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Cvasi-classical / Cvasi-quantum neural 
networks

Right?

Quantum only at small scales

Quantum only at low temperatures

Quantum only without external interactions
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Wrong!
Going to classical limit is more 
than just taking h go to zero Different problems require 

different ways to go to the 
classical limit

Ultimately nothing is purely 
classical. There is always 
relative quantum phase 
somewhere

Practically to go to h=0 it is 
useful to work with the 
Wigner-Weyl representation
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We want a quantum distribution over 
the phase space

Technically, that’s impossible

We want expectation values
They involve distributions and 
operators

Quantum phenomena will be fully 
described by the Wigner 
distribution in conjunction with 
Weyl transformed operators

Weyl transf. Wigner distrib.
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We also need dynamics, hence 
time dependence

By Schrodinger Eq. 

So, just taking h to 0? What about the 2s+1 derivative on W there?
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Classical distributions 
are linear in phase space

Wigner functions are not

We introduce 
mixed states

Recover linearity like in 
classical phase space 
distributions when using 
mixed states

Pure state Mixed state

Basic example
 of harmonic oscillator

 ground state

Wigner function
 of harmonic oscillator 

ground state
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on the Wigner functions

But

We also cannot fix p or x, 
because the uncertainty relation 
links them through h. Dynamics 
can reverse the places of x and 
p (we can get squeezed states, 
etc.) so fixing one is not 
realistic. 
If we fix the width on x, then 
width on p cannot be arbitrarily 
small.
But in a mixed state, the widths 
of other p-states can be 
arbitrary (large or small)

Probability density: 

Wigner function of mixed state
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Now we can take the h→0 limit, 
for example in the double 
coherent pure state above: 

Level of suppression of 
quantum properties

But non-linear classical dynamics 
may result in very large higher order 
derivatives. Combined with our h→0 
limit this may amplify quantum 
effects by means of classical 
dynamics.

One example: Chaos ?

Another example: a 
neural network

Yet another example: 
chaotic neural networks...
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Neural network as 
system of differential 
equations

Neuron 
output

Neuron 
input

Weight dynamicsActivation 
dynamics

Learning 
dynamics Lyapunov or 

cost

Define an observable of the neural 
network say J (e.g. mean error is 
observable of supervised learning)

Dynamics of observable

Consider NN in phase space as a 
dynamical system

Two time scales: Neuron dynamics (t), 
and learning dynamics (s)
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Hamilton Jacobi eq.

Associate characteristic equations
(Hamilton eq)

A solution of HJ equation is 
generator of a transformation to a 
set of variables that are constants of 
motion. Such a solution that 
depends on all n variables is called 
a complete integral. Once we know 
a complete integral all we need to 
do is to substitute into the previous 
coordinates and obtain the solution: 

However: a HJ solution may depend 
on fewer integration constants. 

Non-invertible

New variables, 
constants of motion

Old 
variables

We fix some integration constants
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The dependence on those 
constants set to zero is lost

Their conjugate momenta 
become fully undetermined

But this happens in 
quantum mechanics

Take 
Schrodinger eq.

Insert 

If we complete “loose” all 
dependence on the 
constants of motion we 
obtain quantum 
mechanics

“classical” wavefunction

Here let be dragons… 
or “interpretations”

How do we “loose” 
Beta? 
(thermodynamics, 
statistics, 
probabilistic, random 
potential, all wrong)
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The reason we “loose” beta in QM 
is the same as in gauge theory: 
non-invertibility which leads to 
quantization constraints like in a 
classical HJ theory with 
constraints

Rank diminishes, the 
“incomplete” integral 
cannot determine the 
unique solutions of the 
e.o.m anymore

How is that 
represented in 
neural networks? As showed in first part: 

neural networks are only 
“cvasi-classical”. Dynamics 
can make quantum effects 
manifestSome non-

reversible learning 
dynamics Not truly a problem as most 

neural learning dynamics is 
non-invertible all by itself
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What has been 
learned

What will be learned 
(change of weights 
during one epoch)

Kinetic

Potential

And basically 
irreversible 
dynamics
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Dynamics as source of quantum behavior

● Let an input be a quantum state (this means the synaptic particles have non-trivial 
relative phases and present quantum correlations, they are in a state in which some 
of their properties are fundamentally not known, say, for example their momenta)

● Let us consider the neuron as a de-coherent system
● But let us consider the dynamics of a neural network described by the rules of an 

open quantum system

 

Coherence Decoherence
Interaction

Not quite...
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pointer states

Coherent state Coherent state
Interaction

With a special 
environment

Special due to 
constituents

Special due to inner 
dynamics
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However:

Induces an environment super-
selection rule

Dynamical filter on the 
state space selecting 
states that can be 
robustly prepared and 
observed

Never mind 
interactions

States that remain 
unaffected by the 
interaction with 
environment

Env. Sys.
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Consider the “quantum 
measurement limit”

Diagonalize the 
interaction Hamiltonian 
in the subspace of the 
system

Obtain the “pointer 
states”

The system-
environment 
product state 
initially 
unentangled stays 
unentangled as 
time advances

Define a pointer 
observable

Pointer state 
is eigenstate 
of interaction 
Hamiltonian

Consider the 
interaction and the 
environment being 
those of a neural 
network

Describe 
decoherence 
through it by

(Lindblad operator)
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The Lindblad equation

Summation over all possible channels of 
the environment interaction

Channels: dynamics of neural 
network

Time propagation

In a quantum simulator 
we represent time as 
an auxiliary register

Lindblad operator

In terms of time development:

However: we have here non-Markovian open systems → Cannot be 
described by a closed master equation with a time-independent 
generator in Lindblad form!
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Lindbladian must 
implement neural 
dynamics

The interaction 
Hamiltonian 
must encode 
connection 
between 
different layers

Strong couplings, 
correlation, memory 
effects (certainly 
non-Markovian)

Further simplification: 
Projection operator 
technique (must encode 
non-Markovianity)
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Projection operator technique: Non-
Markovian dynamics (memory 
effects,cvasi-classical) 

Projection super-operator acting on 
states of the total system (including 
environment)

Because we need memory effects and 
correlation between environment and system 
we look for the Projected density matrix as

The representation of the 
projection operators is not unique

Given a projection super-
operator we define the 
relevant states as those for 
which

And for observables

The relevant observables 
will be

(Elimination of d.o.f. from total sys.)

“Relevant” dynamics Also relevant but 
called “irrelevant”

Acting on
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Unitary time evolution

Density matrix is an 
operator: characterised by 
the A-operators

Dynamical variables are

Reduced density 
matrix of the system

Start with a state 
belonging to the 
manifold of relevant 
states

Via dynamics: 

Introduce projection to mixed 
states (classical correlation)

Non-normalised 
density matrix

Initial state projected into states with 
classical correlation between environment 
and system
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The dynamics is described by 

Given

The “relevant” part corresponds to 
memory and “slow fluctuations”

The “irrelevant” part corresponds 
to rapid fluctuations

Putting together the two effects : 

With a formal solution

With propagator

satisfying

For general Ai, Bi
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We obtain

This projection does not represent a simple 
product state : it projects onto correlated 
states (even entangled states)

Introduce auxiliary Hilbert 
space with a basis

Allows us to analyze additional 
degrees of freedom describing the 
correlations induced by the super-
operator  

We replaced quantum superposition 
with mixed states (as in cvasi-
classical)
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What if we start from a system already entangled to the environment?

Standard 
Krauss

Initial quantum correlations
Make equation non-
homogeneous
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Liouvillian superoperator

Cvasi-classical results: 
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