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1 Control volume derivation

Consider a fluid that carries a continuum substance whose density in the fluid
is given by c(x, t). For a control volume, we can perform a balance of mass:

∂

∂t

∫
Ω

cdΩ = −
∫
∂Ω

q · n̂dS

where q is the flux of the substance and n̂ is an outward facing normal. The
minus sign is so that the contribution of outgoing material, where q and n̂ are
parallel, is negative. The quantity c is often called the concentration, which
similar to density, measures the amount of the substance at each point. This
equation says that the time rate of change of mass is the net loss/gain of mate-
rial through the boundaries. This assumes no mass source terms. Now, we can
write a constitutive law for the flux. We say that gradients in the concentration
cause fluxes, which essentially states that things tend to mix toward uniformity.
In other words, there is a flow of the substance from high to low concentrations.
This analogous to saying that heat flows from high temperature to low tem-
perature, which tends to lead to uniformity of the temperature field in a body.
This is called a diffusive effect. Thus we have that

q
diff

= −D
∂c

∂x

where D is simply a constant of proportionality that measures the resistance of
medium to diffusion of concentration. There is another means of mass transport,
which is the background fluid moving the substance with the velocity field.
This is not a fluid mechanics problem, so we assume that the velocity field
is specified and that the concentration has no influence on it. This is called
advection. Advective flux is in the direction of the velocity, and depends on the
concentration. We can write

q
adv

= c(x, t)u

Plugging this into the balance of mass equation and noting that the control
volume is independent of time, we have
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∂

∂t

∫
Ω

cdΩ =

∫
∂c

∂t
dΩ = −

∫
∂Ω

(−D∇c+ cu) · n̂dS =

∫
Ω

∇ · (D∇c− cu)dΩ

The control volume is arbitrary so this equation must hold pointwise. This
leads to the local form of the mass balance law with advection and diffusion:

∂c

∂t
= D

∂2c

∂xi∂xi
− ui

∂c

∂xi

Notice we have used the incompressibility of the fluid velocity field ∂ui

∂xi
= 0,

which is often a reasonable assumption that simplifies the governing equation.
In one spatial dimension, this equation is

∂c

∂t
= D

∂2c

∂x2
− u(x)

∂c

∂x

2 Derivation using material derivative

As opposed to using the control volume derivation, which admittedly is pretty
natural in this case, it is possible to go about this by applying conservation of
mass to a fixed collection of particles. For a set of particles defined by a region
in the reference configuration, can say that the rate of change of mass is due to
a balance of in and outflow from diffusive flux:

D

Dt

∫
ρcdΩ = −

∫
q · n̂dS =

∫
D∇c · n̂dS = D

∫
∇2cdΩ

The Reynold’s transport theorem can be used to pass the material derivative
inside the integral onto the concentration. Localizing the integral leads to

ρ
Dc

Dt
=

∂c

∂t
+ u(x)

∂c

∂x
= D∇2c

where we have assumed that the density of the substance is the constant 1. This
is the same equation obtained with the control volume method. The material
derivative has the appearance of being a simple application of the chain rule,
but it is quite a complex thing when it is further scrutinized. We see from these
two methods that we can either look at a fixed region in space and keep track
of the in and out flows, or look at a collection of particles but convert (through
the material derivative) to the rates of change that particles see with respect to
quantities defined in spatial/current configuration. Let’s look into the material
derivative a bit more carefully with an example. Consider the 1D deformation

x(t) = ϕ(X, t) = X −X(X − 1) sin(πt) = X2 sin(πt)−X(1 + sin(πt))

It can be shown that the inverse deformation is
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X(t) = ϕ−1(x, t) =
1

2 sin(πt)

(
1 + sin(πt)−

√
(1 + sin(πt))2 − 4x sinπt

)
This is a fluid-like deformation because the particles are contained in the

same region over all time, which is like fluid flowing in a container. We can
specify an Eulerian quantity defined spatially, (not over material points), as
c(x, t). This could be the concentration, and it may have explicit time depen-
dence. The rate of change of c that a particle in the reference configuration sees
is

Dc

Dt
=

∂c

∂t
+

∂c

∂x

∂

∂t
ϕ(X, t)

This can be seen with by playing with the time parameter in this plot. The
concentration that particle sees as a function of time is due to an explicit time
rate of change and moving through concentration gradients via the velocity. This
is still a confusing expression though, as it is defined partially in the current
configuration and partially in the reference configuration. Remember that the
concentration is Eulerian, so if we want all of the quantities defined in terms of
a reference particle, we need to write

Dc

Dt
=

∂c

∂t

(
ϕ(X, t), t

)
+

∂c

∂x

(
ϕ(X, t), t

) ∂

∂t
ϕ(X, t)

The particle will occupy different positions in space according to the defor-
mation, so this derivative is not taken at a fixed spatial point. In my opinion,
this is the easier version of the material derivative to think about. This quanti-
fies the time rate of change a given particle sees. What if we want to define this
derivative at a fixed point in space? This is natural for the concentration which
is already defined this way, but strange from the perspective of the deformation.
When we want the “particle derivative” at a fixed spatial point, we are no longer
tracking a fixed particle, rather just some particle in the reference configuration.
Note that it is important to track particles because particles are what respect
conservation laws such as those of mass or momentum, rather than regions of
space. In our example, we have

∂ϕ

∂t
= −π cos(πt)X(X − 1)

This is the velocity specified in terms of material points. If we want the
velocity that some particle sees occupying position x at time t, then we can
write

∂ϕ

∂t
= −π cos(πt)ϕ−1(x, t)

(
ϕ−1(x, t)− 1

)
The expression for the inverse deformation is too long to be worth writing

out explicitly. In general, the material derivative evaluated fully in the current
configuration is
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Dc

Dt
=

∂c

∂t
(x, t) +

∂c

∂x
(x, t)

∂ϕ

∂t

(
ϕ−1(x, t), t)

)
The second term in this expression says: find the particle corresponding

instantaneously to the spatial position x, compute its velocity, then look at the
rate of change it experiences as a result of moving through the concentration
gradient defined spatially. Of course, the explicit time rate of change is added
on to this as well. See this plot, which is a slight variation of the previous one,
to help visualize this. Note that if we want to completely avoid keeping track
of labeled particles, we can rename the quantity involving the time derivative
of the deformation as

∂ϕ

∂t

(
ϕ−1(x, t), t

)
:= u(x, t)

This is simply the velocity of some particle at a given spatial point and
time. When the velocity is known and does not vary with time, we recover the
advection-diffusion equation we derived above.

3 Notes on diffusion

When the velocity is zero, we have a pure diffusion equation. There is a very
nice physical interpretation of pure diffusion dynamics. See Figure 1 for the
problem setup. We imagine a function f which keeps track of the number of
particles of some substance at discrete positions labeled n−1, n, n+1, . . . . This
is like measuring the concentration by counting particles. Let’s say that over
the course of an increment of time ∆t, the particles jump around randomly.
In one dimension, they have equal probability of staying in place, jumping to
the left, or jumping to the right. This is just an assumption, but it seems
like a reasonable one. If the particles are moving around randomly, that they
would do so with uniform probability seems natural. The central limit theorem
states that the variance of the sum of many random quantities is very small.
Thus, when the number of particles is large, the variance of the mean of the
number of particles of going left, right, and staying in place becomes very small.
This means that when the number of particles is very large, then to a good
approximation exactly 1/3 of the particles go left, 1/3 stay in place, 1/3 go
right. Even without recourse to the central limit theorem, it is intuitive that an
averaged response of a system comprising many particles acting independently is
a good approximation. What are the odds that every particle goes to the right?
Clearly, the likelihood of something “weird” like this happening decreases as
the number of particles grows. Note that we are assuming that in a given
time increment, a particle cannot jump two positions. We can thus compute
the change in the number of particle at position n in the time increment by a
simple counting argument:

∆f

∆t
=
(
f(n)− 2

3
f(n) +

1

3
f(n− 1) +

1

3
f(n+ 1)

)
− f(n)
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=
1

3

(
f(n− 1)− 2f(n) + f(n+ 1)

)

Figure 1: Counting the number of particles at different position in a 1D medium.

Note that if each labeled point is separated by a small distance ∆n, the
second derivative of f can be approximated with

∂2f

∂x2
≈ 1

∆n2

(
f(n− 1)− 2f(n) + f(n+ 1)

)
Thus we see that the rate of influx from the random jumping of particles

is proportional to the second spatial derivative of the function f , which counts
the number of particles. This also states that when f(n) is linear, the same
number of particles exit and enter on average. Calling the empirical constant
of proportionality D, and taking the limit as the time step becomes small, we
obtain the governing PDE for 1D diffusion:

∂f

∂t
= D

∂2f

∂x2

This argument is a bit hand-wavey, but it appears to get at the essential
dynamics of a diffusive process. Explicitly counting the number of particles of
some substance is obviously impractical, so the counting function f is replace
with the concentration c, which measures something more like a relative density
of particles. It is interesting to see that the dynamics of a diffusive process
arise from a probabilistic argument about some quantity (it could be number of
particles, energy, momentum, etc.) spreading out due to random motion.
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4 Numerical Solution

We can solve this PDE with a space-time weak form. Integrate against a basis
for the solution approximation defined in terms of space-time shape functions
fi(x, t). The weak form is

∫ T

0

∫ L

0

∂c

∂t
fi(x, t)dxdt =

∫ T

0

∫ L

0

D
∂2c

∂x2
fi(x, t)− u(x)

∂c

∂x
fi(x, t)dxdt

We assume zero concentration boundary conditions at x = 0, L which ensures
that fi(0, t) = fi(L, t) = 0. The problem is driven by an initial condition on the
concentration c(x, 0) = c0(x). The velocity u(x) is prescribed. The first thing
we will do is integrate by parts the second spatial derivative. The weak form
becomes

∫ T

0

∫ L

0

∂c

∂t
fi(x, t)dxdt = −

∫ T

0

∫ L

0

D
∂c

∂x

∂fi
∂x

− u(x)
∂c

∂x
fi(x, t)dxdt

Now we discretize the solution field. We build in the initial condition so that
it is automatically satisfied. The solution can be written as

c(x, t) = c0(x)g(p, t) +
∑
i

cifi(x, t)

where the first term enforces the initial condition and the hyperparameter p
controls how quickly the initial concentration stops contributing to the solution
approximation.

∫ T

0

∫ L

0

c0
∂g

∂t
+
∑
j

cj
∂fj
∂t

fi(x, t)dxdt = −
∫ T

0

∫ L

0

D

∂c0
∂x

g(t) +
∑
j

cj
∂fj
∂x

∂fi
∂x

dxdt

−
∫ T

0

∫ L

0

u(x)

∂c0
∂x

g(t) +
∑
j

cj
∂fj
∂x

fi(x, t)dxdt

∑
j

cj

(∫ T

0

∫ L

0

∂fj
∂t

fidxdt+D
∂fj
∂x

∂fi
∂x

+ u(x)
∂fj
∂x

fidxdt

)

= −
∫ T

0

∫ L

0

u(x)
∂c0
∂x

g(t)fi − c0
∂g

∂t
fi −D

∂c0
∂x

g(t)
∂fi
∂x

dxdt
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