Lesson



### Science

Strand: Science inquiry (Year 5)

Sub-strand: Processing, modelling and analysing

**AC9S5104:** construct and use appropriate representations, including tables, graphs and visual or physical models, to organise and process data and information and describe patterns, trends and relationships.

**Sub-strand: Evaluating** 

**AC9S5105:** compare methods and findings with those of others, recognise possible sources of error, pose questions for further investigation and select evidence to draw reasoned conclusions.

Strand: Science inquiry (Year 6)

Sub-strand: Processing, modelling and analysing

**AC9S6104:** construct and use appropriate representations, including tables, graphs and visual or physical models, to organise and process data and information and describe patterns, trends and relationships.

Sub-strand: Evaluating

**AC9S6105:** compare methods and findings with those of others, recognise possible sources of error, pose questions for further investigation and select evidence to draw reasoned conclusions.

# Australian Curriculum addressed in this Lesson



### **Mathematics**

**Strand: Statistics (Year 5)** 

**AC9M5ST02:** interpret line graphs representing change over time; discuss the relationships that are represented and conclusions that can be made.

#### **Strand: Literacy (Year 6)**

**AC9M6ST01:** interpret and compare data sets for ordinal and nominal categorical, discrete and continuous numerical variables using comparative displays or visualisations and digital tools; compare distributions in terms of mode, range and shape.