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1 Introduction

We wish to create a semi-analytical aeroelastic wing model for a deformable
cantilevered Kirchoff plate of thickness h in which the plate deflects and rotates
according to lifting forces from an inviscid flow. It is known that the aerody-
namic forces will depend strongly on the local angle of rotation of the plate
(angle of attack), so if we assume a transverse displacement field composed of
an (unknown) midplane displacement and rotation, the loading term will de-
pend on the configuration of the plate thus manifesting as a non-linearity. We
will also account for three dimensional flow effects which modify the effective
angle of the attack of each section of the plate. A number of models/methods
will be integrated in tackling this problem: Kirchoff plate theory will model the
deformation of the simplified wing, potential flow theory will be used to find
the sectional lift coefficient of a thin plate, and Prandtl lifting line theory will
be used to account for 3D flow effects. In essence, the latter two methods are
needed to understand the applied forces in the plate bending model. Finally,
we will formulate a method to solve the resultant governing equations.

2 Kirchoff Plate

We will use variational methods to derive governing equations for the aeroe-
lastic plate, thus we must formulate the bending strain energy in terms of the
transverse displacement u3(x1, x2). It can be shown that the strain energy is

U =
D

2

∫
A

u23,11 + u23,22 + 2vu3,11u3,22 + 2(1− v)u23,12dA

where D = Eh3

12(1−v2) is the constant bending stiffness of the plate. To simplify the

problem and enforce the sort of deformation compatible with fluid equations, we
restrict the transverse displacement to a midplane deflection u(x1) and a change
in angle of attack φ(x1). This guarantees that the x1 cross-sections remain
straight but still permits realistic elastic responses. The transverse displacement
field is then

u3(x1, x2) = u(x1) + x2φ(x1)
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Figure 1: Thin cantilevered Kirchoff plate which will deform according to aero-
dynamic lifting forces.
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where the angle of rotation φ is positive according to the right-hand rule. This
form of displacement can be substituted into the strain energy and simplified.
This reads

U =
D

2

∫ L

0

∫ c/2

−c/2
u211 + 2x2u11φ11 + x22φ

2
11 + 2(1− v)φ21dx2dx1

Due to the simplified form of displacement, the x2 integration can be carried
out explicitly, making the problem effectively one-dimensional. The second
term, which indicates coupling between bending and torsion, vanishes due to
the symmetry of the integration interval. The strain energy is then

U =
1

2

∫ L

0

[∫ c/2

−c/2
Ddx2

]
u211+

[∫ c/2

−c/2
Dx22dx2

]
φ211+2(1−v)

[∫ c/2

−c/2
Ddx2

]
φ21dx1

The bracketed terms are geometric parameters and can be renamed to sim-
plify this expression. Thus, the bending strain energy can be written as

U =
1

2

∫ L

0

Su211 + Jφ211 + 2(1− v)Sφ21dx1

where S :=
∫
Ddx2 and J :=

∫
Dx22dx2 are geometric stiffness parameters. The

bending strain energy is a single integral of a simple form for the aeroelastic
plate. Note that the plate is cantilevered at x1 = 0 and free at x2 = L, thus the
boundary conditions on the two unknown functions are

u(0) = u1(0) = φ(0) = φ1(0) = 0

u11(L) = u111(L) = φ11(L) = −Jφ111(L) + 2(1− v)Sφ1(L) = 0

We will now turn to the work done by the aerodynamic forces to find the
second term in the energy functional. Lift forces are positive in the +x3 direction
and depend on the angle of rotation φ, acting through the quarter chord point
x2 = − c

4 . The center of pressure of symmetric airfoils has been observed to
be nearly stationary at this point for small angles of attack. This assumption
simplifies the problem in that only the magnitude of the lift depends on the
rotation of the plate, not the point of application. We will assume that the
lifting force distribution L(φ, x1) can be represented as a cosine series:

L(φ, x1) = L
N−1∑
n=0

An(φ) cos
(nπ
L
x1

)
which will be motivated and specified by the potential flow and Lifting-line
derivations of the aerodynamic characteristics of the flat plate airfoil. The
cosine shape functions construct the x1 dependence of the lift force with the
coefficients An. These coefficients, in turn, depend on the unknown torsion
response of the plate. The work done by the aerodynamic forces can be written
as
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Figure 2: Lift forces are fixed at the quarter chord point for the flow of velocity
U making an angle α up from the x2 axis. The lift force varies with the span
position x1 and the angle of rotation of the elastic plate, making this problem
non-linear in the applied loads.

V =

∫ L

0

∫ c/2

−c/2
δ

(
−c
4

)
L(φ, x1)

[
u+ x2φ

]
dx2dx1 =

∫ L

0

L(φ, x1)
[
u− c

4
φ
]
dx1

=

∫ L

0

L

[
u

N−1∑
n=0

An(φ) cos
(nπ
L
x1

)
− c

4
φ

N−1∑
n=0

An(φ) cos
(nπ
L
x1

)]
dx1

The energy functional for statics problems in elasticity is Π = U−V and will
be used to derive the governing equations for the problem. The strain energy
of the elastic plate can be combined with work done by aerodynamic loads:

Π =

∫ L

0

1

2

[
Su211 + Jφ211 + 2(1− v)Sφ21

]
+ L

( c
4
φ− u

)N−1∑
n=0

An(φ) cos
(nπ
L
x1

)
dx1

3 Potential Flow

We use potential flow theory to find the circulation around a two-dimensional
flate plate airfoil, which lets us calculate the sectional lift and lift coefficient.
These parameters can then be incorporated into a 3D inviscid flow model.
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The potential flow around a circle parameterized by z = ceiθ with circulation
Γ can be shown to be

w(z) = U

(
ze−iα +

c2

z
eiα
)
− iΓ

2π
ln z

The free-stream flow velocity is U , traveling left to right, and the flow makes
an angle α from horizontal. From the definition of potential flow, the horizontal
and vertical velocity components are found from the potential by

dw

dz
= U

(
e−iα − c2

z2
eiα
)
− iΓ

2πz
= u− iv

The Joukowksy transform can be used to model flow around more interesting
geometries. Though it is known to generate airfoil-like shapes, a simple case of
the Joukowksky transform takes a circle centered at the origin to a line. This
transformation reads

Z =
1

4

(
z +

c2

z

)
This can be seen by finding the image of the parameterization z = ceiθ under

this mapping. Plugging in, we see that

Z =
c

4

(
eiθ + e−iθ

)
=
c

2
cos θ

Thus, as the angle θ = 0 we are at the trailing edge Z = c
2 , and at θ = π, we

find the leading edge Z = − c
2 . Of course, the total chord length of this airfoil is

c as required. We can now calculate the velocity components around the plate
using the theory of conformal maps. If we have an expression for flow around
a circle, and map which takes that circle to a plate, we can calculcate the flow
velocity around the plate with

dw

dZ
=
dw

dz

dz

dZ
=
dw/dz

dZ/dz

which, when written this way, keeps our description of the flow in the (untrans-
formed) z plane. The velocity components around the plate are then

u− iv = 4

[
U

(
e−iα − c2

z2
eiα
)
− iΓ

2πz

](
1− c2

z2

)−1
Using the parameterization of the circle in the z plane, this reads

=

[
U
(
e−iα − eiαe−i2θ

)
− iΓ

2πc
e−iθ

](
1− e−i2θ

)−1
= e−iθ

[
U
(
ei(θ−α) − e−i(θ−α)

)
− iΓ

2πc

](
1− e−i2θ

)−1
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= e−iθ
[
2Ui sin(θ − α)− iΓ

2πc

](
1− e−i2θ

)−1
The Kutta condition requires that there are finite fluid velocity at the trailing

edge of the airfoil, corresponding to θ = 0. This can be accomplished by choosing
the circulation Γ such that the numerator of the expression for velocity is zero
at this point. This implies that

2U sin(−α) =
Γ

2πc
=⇒ Γ = −4πUc sinα

The Kutta-Joukowsky theorem states that the lift force per unit span is

` = −ρUΓ = 4πU2ρc sinα

The sectional lift coefficient follows from the expression for the lift force

c` =
`

1
2ρcU

2
= 8πρ sinα

which allows us to show that slope of the lift coefficient is approximately constant

c`α :=
dc`
dα

= 8πρ cosα ≈ 8πρ

It is clear that the zero lift angle of attack is α = 0. These results, obtained
from potential flow around a flat plate, will be required in the lifting-line theory,
which is used to account for 3D flow effects.

4 Lifting Line Theory

It can be observed that vertical flow is induced from changes in lift over the span
of a wing, and this varying “downwash” velocity acts to change the effective
angle of attack of each airfoil section. In other words, the effective angle of
attack must incorporate the geometric orientation of the airfoil, the direction
of the free-stream flow, and this induced velocity. To begin, note that from the
definition of the sectional lift coefficient and the Kutta-Joukowksy theorem, we
can write

c` =
−2Γ

Uc

Also, note that

c` = c`ααeff = 8πρ
(
α− φ(x1)− β(x1)

)
where the effective angle of attack αeff incorporates the freestream/rigid angle
α, the elastic rotation angle φ, and the downwash angle β. By the definition of
φ, a positive rotation reduces the angle of attack of the plate. At this point, we
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Figure 3: Cross-section of deformed plate with freestream velocity at angle α
to x2 axis, correction angle β from downwash velocity, and elastic rotation φ.

are relating the plate model to the airfoil geometry and aerodynamic charac-
teristics with the deformation angle φ and the coordinate system of the plate.
By assumption, the lifting forces are not affected by the transverse deflection
u. The lifting line theory will allow us to calculate the downwash angle which
governs the modified circulation distribution. Combining the two expressions
for the lift coefficient, we can find the circulation in terms of the effective angle
of attack as

Γ(x1) = −4πρUc
(
α− φ(x1)− β(x1)

)
This reproduces the expression for circulation from the Joukowksy airfoil

with the effective angle of attack and where the sine function is linearized by
the assumption of small angles. Previously, we imagined a plate cantilevered
to a wall whereas now we imagine a full wing planform of span 2L such that
the imagined “fuselage” at x1 = 0 has no relevant aerodynamic properties but
does act as a cantilever for the plate on either side. We represent the unknown
circulation distribution as a cosine series, indicating its symmetry about the
origin:

Γ(x1) = 4LU

N∑
n=0

An cos
(nπ
L
x1

)
We want to express the induced angle of attack β in terms of the circulation,

and we will do this by finding the downwash velocity w. When this velocity is
small, which is perpendicular to the freestream flow of velocity U , then β(x1) ≈
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w(x1)
U . We have chosen not to use the angular coordinate transformation which is

typical in Lifting-lione derivations, as it complicates the aero-structural problem
with the use of multiple coordinate systems. It will also be seen that staying
in the Cartesian coordinates facilitates numerical solutions to the governing
equations. We can now write

Γ(x1) = 4LU

N∑
n=0

An cos
(nπ
L
x1

)
= −4πρUc

(
α− φ(x1)− w(x1)

U

)
The angle of rotation φ is governed by statics considerations and can be

treated as known in this context. Thus, if we can solve for the distribution of
downwash velocity in terms of the series representation of circulation, we can
find an expression for the coefficients An. To do this, note that a theorem
from Helmholtz tells us that span-wise changes in the lift distribution, through
the circulation Γ, must be accompanied by a shed vortex of equivalent strength.
These shed vortices induce downward velocity on the underside of the airfoil, and
act to reduce the effective angle of attack. A differential element of circulation
at location x′ induces a small velocity at the span position x1. The shed vortices
act like semi-infinite vortex lines, and the Biot-Savart law takes a simpler form
for this geometry:

dw =
dΓ

4π(x′ − x1)

We can incorporate all such shed vortices by integrating over the span of
the wing to find the downwash velocity at span position x1. We use the series
definition of the circulation to say that

w(x1) =
1

4π

∫
dΓ

x′ − x1
=

1

4π

∫ L

−L

(dΓ/dx′)

x′ − x1
dx′

= −U
∫ L

−L

∑
nAn sin

(
nπ
L x
′)

x′ − x1
dx′

= −U
N∑
n=0

nAn

∫ L

−L

sin
(
nπ
L x
′)

x′ − x1
dx′

This integral is non-trivial to evaluate, and despite its singularities, should
be convergent based on physical considerations. For the time being, we can
replace it with an undefined function f(n, x1), as the dependence on the field
variable x′ is integrated away. The induced velocity will be negative, thus it
will naturally produce the negative sign used in the effective angle of attack.
Returning to the two expressions for circulation, we can now write

4LU

N∑
n=0

An cos
(nπ
L
x1

)
= −4πρUc

(
α− φ(x1) +

N∑
n=0

nAnf(n, x1)
)
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This expression can be rearranged to isolate the coefficients on circulation

N∑
n=0

An

[
L

πρc
cos
(nπ
L
x1

)
+ nf(n, x1)

]
= φ(x1)− α

This expression can be turned into a linear system by discretizing the span
coordinate and forcing the relation to be satisfied at N points xj :

N∑
n=0

An

[
L

πρc
cos
(nπ
L
xj

)
+ nf(n, xj)

]
= φ(xj)− α

Discretizing in this way produces an approximate solution to the problem
where coefficients is such that the governing equation is satisfied at a finite
number of points, which we will take to be on a grid of uniform spacing. Note
that in order to solve this system with matrix inversion, the number of grid
points must be equivalent to the number of terms in the series for circulation,
thus j = 0, 1, . . . , N − 1. The linear system can be written as

HjnAn = φj − αj
where αj is the constant α multuipying a column vector of 1’s. The matrix of
coefficients comes out of the discretized lifting-line equation, and can be inverted
to solve for the coefficients.

Hjn :=
L

πρc
cos
(nπ
L
xj

)
+ nf(n, xj)

An = H−1nj φ(xj)− vn
The circulation distribution can finally be written as

Γ(x1, φ) = 4LU

N∑
n=0

[
H−1nj φ(xj)− vn

]
cos
(nπ
L
x1

)
which means that the lift force is

L(x1, φ) = 4ρLU2
N∑
n=0

[
H−1nj φ(xj)− vn

]
cos
(nπ
L
x1

)

5 Integral

To proceed with the analysis, We need to evaluate the integral

f(n, x1) =

∫ L

−L

sin
(
nπ
L x
′)

x′ − x1
dx′
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Even numerical integration struggles to handle this expression due to com-
plex oscillatory behavior and singularities, thus an analytic expression is sought.
From [?], we have the tabulated indefinite integral∫

sin kx

a+ bx
dx =

1

b

[
cos

(
ka

b

)
si(u)− sin

(
ka

b

)
ci(u)

]
which makes use of the following definitions

u :=
k

b
(a+ bx)

ci(x) := −
∫ ∞
x

cos t

t
dt

si(x) := −
∫ ∞
x

sin t

t
dt

Evidently this is a complicated integral. The sine and cosine integrals are
stored in Python as special functions. In our case, the constants are k = nπ

L ,
a = −x1, and b = 1. The definite integral is computed from the indefinite
integral as

f(n, x1) =
[
cos
(nπx1

L

)
si
(nπ
L

(L− x1)
)

+ sin
(nπx1

L

)
ci
(nπ
L

(L− x1)
)]

−
[
cos
(nπx1

L

)
si
(
−nπ
L

(L+ x1)
)

+ sin
(nπx1

L

)
ci
(
−nπ
L

(L+ x1)
)]

(1)

6 Solution Methods

The distribution of applied lift is a function of the span position x1 and the
state of elastic wing twist φ. The coefficients on the cosine series for circulation
are a linear function of the rotation angle at the N positions xi. Our approach
to solving the structural problem must respect this representation of the lift
distribution, which is difficult to accomplish if we used Euler-Lagrange equations
to derive governing differential equations from the energy functional Π. Namely,
we must calculate ∂An

∂φ without a continuous representation of their relationship.
In lieu of the variational approach, we can compute a stationary point of the
discretized energy functional by evaluating the bending displacement u and
rotation angle φ at N points, and computing derivatives with finite differencing.
The energy is then a function of 2N parameters ui and φi, and we use the
gradient to accomplish the minimization. This allows us to unambiguously use
the lifting-line results. Combining the discretization, lifting-line theory, and
finite differencing the energy is
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Figure 4: Values of state variables φ and u are stored on a discretized interval.
Boundary conditions are enforced with algebraic equations by adding a fictitious
point on both sides of the interval.

Π =
∑[

S

2

(
ui+1 − 2ui + ui−1

∆x2

)2

+
J

2

(
φi+1 − 2φi + φi−1

∆x2

)2

+(1−v)S

(
φi+1 − φi−1

2∆x

)2

+L
( c

4
φi − ui

)N−1∑
n=0

(
H−1nj φj+vn

)
cos
(nπ
L
xi

)]
∆x

A solution to this problem is a point in the finite space [~u, ~φ] such that the
energy function is at a stationary point. We can locate such a solution with a
gradient descent algorithm of the sort[

~ui+1

~φi+1

]
=

[
~ui
~φi

]
− γ∇Π

(
~ui, ~φi

)
Only the interior points are updated with the gradient of the energy, as the

boundary conditions determine the value of the endpoints in any given con-
figuration of the system. The differential boundary conditions for both state
variables can be replaced with the appropriate differencing schemes and trans-
formed into algebraic equations. The continuous boundary conditions are

u(0) = u1(0) = φ(0) = φ1(0) = 0

u11(L) = u111(L) = φ11(L) = −Jφ111(L) + 2(1− v)Sφ1(L) = 0

We incorporate a single fictitious point outside the physical boundary of the
problem which helps enforce the differenced boundary conditions. The fictitious
point on the left is at index i = 0 and i = N + 1 on the right. The boundary
conditions on the left end are
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u1 = 0

∂u

∂x1

∣∣∣∣∣
i=1

= 0 =
u2 − u0

∆x
=⇒ u0 = u2

φ1 = 0

∂φ

∂x1

∣∣∣∣∣
i=1

= 0 =
φ2 − φ0

∆x
=⇒ φ0 = φ2

Because of the clamped wing root, these conditions are straightforward to
enforce. The free end on the right side has more complicated behavior:

∂2u

∂x21

∣∣∣∣∣
i=N

= 0 =
1

∆x2

(
uN+1 − 2uN + uN−1

)
∂3u

∂x31

∣∣∣∣∣
i=N

= 0 =
1

∆x3

(
uN+1 − 3uN + 3uN−1 − uN−2

)
∂2φ

∂x21

∣∣∣∣∣
i=N

= 0 =
1

∆x2

(
φN+1 − 2φN + φN−1

)

−J ∂
3φ

∂x31

∣∣∣∣∣
i=N

+2(1−v)S
∂φ

∂x1

∣∣∣∣∣
i=N

= 0 =
−J
∆x3

(
φN+1−3φN+3φN−1−φN−2

)
+2(1−v)

S

∆x

(
φN+1−φN−1

)
The free end boundary conditions result in a system of two equations for the

two unknowns at i = N and i = N + 1 for each state variable. We initialize a
guess for the system state [~u0, ~φ0], compute the gradient of the energy, update
the interior points, then use the boundary conditions to find the values at the
fictitious points/boundaries. The values of the functions at the boundary are
required to calculate the energy even though they are not updated by it. At this
point, we can either repeat the process or halt if the magnitude of the gradient
is below a certain threshold, indicating a stationary point. We now turn to
computing the gradient of the energy Π. More precisely, the energy is

Π =

N∑
i=1

wi

[
S

2

(
ui+1 − 2ui + ui−1

∆x2

)2

+
J

2

(
φi+1 − 2φi + φi−1

∆x2

)2

+(1−v)S

(
φi+1 − φi−1

2∆x

)2

+L
( c

4
φi − ui

)N−1∑
n=0

(
H−1nj φj+vn

)
cos
(nπ
L
xi

)]
∆x

We start at the left-hand boundary point at i = 1, split the interval into N
subdivisions, and stop at the right-hand boundary at i = N . To numerically
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integrate in this manner, we use a centered approximation method, but this
requires the introduction of a weight function which is 1/2 on either boundary
and 1 otherwise. We take derivatives of the energy with respect to the param-
eters uj , φj where j = 2, 3, . . . , N − 1 indicating that the boundary points are
not updated by the gradient, but follow from the interior points and boundary
conditions. We see from the expressions for derivatives that the fictitious points
are use in computing the gradient even for points inside the boundary, and are
thus not only for enforcing boundary conditions, but actually show up in the
expression for energy.

∂Π

∂uj
=

[
S

∆x4

(
wj−1(uj − 2uj−1 + uj−2)− 2wj(uj+1 − 2uj + uj−1)

+ wj+1(uj+2 − 2uj+1 + uj)

)
− Lwj

N−1∑
n=0

(
H−1nj φj + vn

)
cos
(nπ
L
xj

)]
∆x

∂Π

∂φk
=

[
J

∆x4

(
wk−1(φk − 2φk−1 + φk−2)− 2wk(φk+1 − 2φk + φk−1)

+wk+1(φk+2−2φk+1 +φk)

)
+
S(1− v)

2∆x2

(
wk−1(φk−φk−2)−wk+1(φk+2−φk)

)

+L c
4
wk
∑
n

(H−1nj φj+vn) cos
(nπxk

L

)
+
∑
i

Lwi
( c

4
φi − ui

)∑
n

(H−1nk +vn) cos
(nπxi

L

)]

7 I never finished this!
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