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A Timoshenko beam is a simplified model of the governing equations of linear elasticity which
places fewer restrictions on the displacement field than the famous Euler beam model. In the
Timoshenko model, a second unknown is introduced which allows the rotation of the cross-section
to be independent of the transverse displacement. This accounts for shear deformations in
bending, and is typically used in the analysis of thick beams. A dynamic analysis can be carried
out with Hamilton’s principle by introducing the appropriate translational and rotational kinetic
energies. In this report, the governing equations of a dynamic Timoshenko beam with pinned
boundary conditions are derived and solved approximately with the Rayleigh-Ritz method. The
numerical solver is then used to quantify the influence of uncertain model parameters and
inputs on a quantity of interest.

I. Introduction

Fig. 1 A paperback book is an example of structure with very little resistance to shear deformations in bending.
The purple line illustrates the angle of the cross-section enforced by Euler beam theory which assumes the
cross-section remains perpendicular to the axis of the beam. The discrepancy between this and the actual
cross-section shown in green indicates the necessity of incorporating shear effects. Borrowed from [1].

In the context of solid mechanics, a beam is a long, slender structure which displaces perpendicular to its axis under
the action of applied loads. Because the length of a beam is much greater than its other two dimensions (depth and
height), the elastic equations of equilibrium take a much simpler form, depending only on the spatial coordinate defined
along the axis of the beam. Beam theories have been important in the history of structural analysis and engineering
design because they offer insight into many structures of interest and often permit analytical solutions. For these
reasons, beam theories were one of the mainstays of structural analysis before robust computational methods were
widely available. The oldest beam theory dates back to the 1700’s and is attributed to Euler. In this method, a single
ODE for the bending displacement is obtained by neglecting shear effects in bending. In the early 1900’s, Timoshenko
contributed a new beam theory with a more general displacement. Because Timoshenko introduced a second unknown
governing shear deformations, his theory resulted in the strong form of static equilibrium being governed by a system of
coupled ODE’s.

Though the Timoshenko beam theory furnishes a relationship between the beam’s geometry, material parameters,
applied forces and the bending displacement, this is not sufficient for real-world design or analysis problems. In practice,
engineered structures are variable in their build (through material variability, manufacturing tolerances, etc) and load
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conditions. The idealized model does not capture the influence of these variations and therefore cannot prove that a
structure will perform as desired in service [2]. For example, a candidate beam design might have an upper bound on
the allowable bending stress. A deterministic analysis for a given force magnitude/location, material, or cross-sectional
geometry could show that this threshold is not exceeded, but from the designers standpoint, these inputs are uncertain. It
is imperative that the designer not only show that the design is compliant when tested in a deterministic way, but that it
is safe when accounting for uncertainty in the inputs. Whereas universal physical principles are employed to construct a
model, the language of probability is used to understand how uncertainty propagates through this model.

Fig. 2 Schematic of the analysis cycle for a typical engineering component. Once a model is constructed,
variation in model inputs is captured with probability distributions, and this uncertainty is propagated through
the model. Sensitivity analysis can then be used to determine which inputs contribute most to variation in the
output. Borrowed from [3].

II. Motivation
This report is an effort to understand the various stages of a structural analysis problem through an example which is

relevant to the Dynamics course and potential future work with uncertainty analysis in continuous systems. Broadly
speaking, this comprises two main steps: model construction and uncertainty quantification (UQ). The Timoshenko
beam is a canonical model in solid mechanics, and provides useful experience with foundational concepts such as
kinematic assumptions, variational formulations, Rayleigh-Ritz method, and spectral solutions to MDOF systems.
Once derived and implemented, the Timoshenko model is then used to illustrate the importance of understanding
the propagation of uncertainty through the model. These two pillars of the project are beneficial from a pedagogical
standpoint, but they also mirror analysis of a real-world engineered structure. See Figure 2.

III. Solution Approach
In the Timoshenko beam model, the rotation of the cross-section and the transverse displacements govern the

bending problem and are independent parameters [4]. The assumed form of the displacement is

𝑢𝑥 = −𝑦Φ(𝑥); 𝑢𝑦 = 𝑢(𝑥); 𝑢𝑧 = 0 (1)
The strain tensor 𝜖 can be computed using the infinitesimal strain-displacement relations with the Timoshenko

kinematic assumptions. The only non-zero strain components are

𝜖𝑥𝑥 = −𝑦 𝜕Φ
𝜕𝑥

; 𝜖𝑥𝑦 = 𝜖𝑦𝑥 =
1
2

(
𝜕𝑢

𝜕𝑥
−Φ

)
(2)

The total elastic strain energy is computed using the definition of strain energy density and the constitutive relations
𝜎𝑥𝑥 = 𝐸𝜖𝑥𝑥 and 𝜎𝑥𝑦 = 𝜎𝑦𝑥 = 2𝐺𝜖𝑥𝑦 = 2𝐺𝜖𝑦𝑥 . Plugging into the energy and using the definitions of the strain
components, we have

Π =
1
2

∫
𝑣

𝜎𝑖 𝑗𝜖𝑖 𝑗𝑑𝑉 =
1
2

∫ 𝐿

0

∫
𝐴

𝐸𝜖2
𝑥𝑥 + 4𝐺𝜖2

𝑥𝑦𝑑𝐴𝑑𝑥 =
1
2

∫ 𝐿

0
𝐸𝐼

(
𝜕Φ

𝜕𝑥

)2
+ 𝐺𝐴

(
𝜕𝑢

𝜕𝑥
−Φ

)2
𝑑𝑥 (3)
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where 𝐼 =
∫
𝐴
𝑦2𝑑𝐴 is the moment of inertia and 𝐴 is the constant cross-sectional area. We have assumed implicitly that

the shear strain is distributed evenly throughout the cross-section, which can be shown from equilibrium considerations
to be incorrect. This assumption greatly simplifies analysis and can be improved with a shear correction factor ^. The
correction factor multiplies the shear stiffness 𝐺𝐴 and depends on the cross-sectional geometry. Turning to the kinetic
energy, we have

𝑇 =
1
2

∫ 𝐿

0

∫
𝐴

𝜌

((
𝜕𝑢𝑥

𝜕𝑡

)2
+

(
𝜕𝑢𝑦

𝜕𝑡

)2
)
𝑑𝐴𝑑𝑥 =

1
2

∫ 𝐿

0
𝜌𝐼

(
𝜕Φ

𝜕𝑡

)2
+ 𝜌𝐴

(
𝜕𝑢

𝜕𝑡

)2
𝑑𝑥 (4)

Finally, the work of external forces 𝑝(𝑥, 𝑡) is simply

𝑉 =

∫ 𝐿

0
𝑝(𝑥, 𝑡)𝑢(𝑥, 𝑡)𝑑𝑥 (5)

The Lagrangian for the system is
∫
𝑇 − Π − 𝑉𝑑𝑡 where the strain energy now includes the shear correction ^.

Combing Eqs. 3, 4 and 5 this reads

L =

∫ 𝑡

0

∫ 𝐿

0
−1

2
𝐸𝐼

(
𝜕Φ

𝜕𝑥

)2
− 1

2
𝐺^𝐴

(
𝜕𝑢

𝜕𝑥
−Φ

)2
− 𝑝(𝑥, 𝑡)𝑢(𝑥, 𝑡) + 1

2
𝜌𝐼

(
𝜕Φ

𝜕𝑡

)2
+ 1

2
𝜌𝐴

(
𝜕𝑢

𝜕𝑡

)2
𝑑𝑥𝑑𝑡 (6)

For a beam pinned on both ends, the displacement is zero and the rotation angle has zero derivative (no moment).
Thus,

𝑢(0) = 𝑢(𝐿) = 0,
𝜕Φ

𝜕𝑥
(0) = 𝜕Φ

𝜕𝑥
(𝐿) = 0

Analytical solutions are possible to this problem, but are mathematically cumbersome and not amenable to uncertainty
analysis [5]. Thus, using the Rayleigh-Ritz method, the spatial part of the displacement is naturally represented with
the shape functions sin

(
𝜋𝑛
𝐿
𝑥
)

and the spatial part of the rotation angle with cos
(
𝜋𝑚
𝐿
𝑥
)

for 𝑛, 𝑚 = 1, 2, . . . 𝑁 . With this
choice of shape functions, the boundary conditions are satisfied automatically. The solution is approximated as

𝑢(𝑥, 𝑡) =
∑︁
𝑛

𝑢𝑛 (𝑡) sin
( 𝜋𝑛
𝐿
𝑥

)
(7a)

Φ(𝑥, 𝑡) =
∑︁
𝑚

Φ𝑚 (𝑡) cos
( 𝜋𝑚
𝐿
𝑥

)
(7b)

where the time-dependent coefficients 𝑢𝑛 (𝑡) and Φ𝑚 (𝑡) are unknown. These expressions are substituted into the energy
functional, the spatial integration is carried out, and the resulting expression is simplified to matrix-vector products. At
this point, it is necessary to make assumptions about the material and geometric parameters in the energy. If some or all
of these parameters are uncertain, do they vary in space? Or are they constant for a given beam but vary between parts?
We will assume that the geometry of the beam is not uncertain, meaning that the area 𝐴, shear correction ^, and moment
of inertia 𝐼 are known and constant in space. The density will be treated as known and constant as well. In order to
understand the interaction of an uncertain material and forcing, we will model the Young’s modulus 𝐸 as uncertain and
spatially varying but the shear modulus 𝐺 as known and constant. The problem will be driven by an applied load at an
uncertain frequency with known magnitude. Furthermore, the load will be a point force at the center of the beam. Thus,
we have 𝑝(𝑥, 𝑡) = 𝑝0 sin(2𝜋 𝑓 𝑡)𝛿(𝑥 − 𝐿/2) where 𝑓 is the uncertain frequency. This kind of analysis could apply to a
component near an engine which sees harmonic forcing over a range of frequencies. The designer wants to ensure that
realistic variations in the material and uncertainty in the load frequency don’t excite a resonance mode of the component.
Carrying out the spatial integration, the Lagrangian can be written as

L =

∫
1
2
¤𝑢𝑖𝑀𝑢

𝑖 𝑗 ¤𝑢 𝑗 +
1
2
¤Φ𝑖𝑀

Φ
𝑖 𝑗
¤Φ 𝑗 +Φ𝑖𝐵𝑖 𝑗𝑢 𝑗 − 𝐹𝑖𝑢𝑖 −

1
2
𝑢𝑖𝑈𝑖 𝑗𝑢 𝑗 −

1
2
Φ𝑖𝑃𝑖 𝑗Φ 𝑗𝑑𝑡 (8)

𝑀𝑢
𝑖 𝑗 :=

𝜌𝐴𝐿

2
𝛿𝑖 𝑗

𝑀Φ
𝑖 𝑗 :=

𝜌𝐼𝐿

2
𝛿𝑖 𝑗
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𝐵𝑖 𝑗 :=
𝐺^𝐴𝐿

2

(
𝜋𝑖

𝐿

)
𝛿𝑖 𝑗

𝐹𝑖 := 𝑝0 sin(2𝜋 𝑓 𝑡) sin
(
𝜋𝑖

2

)
𝑈𝑖 𝑗 :=

𝐺^𝐴𝐿

2

(
𝜋𝑖

𝐿

)2
𝛿𝑖 𝑗

𝑃𝑖 𝑗 :=
(
𝜋𝑖

𝐿

) (
𝜋 𝑗

𝐿

)
𝐼

∫ 𝐿

0
𝐸 (𝑥) sin

(
𝜋𝑖

𝐿
𝑥

)
sin

(
𝜋 𝑗

𝐿
𝑥

)
𝑑𝑥 + 𝐺^𝐴𝐿

2
𝛿𝑖 𝑗

See the Appendix for detailed calculations. We now must use the Euler-Lagrange equations to determine the
equations of motion corresponding to this action integral. The equations of motion are

𝑀𝑢
𝑖 𝑗 ¥𝑢 𝑗 +𝑈𝑖 𝑗𝑢 𝑗 − 𝐵𝑖 𝑗Φ 𝑗 = 𝐹𝑖

𝑀Φ
𝑖 𝑗
¥Φ 𝑗 + 𝑃𝑖 𝑗Φ 𝑗 − 𝐵𝑖 𝑗𝑢 𝑗 = 0

This can be re-written in block matrix form as[
𝑀𝑢 0
0 𝑀Φ

] [
¥𝑢
¥Φ

]
+

[
𝑈 −𝐵
−𝐵 𝑃

] [
𝑢

Φ

]
=

[
𝐹𝑖

0

]
(9)

Collecting the coefficients on the displacement and rotation angle into a single vector unknown degrees of freedom,
the above equation can be written as a generic undamped MDOF system:

𝑀𝑖 𝑗 ¥𝑞 𝑗 + 𝐾𝑖 𝑗𝑞 𝑗 = 𝑓𝑖 (10)
where the mass and stiffness matrices are defined according to Eq. 9. We can now use the suite of techniques developed
in the course to solve this coupled system of second-order ODE’s. The vector 𝑞 can be written with a spectral expansion
as

𝑞𝑖 =
∑︁
𝑟

[𝑟 (𝑡)𝑥𝑟𝑖 (11)

where the 𝑥𝑟
𝑖

are eigenvectors which the corresponding homogeneous eigenvalue problem(
𝐾𝑖 𝑗 − 𝜔2

𝑟𝑀𝑖 𝑗

)
𝑥𝑟𝑗 = 0

The eigenvectors are normalized and orthogonal with respect to the mass and stiffness matrices. Plugging this into
the dynamical system and pre-multiplying by 𝑥𝑟

𝑖
, the orthogonality properties result in a decoupled system of ODE’s:

¥[𝑟 (𝑡) + 𝜔2
𝑟[𝑟 (𝑡) = 0 (12)

The choice of our shape functions in the Rayleigh-Ritz method was governed by the mathematically convenient
pinned-pinned spatial boundary conditions. For simplicity, we now assume that the initial displacements and velocities
are zero. This translates to

[𝑟 (0) = ¤[𝑟 (0) = 0 (13)
These ODE’s can be solved numerically or analytically and then be used to reconstruct the solution 𝑞, which is then

used to compute the displacement and rotation angle for the beam. With a solver in hand, we would like to investigate
the influence of uncertainty in problem parameters on quantities of interest such as maximum stress or displacement in
the beam. In [6], a number of popular UQ techniques are reviewed. Chief among these are Monte Carlo methods and
Polynomial Chaos Expansion (PCE). Monte Carlo methods require repeatedly sampling uncertain input parameters and
obtaining solutions through the model. A distribution on the output is obtained after a large number of runs. Though
PCE has the benefit of being less expensive, it is a more advanced UQ technique and is outside the scope of the class.
Fortunately, the Timoshenko model is feasible to run a large number of times. Thus, we use Monte Carlo methods to
quantify uncertainty in the dynamic Timoshenko beam from uncertain material and forcing. The quantity of interest
that we will investigate is the maximum displacement over a given time interval.
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IV. Results

Fig. 3 The Timoshenko displacements from three-point test in the limit of 𝐺 → ∞ mimics that of the
corresponding Euler beam.

Fig. 4 The rotation angle for small shear deformations will approximate the derivative of the transverse
displacement.

A. Code Verification
A MATLAB code is written to implement the solution procedure outlined above. Before proceeding to solve the

random vibrations problem, we must first verify the equations have been implemented correctly. To do this, we will
compare the Timoshenko code in a static three point bend to an Euler beam. The two should agree in the case of slender
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Parameter Value Units
Nominal Young’s Modulus (𝐸0) 1E7 Pa

Nominal Frequency ( 𝑓0) 1 rad/s
Shear Modulus (𝐺) 2E6 Pa
Poisson Ratio (𝑣) 0.3 –

Density (𝜌) 2000 kg/m3

Beam Length (𝐿) 1 m
Cross-section Height (𝑎) 0.1 m
Cross-section Depth (𝑏) 0.1 m

Shear Correction (^) 10(1+𝑣)
11+12𝑣 –

Load Magnitude (𝑝0) 1E3 N
Number of Shape Functions (𝑁) 15 –

Table 1 Parameters and properties defining the problem.

cross-sectional geometry and/or large shear stiffness 𝐺. See Table 1 for a list of parameters used in the verification test
and forthcoming analyses. A beam with square cross-section is analyzed, for which the shear correction factor is known
and independent of the dimensions. We apply a point load 𝑝0 at the center of the beam and observe the maximum
displacement from the custom Timoshenko code and tabulated results from Euler beams with same boundary conditions
and problem parameters. The Corresponding statics problem for the Timoshenko beam can be solved with

𝑞 =

[
𝑢

Φ

]
=

[
𝑈 −𝐵
−𝐵 𝑃

]−1 [
𝐹

0

]
from which the displacement coefficients 𝑢 can be extracted and used to reconstruct the transverse deflection with Eq. 7.
With a point load of 𝑝0 = 1000 N applied at the center of the beam, pinned boundary conditions, and 𝐸 = 1𝐸7 Pa, an
Euler beam obtains a maximum deflection of 𝑢𝐸𝑚𝑎𝑥 = 0.25𝑚. Using the parameters from Table 1, the max deflection of
the Timoshenko beam is 𝑢𝑇𝑚𝑎𝑥 = 0.264𝑚. Timoshenko beams are less stiff, so it is logical the displacement is larger.
However, we should obtain identical displacements when the shear stiffness goes to infinity, as the Timoshenko beam
then reproduces the assumptions of the Euler model. When 𝐺 = 2𝐸10, the max displacement of the Timoshenko beam
is 𝑢𝑇𝑚𝑎𝑥 = 0.249𝑚. Thus the model is working correctly, and we move on to more interesting analyses.

B. Monte Carlo Simulation of Random Vibrations
At each integration point, the Young’s Modulus 𝐸 (𝑥) will be distributed uniformly around a nominal value in the

interval 𝐸0 ± 0.15𝐸0. This approximates a kind of spatial “white noise" distribution of the stiffness with maximum
variations at 15% of the nominal value. Similarly, the frequency 𝑓 will be distributed uniformly around a nominal in the
interval 𝑓0 ± 0.5 𝑓0. The frequency sweeps over a range of values in order to assess the forced response of the structure in
an uncertain operating environment. We will run the dynamic analysis over a time period of 𝑇 = 10 seconds, and extract
the maximum displacement over this interval. This analysis is run 700 times to obtain a well-resolved Monte Carlo
distribution of max displacements for sampled moduli and frequencies. See Figure 5 for the results of this analysis. The
distribution is slightly skewed of max displacement below the average. The maximum displacement for the nominal
material and forcing is 𝑢𝑚𝑎𝑥 = 0.426𝑚. When accounting for uncertainty in the forcing frequency and distribution of
Young’s Modulus, we see a range of ±25% variation around nominal in the max displacement. See Table 2 for summary
statistics of the Monte Carlo distribution.

V. Conclusion
In this report, the kinematic assumptions of the Timoshenko beam were used to construct the Lagrangian from

the kinetic and potential energies. The Rayleigh-Ritz was used along with simple boundary conditions to arrive a set
of second order ODE’s in time. A spectral expansion decoupled the system of equations, and the SDOF equations
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Fig. 5 Monte Carlo distribution for maximum bending displacement generated from 700 runs of randomly
sampled forcing frequency and Young’s Modulus distribution.

Statistic Value
Mean 0.431

Standard Deviation 0.061
Table 2 Summary statistics of Monte Carlo distribution of 700 samples of max displacement. The average
accurately matches the max displacement from nominal conditions and the standard deviation is approximately
15% of the mean.

were numerically integrated. This solver was used to analyze the impact of uncertainty in the beam material and
applied forcing on the maximum bending displacement with Monte Carlo methods. It was shown that the Monte
Carlo distribution was centered around the max displacement for nominal material/load conditions. For the specified
distributions on the uncertain input parameters, the maximum displacement exhibited significant variability, thus
demonstrating the need for uncertainty quantification in component design and analysis. If the designer needed to
control the stiffness of the structure to avoid interfering with nearby parts, it would not suffice to run an analysis for
the nominal values of inputs. Especially in dynamics problems, a structure’s response can be very sensitive to small
variations in inputs (resonance). Thus, it is essential to determine the degree of uncertainty in model inputs and quantify
their impact on the system’s response. As a final note, the Monte Carlo analysis is expensive even for the simple
Timoshenko beam model. This demonstrates the importance of more efficient techniques like PCE.

Appendix–Energy Calculations
We look at different terms in the integrand of the Lagrangian one-by-one. The form of the solution is substituted

and orthogonality of the shape functions is used to simplify expressions when possible. Recall that the spatial part of
the Lagrangian is

L =

∫ 𝐿

0
−1

2
𝐸 (𝑥)𝐼

(
𝜕Φ

𝜕𝑥

)2
− 1

2
𝐺 (𝑥)^𝐴

(
𝜕𝑢

𝜕𝑥
−Φ

)2
− 𝑝(𝑥, 𝑡)𝑢(𝑥, 𝑡) + 1

2
𝜌𝐼

(
𝜕Φ

𝜕𝑡

)2
+ 1

2
𝜌𝐴

(
𝜕𝑢

𝜕𝑡

)2
𝑑𝑥

The Young’s Modulus 𝐸 is uncertain and varies in space. The applied force 𝑝(𝑥, 𝑡) will be harmonic with an
uncertain frequency.
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Bending Strain Energy

−
∫ 𝐿

0

1
2
𝐸 (𝑥)𝐼

( 𝜕Φ
𝜕𝑥

)2
𝑑𝑥 = −1

2
𝐼

∫ 𝐿

0
𝐸 (𝑥)

(∑︁
𝑚

( 𝜋𝑚
𝐿

)
Φ𝑚 (𝑡) sin

( 𝜋𝑚
𝐿
𝑥

)) (∑︁
𝑛

( 𝜋𝑛
𝐿

)
Φ𝑛 (𝑡) sin

( 𝜋𝑛
𝐿
𝑥

))
𝑑𝑥

= −1
2
𝐼
∑︁
𝑚

∑︁
𝑛

( 𝜋𝑛
𝐿

) ( 𝜋𝑚
𝐿

)
Φ𝑛 (𝑡)Φ𝑚 (𝑡)

∫ 𝐿

0
𝐸 (𝑥) sin

( 𝜋𝑚
𝐿
𝑥

)
sin

( 𝜋𝑛
𝐿
𝑥

)
𝑑𝑥

= −1
2

∑︁
𝑚

∑︁
𝑛

Φ𝑛 (𝑡)Φ𝑚 (𝑡)
[( 𝜋𝑛
𝐿

) ( 𝜋𝑚
𝐿

)
𝐼

∫ 𝐿

0
𝐸 (𝑥) sin

( 𝜋𝑚
𝐿
𝑥

)
sin

( 𝜋𝑛
𝐿
𝑥

)
𝑑𝑥

]

Shear Strain Energy

−1
2
𝐺^𝐴

∫ 𝐿

0

(
𝜕𝑢

𝜕𝑥
−Φ

)2
𝑑𝑥 = −1

2
𝐺^𝐴

∫ 𝐿

0

(
𝜕𝑢

𝜕𝑥

)2
− 2Φ

𝜕𝑢

𝜕𝑥
+Φ2𝑑𝑥

Look at the three terms separately:

−1
2
𝐺^𝐴

∫ 𝐿

0

(
𝜕𝑢

𝜕𝑥

)2
𝑑𝑥 = −1

2
𝐺^𝐴

∫ 𝐿

0

(∑︁
𝑚

( 𝜋𝑚
𝐿

)
𝑢𝑚 (𝑡) cos

( 𝜋𝑚
𝐿
𝑥

)) (∑︁
𝑛

( 𝜋𝑛
𝐿

)
𝑢𝑛 (𝑡) cos

( 𝜋𝑛
𝐿
𝑥

))
𝑑𝑥

= −1
2
𝐺^𝐴

∑︁
𝑚

∑︁
𝑛

( 𝜋𝑚
𝐿

) ( 𝜋𝑛
𝐿

)
𝑢𝑚 (𝑡)𝑢𝑛 (𝑡)

∫ 𝐿

0
cos

( 𝜋𝑚
𝐿
𝑥

)
cos

( 𝜋𝑛
𝐿
𝑥

)
𝑑𝑥

−1
2
𝐺^𝐴𝐿

2

∑︁
𝑛

( 𝜋𝑛
𝐿

)2
𝑢𝑛 (𝑡)2

−1
2
𝐺^𝐴

∫ 𝐿

0
Φ2𝑑𝑥 = −1

2
𝐺^𝐴

∫ 𝐿

0

(∑︁
𝑚

Φ𝑚 (𝑡) cos
( 𝜋𝑚
𝐿
𝑥

)) (∑︁
𝑛

Φ𝑛 (𝑡) cos
( 𝜋𝑛
𝐿
𝑥

))
𝑑𝑥

= −1
2
𝐺^𝐴𝐿

2

∑︁
𝑛

Φ𝑛 (𝑡)2

𝐺^𝐴

∫ 𝐿

0
Φ
𝜕𝑢

𝜕𝑥
𝑑𝑥 = 𝐺^𝐴

∫ 𝐿

0

(∑︁
𝑚

Φ𝑚 (𝑡) cos
( 𝜋𝑚
𝐿
𝑥

)) (∑︁
𝑛

( 𝜋𝑛
𝐿

)
𝑢𝑛 (𝑡) cos

( 𝜋𝑛
𝐿
𝑥

))
𝑑𝑥

= 𝐺^𝐴
∑︁
𝑚

∑︁
𝑛

( 𝜋𝑛
𝐿

)
Φ𝑛 (𝑡)Φ𝑚 (𝑡)

∫ 𝐿

0
cos

( 𝜋𝑛
𝐿

)
cos

( 𝜋𝑚
𝐿

)
𝑑𝑥

=
𝐺^𝐴𝐿

2

∑︁
𝑛

( 𝜋𝑛
𝐿

)
Φ𝑛 (𝑡)𝑢𝑛 (𝑡)
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Kinetic Energy

1
2
𝜌𝐼

∫ 𝐿

0

(
𝜕Φ

𝜕𝑡

)2
𝑑𝑥 =

1
2
𝜌𝐼

∫ 𝐿

0

(∑︁
𝑛

𝜕Φ𝑛

𝜕𝑡
cos

( 𝜋𝑛
𝐿
𝑥

)) (∑︁
𝑚

𝜕Φ𝑚

𝜕𝑡
cos

( 𝜋𝑚
𝐿
𝑥

))
𝑑𝑥

=
1
2
𝜌𝐼

∑︁
𝑚

∑︁
𝑛

𝜕Φ𝑚

𝜕𝑡

𝜕Φ𝑛

𝜕𝑡

∫ 𝐿

0
cos

( 𝜋𝑛
𝐿
𝑥

)
cos

( 𝜋𝑚
𝐿
𝑥

)
𝑑𝑥

=
1
2
𝜌𝐼𝐿

2

∑︁
𝑛

(
𝜕Φ𝑛

𝜕𝑡

)2

1
2
𝜌𝐴

∫ 𝐿

0

(
𝜕𝑢

𝜕𝑡

)2
𝑑𝑥

=
1
2
𝜌𝐴𝐿

2

∑︁
𝑛

(
𝜕𝑢𝑛

𝜕𝑡

)2

Work of External Forces
The external force is applied as a point load with magnitude 𝑝0 at the center of the beam which is harmonic in time.

= −
∫ 𝐿

0
𝑢(𝑥, 𝑡)𝑝(𝑥, 𝑡)𝑑𝑥 = −

∫ 𝐿

0
𝑢(𝑥, 𝑡)𝑝0 sin(2𝜋 𝑓 𝑡)𝛿(𝑥 − 𝐿/2)𝑑𝑥

= −𝑝0
∑︁
𝑛

𝑢𝑛 sin(2𝜋 𝑓 𝑡)
∫ 𝐿

0
sin

( 𝜋𝑛
𝐿
𝑥

)
𝛿(𝑥 − 𝐿/2)𝑑𝑥

= −
∑︁
𝑛

𝑢𝑛

(
𝑝0 sin(2𝜋 𝑓 𝑡) sin

(𝑛𝜋
2

))

Appendix–Parameter Estimation
Assume that we have data for the trajectory of a damped Timoshenko beam pinned on both ends over 𝑆 spatial points

and 𝑇 time points. We want to learn the damping matrix 𝐶 which best fits the data. The objective function for this
problem is

𝐿 =
1
2

𝑇∑︁
𝑡=1

𝑆∑︁
𝑠=1

(
𝑢[𝑡, 𝑠] − �̂�(𝑡Δ𝑡, 𝑠Δ𝑥, 𝐶)

)2

where minimizing the “loss" 𝐿 corresponds to a best-fit damping matrix 𝐶. The quantity 𝑢[𝑡, 𝑠] represents the
experimentally measured displacement at position 𝑠Δ𝑥 and time 𝑡Δ𝑡. Similar �̂� is the prediction from the Timoshenko
model which is a function of space, time, and the damping matrix 𝐶𝑖 𝑗 . The gradient of the loss is

𝜕𝐿

𝜕𝐶𝑖 𝑗

=
∑︁
𝑡

∑︁
𝑠

−
(
𝑢[𝑡, 𝑠] − �̂�(𝑡Δ𝑡, 𝑠Δ𝑥, 𝐶)

) 𝜕�̂�

𝜕𝐶𝑖 𝑗

We need a method to compute the sensitivity of the prediction from the Timoshenko model w.r.t. the damping
matrix in order to compute the gradient, which is used as the search direction in an iterative minimization scheme.
We now turn to the underlying physical model to understand the computation of this sensitivity. A general damped
dynamical system can be written as

𝑀 ¥𝑞 + 𝐶 ¤𝑞 + 𝐾𝑞 = 𝑓
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For the Timoshenko beam, 𝑞 stores both the displacement and the rotation angle. We assume that the damping
defined by matrix 𝐶 is small, which implies that the eigenmodes for the damped vs. undamped system are approximately
equivalent. Using the spectral representation of the solution, we can write

𝑞 =
∑︁
𝑟

[𝑟 (𝑡)𝑥𝑟

Plugging this into the above equation, we find that

¥[𝑟 + 𝑥𝑟𝑖 𝐶𝑖 𝑗𝑥
𝑟
𝑗 ¤[𝑟 + 𝜔2

𝑟[𝑟 = 0

Here, 𝑥𝑟
𝑖

is the 𝑖-th component of eigenmode 𝑟. We obtain de-coupled normal equations as a result of the small
damping assumption. The displacement prediction from the pinned-pinned Timoshenko model approximated with
global shape functions is

�̂�(𝑥, 𝑡) =
𝑁∑︁
𝑛=1

𝑞𝑛 sin
(𝑛𝜋
𝐿
𝑥

)
where 𝑁 is the number of shape functions used in the approximation. Note that the dimension of 𝑞 is 2𝑁 . Plugging in
the spectral representation for 𝑞, this becomes

�̂�(𝑥, 𝑡) =
𝑁∑︁
𝑛=1

( 2𝑁∑︁
𝑟=1

[𝑟 (𝑡)𝑥𝑟𝑛
)

sin
(𝑛𝜋
𝐿
𝑥

)
Then the sensitivity can be written as

𝜕�̂�(𝑥, 𝑡)
𝜕𝐶𝑖 𝑗

=

𝑁∑︁
𝑛=1

( 2𝑁∑︁
𝑟=1

𝜕[𝑟 (𝑡)
𝜕𝐶𝑖 𝑗

𝑥𝑟𝑛

)
sin

(𝑛𝜋
𝐿
𝑥

)
This is because the spatial shape functions and eigenmodes do not depend on the damping. Thus in order to compute

the sensitivity of the solution, we need to compute sensitivities of the normal equations as the spatial shape functions
and eigenmodes are unchanged. We can differentiate the normal equations w.r.t the damping

𝜕 ¥[𝑟
𝜕𝐶𝑖 𝑗

+ 𝑥𝑟𝑘𝐶𝑘ℓ𝑥
𝑟
ℓ

𝜕 ¤[𝑟
𝜕𝐶𝑖 𝑗

+ 𝑥𝑟𝑘
𝜕𝐶𝑘ℓ

𝜕𝐶𝑖 𝑗

𝑥𝑟ℓ ¤[𝑟 + 𝜔
2
𝑟

𝜕[𝑟

𝜕𝐶𝑖 𝑗

= 0

This can be rewritten as a second-order ODE for the matrix of sensitivities

𝜕2

𝜕𝑡2

(
𝜕[𝑟

𝜕𝐶𝑖 𝑗

)
+ 𝑥𝑟𝑘𝐶𝑘ℓ𝑥

𝑟
ℓ

𝜕

𝜕𝑡

(
𝜕[𝑟

𝜕𝐶𝑖 𝑗

)
+ 𝜔2

𝑟

(
𝜕[𝑟

𝜕𝐶𝑖 𝑗

)
= −𝑥𝑟𝑖 𝑥𝑟𝑗 ¤[𝑟

The eigenfrequencies 𝜔𝑟 do not depend on the damping and the term ¤[𝑟 is known from the solving the system at
the current damping matrix. For each [𝑟 , we need to solve a series of ODE’s for different forcings and then pass this
solution back through the spectral expansion and displacement approximations in order to compute sensitivities. With
this in hand, the gradient can be evaluated and used a search direction to look for a minimum to the loss function. This
process fits a damping matrix under the small damping assumption which optimally reproduces the experimental when
used in the Timoshenko model.
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