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1 Introduction

This semester of research focused on learning techniques used in multiscale
analysis of solids, and exploring how data-driven methods might be incorpo-
rated into these multiscale analyses. More specifically, I studied the theory
of asymptotic homogenization for the governing equations of linear elasticity,
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implemented the microscale problem in MATLAB with finite elements, and
used data generated from this solver to train/test different neural networks
in Python’s machine learning library “PyTorch.” Because multiscale analyses
of structures are typically very expensive, the use of machine learning would
be to construct pre-trained surrogate models that streamline computations by
eliminating finite element solves on the microstructure. Note that if the mi-
crostructure of a solid exhibits no spatial variation, then in the context of linear
elasticity there is no use for machine learning. This is because the effective
(macroscopic) properties of the material are independent of the applied strains
by linearity of the microscale constitutive law, and thus can be computed once
and applied everywhere in the solid. Essentially, this amounts to one addi-
tional step before turning to the macroscopic finite element solution. However,
when the microstructure varies spatially, effective material properties must be
computed for each realization of the microstructure which can be costly. A sur-
rogate model which mapped the microstructure to the effective material prop-
erties would be beneficial in this setting. Additionally, we might be interested
in the stress state of the microstructure in order to understand how small-scale
material variations contribute to stress concentration. This could be important
for understanding the influence of the microstructure on damage or fracture, for
example. Analogous to the above, when the material is homogeneous linearity
makes this analysis inexpensive, yet there is the need for efficiency when the
microstructure is different at each integration point in the finite element mesh.
The details of these observations will be discussed later–the point is that even
in the framework linear elasticity, structures with spatially varying microstruc-
tures can be expensive to analyze. This is especially true in an optimization
problem where the multiscale finite element problems needs to be solved repeat-
edly. The microstructure could itself be a design variable, in which case a huge
number of microstructural finite element analyses would be required! Note that
even for homogeneous material, the effective material properties depend on the
macroscopic strains being applied in the context of non-linear elasticity. In other
words, a surrogate model which mapped the applied strain to the effective ma-
terial properties for a non-linear problem would be very useful. Thus, the goal
of this report is to investigate how machine learning can be used to streamline
multiscale finite element analysis of linear elastic structures. Comparisons to
non-linear problems will be made, but the non-linear multiscale finite element
problem will not be investigated here. To these ends, the theory of asymptotic
homogenization will be developed and implemented in MATLAB. Next, two
relevant neural network architectures will be discussed and implemented in Py-
Torch. Finally, a number of problems will be formulated, solved, and discussed.
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Figure 1: In the asymptotic expansion, the coordinates y and x are treated
as independent, despite being defined in terms of one another. Through the
scale parameter η, y resolves the microstructure by changing rapidly with the
macroscopic coordinate x, which does not “see” the microstructure. Though
theoretically infinite, η introduces an inherent length scale into the coordinate
system. Note that by assumption, the microstructural coordinate y is periodic
with period η.

2 Asymptotic Homogenization

2.1 Introduction

We wish to analyze a structure composed of heterogeneous material on a very
small scale. This could be a metal which appears homogeneous and isotropic on
the length scale of meters or centimeters, but is actually made up of crystals,
pores, and grains on the micrometer scale. Asymptotic homogenization provides
a framework to understand the contribution of the small-scale heterogeneities
to the mechanics of the structure. For a typical coordinate x which represents
position in space, we introduce a second coordinate y

x = ηy (1)

where η << 1 is a small parameter which controls the extent of separation be-
tween the macro- and micro-scales. See Figure 1 for a schematic. Small changes
in the macroscopic coordinate x result in very large changes in y, which indi-
cates that the fine details of the material in the structure can be better resolved
by the “fast” variable y than the “slow” one x. With this, we conceptualize
the problem as having two scales: the macroscopic scale defined by coordinate
x, and the microscopic scale y whose separation from x is controlled by the
parameter η. Thus, we write the domain Ωη which is interpreted as the all
the macroscopic points plus their accompanying microstructures, obtained by
magnifying the material by a factor of η. For other quantities, a superscript
η will indicate the quantity before being split into its microscopic and macro-
scopic parts. For all perturbation methods, it is assumed that the slow and fast
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variables are independent, and that the quantities of interest can be expanded
in powers of η. This seemingly bizarre assumption can be justified by noting
that at each x, there will be a corresponding microstructure defined with y,
and that changes in y have little influence on the macroscopic position. It is
as if quantities defined in the macroscopic coordinate system change so slowly
compared to the microscale that they appear constant. Furthermore, when we
assume that the variations in the microstructure are periodic with period η,
this is called “periodic homogenization.” In this case, ∆x = η corresponds to
∆y = 1 and a full traversal of the heterogeneous microstructure. We imagine
the structure as being built up of a tessellation of these periodic microstruc-
tures. We will refer some instance of the repeating periodic microstructure as
a random volume element (RVE). See Figure 2. Now, expand the displacement
field in powers of η

Figure 2: The dimensions of the RVE are controlled by the scale parameter
η. The assumption of periodicity imposes certain boundary conditions on the
deformation of RVE’s which ensure that no gaps form in the structure. Note
that even when the microstructure is assumed to vary in space, the periodic
homogenization framework is used. This is a contradiction!

uη(x, y) = u0(x) + ηu1(x, y) + η2u2(x, y) + . . . (2)

Vector notation for the coordinates is not being used for convenience. This
derivation applies to any number of spatial dimensions. In some sense, this step
should be thought of as an ansatz of perturbation theory–it is something we
basically take for granted. By assumption, the first term in the expansion does
not depend on the microscopic coordinate1. See Figure 3 for an example of a
function which is periodic on the fine scale. All perturbation analyses begin
with this assumption. Our goal is to obtain some kind of governing equations

1If this assumption is not made, it adds additional steps the derivation but it can eventually
be proven
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for the multiscale problem. To this end, we look at the (infinitesimal) strain-
displacement relations

ϵηij =
1

2

(
dui

dxη
j

+
duj

dxη
i

)
(3)

Figure 3: Plot of f(x, x/η) = sin(x) + η sin(x/η) indicating how the pertur-
batively small parameter η controls the frequency and magnitude of the first
correction term in an asymptotic expansion.

Derivatives are taken with respect to the two-scale coordinate xη. Treating
the two scales as independent coordinates, we expand this derivative with the
chain rule

d

dxη
i

=
∂

∂xi
+

1

η

∂

∂yi
(4)

In a first-order perturbation theory, only the first two terms are retained in
the asymptotic expansion of Eq. 2. Plugging in this truncated expansion to Eq.
3 and using Eq. 4, we have
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ϵηij =
1

2

[(
∂

∂xj
+

1

η

∂

∂yj

)(
u0
i (x) + ηu1

i (x, y)

)

+

(
∂

∂xi
+

1

η

∂

∂yi

)(
u0
j (x) + ηu1

j (x, y)

)]

=
1

2

[
∂u0

i

∂xj
+ η

∂u1
i

∂xj
+

∂u1
i

∂yj
+

∂u0
j

∂xi
+ η

∂u1
j

∂xi
+

∂u1
j

∂yi

]

Analogous to Eq. 2, we group terms in powers of η such that ϵ(x, y) =
η0ϵ0(x, y) + ηϵ1(x, y) + . . . To simplify writing out these equations, use the
notation ϵzkℓ(f) :=

∂fk
∂zℓ

+ ∂fℓ
∂zk

. We then have

η0 : ϵ0ij(x, y) = ϵxij(u
0) + ϵyij(u

1) (5a)

η1 : ϵ1ij(x, y) = ϵxij(u
1) (5b)

Unlike the displacement, the first term in the asymptotic expansion of the
strain field depends on both coordinates. This calculation illustrates many of the
ingredients of the concepts and mathematics of the perturbation analysis: intro-
duction of two coordinates, asymptotic expansion of displacement, expanding
derivatives with the chain rule, and grouping quantities by powers of η. There
are now two routes to obtaining governing equations–pursue the weak form di-
rectly from stress equilibrium, or derive the Navier equation in multiscale setting
then weaken it. The former will be sketched, but passing through the Navier
equation will prove to be much simpler conceptually.

2.2 Weak Form

Stress equilibrium in a multiscale body can be written as

dση
ij

dxη
j

+ bi = 0 (6)

As before, first order perturbation analyses are restricted to keep two terms
in asymptotic expansions. Like the strain, the stress is written as

ση
ij(x, y) = σ0

ij(x, y) + ησ1
ij(x, y) + . . .

Expanding the derivatives with chain rule per Eq. 4 and plugging in the
expansion of the stress, we group the resulting equations in powers of η:
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η−1 :
∂σ0

ij

∂yj
= 0 (7a)

η0 :
∂σ0

ij

∂xj
+

∂σ1
ij

∂yj
+ bi = 0 (7b)

These two equations could be weakened and used to obtain finite element
formulations along with a constitutive relation defined in terms of the multiscale
strains per Eqs. 5. This approach would be much more convenient for non-linear
constitutive relations. However, one gets into tricky terrain arguing how to deal
with boundary conditions and test functions in the multiscale setting. What
functions do we test against? What coordinates are they defined in terms of,
and how do we know this? The alternative approach of going through the Navier
equation then weakening the solution is more intuitive and requires fewer leaps
of logic.

2.3 Navier Equation

The Navier equation writes stress equilibrium in terms of displacements. Stress
equilbrium in multiscale setting is given by Eq. 7, and derivatives are computed
with Eq. 4. Strain is related to the displacement through Eq. 3, so we only
require a constitutive relation to proceed. We will assume that the constitutive
tensor only depends on the microscale coordinate, otherwise the math becomes
extremely cumbersome. Thus, we have

ση
ij(x, y) = Cijkℓ(y)ϵ

η
kℓ(x, y) (8)

Substituting this into stress equilibrium, we can use symmetries of the ma-
terial tensor to simplify the resulting expression. Note that the body force only
depends on the macroscale coordinate:

d

dxη
j

Cijkℓ(y)
duη

k

dxη
ℓ

= −bi(x)

Substituting the definition of the multiscale derivative and the two-term
aymptotic expansion for the displacement, this becomes

(
∂

∂xj
+

1

η

∂

∂yj

)
Cijkℓ(y)

(
∂

∂xℓ
+

1

η

∂

∂yℓ

)(
u0
k(x) + ηu1

k(x, y)
)
= −bi(x)

This expression can be expanded, and the terms grouped in powers of η. It
is a length calculation to show that, when keeping the two lowest powers of η,
the Navier equation is
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1

η

(
∂

∂yj

(
Cijkℓ

∂u0
k

∂xℓ

)
+

∂

∂yj

(
Cijkℓ

∂u1
k

∂yℓ

))
+ Cijkℓ

∂2u0
k

∂xj∂xℓ

+ Cijkℓ
∂2u1

k

∂xj∂yℓ
+

∂

∂yj

(
Cijkℓ

∂u1
k

∂xℓ

)
= −bi (9)

We obtain two governing equations by claiming that terms of equal powers
of η must be equal individually. This results in

η−1 :
∂

∂yj

(
Cijkℓ

∂u1
k

∂yℓ

)
= − ∂

∂yj

(
Cijkℓ

∂u0
k

∂xℓ

)
(10a)

η0 : Cijkℓ
∂2u0

k

∂xj∂xℓ
+ Cijkℓ

∂2u1
k

∂xj∂yℓ
+

∂

∂yj

(
Cijkℓ

∂u1
k

∂xℓ

)
= −bi (10b)

The first equation only involves y derivatives. Because the macroscopic coor-
dinate is assumed to not change with the microscale coordinate (scale separation
assumption), the term ∂u0

k/∂xℓ is a constant with respect to y. Because this
equation is linear, we can write

u1
i (x, y) = χ(y)imn

∂u0
m

∂xn
(x) (11)

The 3-index tensor function χ is interpreted as giving the displacement com-
ponents of the RVE under the action of applied macroscopic unit strains. Be-
cause u1(x, y) is periodic in y, the process of solving for unit response will enforce
periodicity in χimn(y). In order to solve for the RVE’s response to unit strains,
use Eq. 11 with ∂u0

k/∂xℓ = δkaδℓb and the first governing equation:

∂

∂yj

(
Cijkℓ

∂χkab

∂yℓ

)
= − ∂

∂yj

(
Cijkℓδkaδℓb

)
(12)

This is the governing equation for χ(y). A given value of indices a and b,
yields an equation for the displacement components. Because the strain tensor
is symmetry, not every combination of indices needs to be computed. Note that
this equation has the form of stress equilibrium in the RVE for a body force
proportional to spatial variations in the constitutive tensor. Turning now to the
second of Eqs. 10, we can substitute Eq. 11 in order to remove any u1(x, y)
dependence. Because the RVE unit response function χ only dependence on
the microscale coordinate y and the first term in the displacement expansion u0

only depends on x, we have

Cijkℓ
∂2u0

k

∂xj∂xℓ
+ Cijkℓ

∂χkab

∂yℓ

∂2u0
a

∂xj∂xb
+

∂

∂yj

(
Cijkℓχkab

∂2u0
a

∂xb∂xℓ

)
= −bi (13)

Notice how the assumption that Cijkℓ = Cijkℓ(y) is used throughout–if the
microstructure varied macroscopically, then the unit response χ would as well.
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Eq. 13 cannot be satisfied pointwise in x and y. The body force and displace-
ment gradients are purely macroscopic, whereas the constitutive tensor and unit
response χ are purely microscopic. The macroscale coordinate x is essentially
naive to the small scale variations in the structure’s material and mechanics
captured by y. Returning to the analogy of zooming into a complex microstruc-
ture at each x point, we argue that the microscale interacts with the macro-
scopic mechanics through an average. Thus, we average the influence of the
microstructure and say the averaged multiscale equation is satisfied pointwise
in x:

(
1

|Ωy|

∫
Ωy

Cijkℓdy

)
∂2u0

k

∂xj∂xℓ
+

(
1

|Ωy|

∫
Ωy

Cijkℓ
∂χkab

∂yℓ
dy

)
∂2u0

a

∂xj∂xb

+

(
1

|Ωy|

∫
Ωy

∂

∂yj
(Cijkℓχkab)dy

)
∂2u0

a

∂xb∂xℓ
= −bi (14)

The third term on the left-hand side of this equation is the divergence of a
periodic function (both the material tensor and RVE unit response are periodic).
The divergence theorem can be used to show the integral of the divergence of
a periodic function is zero. Introducing delta functions to manage indices, we
obtain the following expression:(

1

|Ωy|

∫
Ωy

Cijkℓ

(
δkaδℓb +

∂χkab

∂yℓ

)
dy

)
∂2u0

a

∂xj∂xb
= −bi (15)

The integral is a four-index object with no x or y dependence. Eq. 15 is the
Navier equation in terms of the macroscopic coordinate x for a constant consti-
tutive tensor. Thus, we recognize the integral in parentheses as the homogenized
material tensor:

CH
ijab :=

1

|Ωy|

∫
Ωy

Cijkℓ

(
δkaδℓb +

∂χkab

∂yℓ

)
dy (16)

The homogenized tensor furnishes the effective material properties of a mate-
rial which exhibits periodic heterogeneities on a small scale. It can be computed
once the unit response of the RVE is known.

2.4 2D Finite Element Formulation

Eq. 12 is the governing equation for the displacement response of the RVE
to applied unit strains. When this is known, the homogenized tensor can be
computed per Eq. 16. Thus, we fish to formulate a finite element problem to
compute χkab(y). Specifically, we fill focus on 2D isotropic materials with het-
erogeneous microstructures. The microstructure will vary spatially only through
the Young’s Modulus E(y). Weaken the strong form of the microscale governing
equation by integrating over the RVE against a test function δui:
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∫
Ωy

∂

∂yj

(
Cijkℓ

∂χkab

∂yℓ

)
δuidΩ = −

∫
Ωy

∂

∂yj

(
Cijkℓδkaδℓb

)
δuidΩ (17)

Per Figure 2, the microscale domain has dimensions of unity in the y coor-
dinate system. Integrate by parts and note the periodic boundary conditions of
the RVE imply there is no traction, thus the boundary term vanishes:∫

Ωy

Cijkℓ
∂χkab

∂yℓ

∂δui

∂yj
dΩ = −

∫
Ωy

Cijkℓδkaδℓb
∂δui

∂yj
dΩ (18)

In 2D, there are three independent components of stress and strain. This
expression can be written in matrix form as

∫
Ωy

 δu1,1

δu2,2

δu1,2 + δu2,1

 ·DDD(y)

 χã
1,1

χã
2,2

χã
1,2 + χã

2,1

 dΩ

= −
∫
Ωy

 δu1,1

δu2,2

δu1,2 + δu2,1

 ·DDD(y)ê̂êeãdΩ

In this expression, comma notation is used for derivatives, DDD(y) is the 2D
constitutive relation, and the index ã corresponds to ab through ã = 1 →
(a, b) = (1, 1), ã = 2 → (a, b) = (2, 2), and ã = 3 → (a, b) = (1, 2). The unit
vector ê̂êeã is used to apply the unit strains. Because only the Young’s Modulus
varies over the RVE, this can be written as

∫
Ωy

E(y)

 δu1,1

δu2,2

δu1,2 + δu2,1

 ·DDDunit

 χã
1,1

χã
2,2

χã
1,2 + χã

2,1

 dΩ

= −
∫
Ωy

E(y)

 δu1,1

δu2,2

δu1,2 + δu2,1

 ·DDDunitê̂êeãdΩ (19)

Per the usual 2D finite element procedure, the elemental stiffness matrix can
be written in terms of a 3×8 matrix of derivatives BBB which takes the elemental
degrees of freedom to the finite element approximation of the strain field in the
element:

ϵhϵhϵh(δu) =

 δuh
1,1

δuh
2,2

δuh
1,2 + δuh

2,1

 = BBB


...

dofs
...


The elemental stiffness matrix is then
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KKKe =

∫
Ωe

E(y)BBBTDDDunitBBBdΩ

Now, the forcing term is specific to the governing equation for the microscale
finite element problem. The microstructure is loaded with a constant volumetric
strain. The elemental force vector for this problem is

fffe = −
∫
Ωe

E(y)BBBTDDDunitê̂êeãdΩ (20)

These quantities can be inserted into their global counterparts with a typical
finite element assembly procedure. Note that the 2D finite element problem is
solved on a square of side length 1 and with periodic boundary conditions. The
periodic boundary conditions can be enforced by enforcing zero displacement at
the four corners, and equating displacement vectors of nodes on opposite sides
of the domain. Now that we can solve for the RVE’s response to unit strains,
we can compute the homogenized tensor with Eq. 16. Collapsing indices to cast
this into matrix/vector notation, we have

DH
ij =

1

|Ωy|

∫
Dij +Dikϵk(χ

j)dΩ =
1

|Ωy|

∫
Dij + σj

i (y)dΩ (21)

where σj
i (y) is defined as the component i of the stress tensor at position y

arising from applied unit strain j. The constitutive relation is represented by
matrix Dij to distinguish from the four index tensor Cijkℓ. Numerically, we can
store the Young’s Modulus as constant over each element (but varying between
elements). In this case, the homogenized tensor can be computed with

DDDH =
1

|Ωy|

nel∑
n=1

∆Ae

E(yn)DDD
unit +

σ1
1 σ2

1 σ3
1

σ1
2 σ2

2 σ3
2

σ1
3 σ2

3 σ3
3


yn

 (22)

For plane stress, the constitutive relation is given byσ1

σ2

σ3

 =
E

1− v2

1 v 0
v 1 0
0 0 (1− v)/2

ϵ1ϵ2
ϵ3

 (23)

The microscale displacements χj
i (y) (technically interpreted as the compo-

nents of the displacement field arising from applied unit strain j) are necessary
to compute the effective material properties. However, they also provide in-
formation about the stress state of the microstructure itself. It is natural to
wonder how the stress state of the microstructure differs from the macroscopic
stress response of the RVE. If we are interested in damage or fracture, probably
we care primarily about extreme stress states within the microstructure. To
this end, we can define a “microscale stress concentration” with

γ
(
E(y), ϵϵϵ

)
:=

max
(
σv

(
σj
i (y)ϵj

))
σv

(
DH

ij ϵj
) (24)
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Here, ϵϵϵ is a generic applied macroscopic strain, and σv(·) corresponds to
a function taking three stress components to the von Mises stress. We use
linearity in the numerator to compute the generic stress state from the unit
strain response, and take the maximum von Mises stress in the microstructure.
As a reminder, σj

i (y) is stress component i at position y in the RVE from applied
strain j. This ratio gives a sense of how variations in the microstructure amplify
stresses compared to the effective properties.

3 Data-driven Surrogate Modeling

When the material microstructure varies spatially and/or the material exhibits
non-linear constitutive behavior, multiscale analyses of structures require a very
large number of finite element solves. Consequently, we are interested in find-
ing surrogate models for some or all of the microscale finite element problems.
Example multiscale problems of interest include:

• A surrogate model to compute the homogenized tensor from the RVE
microstructure (linear elasticity). This would be useful when the material
varies in space or the microstructure is an optimization variable.

• A surrogate model to compute the homogenized tensor from the RVE mi-
crostructure and the applied macroscopic strains (non-linear elasticity).
Even when the material is constant, this would be useful to replace mi-
croscale finite element solves at each iteration in Newton’s method.

• A surrogate model to predict the stress or displacement field in the RVE
as a function of the microstructure and the applied strains (linear or non-
linear elasticity). This is only useful if the mechanics of the microstructure
are of interest, otherwise homogenized tensor should be predicted directly.
Something like “stress concentration” effects within RVE could be of in-
terest if designing against damage/fracture.

3.1 General Comments on Implementation

One of the tasks of this semester was to become familiar with Python’s powerful
machine learning library “PyTorch.” All neural networks were constructed in
PyTorch to allow for experimentation and customization. Python is used to
read in text file outputs from custom MATLAB microscale implementation or
MORIS homogenization code. In each problem, hyperparameters can be tuned
to optimize the performance of the network. These include activation function,
network width/depth, and learning rate. Training can be run for as many
epochs are required to obtain saturation/overfitting. The Adam optimizer and
mean-squared error loss are used for all examples. Finally, two different network
architectures are investigated–DeepOnet and Fully-Connected Network.
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Figure 4: Schematic of DeepOnet from original Karniadakis paper: a) the net-
work takes in an input function and a point in the output domain and models
the action of operator G on the input function u at point y. b) the network
is trained by sampling input functions at specified “sensor” points along with
y points and the corresponding solution. Note that the same input function
is used multiple times if different y points are sampled. c) & d) stacked and
unstacked DeepOnet architecture. The unstacked network is a more frugal ap-
proach.

3.2 Deep Operator Network (DeepOnet)

DeepOnet originates in a 2020 Lu & Karniadakis paper titled ”Learning nonlin-
ear operators for identifying differential equations based on universal approxi-
mation theorem of operators.” An operator is a map from a space of functions
to another space of functions. A simple example operator is an antiderative:

G(u)(y) =

∫ y

0

u(x)dx

The operator G takes in a function u and outputs the function G(u)(y).
DeepOnet is a neural network architecture designed to match the structure of
this problem: it takes in a function and a point in the output domain, and
predicts the value of the operator acting on the input function at that point.
See Figure 4 for a schematic of DeepOnet, taken from the original paper. The
operator could be of a more complicated form, such as

a(x)
∂2f

∂x2
+ b(x)

∂f

∂x
+ c(x)f(x) = u(x)

Conceptually, there is an operator which takes the input function u(x) to the
solution of the ODE f(x). This might be written as f(x) = G(u)(x). DeepOnet
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has a “branch” and “trunk” network which treat the input function and point in
output domain separately. The input function u(x) passes through the branch
network and point y through the trunk, then the two recombined with a dot
product. Conceptually, this could be thought of as the network learning shape
functions in the y domain within the trunk net which are independent of the
applied forcing. Then, the branch network learns coefficients on these shape
functions which depend on the input function. The solution is approximated as
a linear combination of shape functions and weights.

A training data point in DeepOnet consists of samples of a particular input
function ui(x), a point in the output domain yj(potentially vector-valued), and
a target G(ui)(yj) which is the action of the operator we are trying to learn on
u(x) at point y. This has the following form:[

ui(x1), . . . , u
i(xn), y

j
1, . . . , y

j
d, G(ui)(yj)

]
(25)

Figure 5: The unstacked DeepOnet is used throughout this report. The input
function is passed through a single hidden-layer fully connected network in the
branch net to obtain the weights bk. The trunk net encodes the point y with
a single layer network. The weights and biases in these transformations are
parameters which are fit during training. Note that σ(·) represents an activation
function.

The same function ui(x) is re-used for many samples in the output domain
yj . The parameters of the network are updated in training to minimize the
mean-squared error between the true solution G(ui)(yj) and the network pre-
diction G̃(ui)(yj). Turning now to the use of DeepOnet in the context of multi-
scale solid mechanics, we wish to replace the microscale finite element problems
with surrogate models. Given the structure of DeepOnet, it is necessary that
the output lives in the space of functions, otherwise are not learning an opera-
tor. Thus, it is not feasible to predict the homogenized tensor with DeepOnet,
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because this is a matrix with all spatial variation integrated away per Eq. 16.
The problem of interest is then Eq. 19–DeepOnet can be used to eliminate the
finite element problem on the RVE. We are probably interested in either the
displacements χj

i (y) or the microscale stresses arising from these displacements.
This problems fits the structure of DeepOnet much better, as a forcing function
(applied strains) pass through a complex operator to produce an output field.
If we look at displacements, conceptually we have χi(y) = Gi(ϵϵϵ)(y) where the
operator is now vector-valued. DeepOnet can be modified to account for this by
adding a separate branch network for each displacement component. Analogous
to finite elements where the same shape functions are given different degrees of
freedom for components of the displacement at a given node, the trunk network
is not modified to account for vector-valued outputs–the different branch net-
works combine via a dot product with a trunk network that is only dependent
on the position y.

There are some caveats to the use of DeepOnet in this particular setting. To
see this, let’s replace the unit strains in Eq. 19 with an arbitrary applied strain
vector:

∫
Ωy

E(y)

 δu1,1

δu2,2

δu1,2 + δu2,1

 ·DDDunit

 χ1,1

χ2,2

χ1,2 + χ2,1

 dΩ

= −
∫
Ωy

E(y)

 δu1,1

δu2,2

δu1,2 + δu2,1

 ·DDDunit

ϵ1ϵ2
ϵ3

 dΩ (26)

If we want to find the displacement field χi(y) for applied strain ϵϵϵ = [ϵ1, ϵ2, ϵ3]
T ,

the unit strain response along with linearity can be used to argue

χi(y) = ϵ1χ
1
i (y) + ϵ2χ

2
i (y) + ϵ3χ

3
i (y) (27)

In other words, linearity allows us to compute the displacement field of any
applied strain once the unit responses are known. This result calls into question
the utility of a surrogate model which maps [ϵϵϵ, y] → χ(y). Furthermore, the
applied strain is not a function in the sense of the earlier DeepOnet input func-
tions u(x) as it is simply a constant vector. In the homogenization framework
outlined here, the applied strain forcing is constant over the entire RVE, thus
there is no continuous function to sample at fixed sensor points as DeepOnet
suggests.

Though the applied strain is constant in space, the essence of the problem
still reflects the structure of DeepOnet–an input forcing is acted on a by an
operator to produce a function-valued output. It is as if we want to learn the
displacement field in a beam bending problem as a function of the magnitude of
a constant distributed force. But in the case of the RVE (as well as a linear beam
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bending problem), linearity makes the dependence on that variable magnitude
trivial...strictly speaking, what would make sense is to learn the RVE’s three
unit responses for a variety of materials with some neural network. Through
linearity, this would allow efficient computation of the the homogenized tensor
and the mechanics of the microstructure for any applied strains and material
distributions within the training set. In the framework of DeepOnet, however,
this suggests one network for each unit strain response where the input is the
microstructure via E(y). See Figure 6 for a schematic. The problem with this
approach is that the Young’s Modulus E(y) is not a function acted on by an
operator as it is a parameter of the operator itself! In the case of linear elasticity,
*some* neural network architecture similar to this seems to be the most efficient
and logical approach–because for a given material, all microstructural mechanics
can be constructed from three unit responses, we should target the influence of
the material on the unit response and rather than focus on the applied strains.

Figure 6: The ideal surrogate model for the case of linear elasticity–three net-
works are trained to predict the three unit responses of the RVE for a variety of
materials. The material could be parameterized to avoid a large vector input to
the branch net. Once the networks are trained, three finite element solves for
the homogenized tensor and the mechanics of the microstructure are replaced
by three forward passes through the networks. Perhaps a different network ar-
chitecture is better suited for this problem?

All of this being said, DeepOnet does make sense in the world of non-linear
elasticity. There is no decomposition of the mechanics of the RVE into unit
responses, thus there is no simpler representation of the displacement field than
the arbitrary expression χ(ϵϵϵ, E(y), y). Though the applied strain is still a con-
stant vector, the difference between samples of a function and a vector seems
immaterial. In summary, we have the following takeaways:

• DeepOnet is useful in situations where the displacement/stress response
of the microstructure are of interest. It should not be used to predict the
homogenized tensor because the output is not a function
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• DeepOnet does not take advantage of linearity in linear elasticity, thus its
use/implementation is more of a proof of concept. It does make sense in
non-linear settings.

• A surrogate model for the problem outlined in Figure 6 would be speed
up multiscale computations in linear problems. This could be a different
network architecture.

3.3 Fully-Connected Network (FNN)

Figure 7: An example of how the Young’s Modulus field E(y) within the RVE
can be parameterized. An elliptical hole with dimensions/orientation controlled
by three parameters is punched in the center of the domain. The Young’s
Modulus takes on a constant value E0 outside the ellipse, and an arbitrary
small value approximating void inside.

A fully-connected network is probably the simplest neural network archi-
tecture. It represents a very general map between input and output vectors.
The FNN is a logical choice of architecture to learn the homogenized tensor
as a function of the material (spatially varying Young’s Modulus) in the RVE.
Essentially, we want to learn the relationship outlined by Eq. 16. Conceptually,
we have

DDDH =DDDH

(
σ
(
χ
(
E(y)

)))
The homogenized tensor is a function of the stresses, which are a function

of displacements, which are a function of the material through E(y). In a finite
element setting, the modulus is stored at a discrete set of points, so the FNN
should learn the relation

E1

E2

...
En

− hidden layers →


CH

1

CH
2
...

CH
6
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But in a fine mesh, the input vector will be intractably large. Thus, per Fig-
ure 7, we will restrict our attention to materials which have lower-dimensional
representations. The modulus field E(y) is a constructed from a set of param-
eters θ so that E(y) = E(y; θ). Instead of the modulus at every point in the
finite element mesh, the input to the FNN can be the parameters governing the
distribution of material. Thus, we learn the map between material parameters
and effective material properties of the RVE:

θ1...
θp

− hidden layers →


CH

1

CH
2
...

CH
6

 (28)

This is represented schematically in Figure 8. Note that this relation is
valid because the homogenized tensor does not depend on the magnitude of the
applied strain. This is an artefact of the linear constitutive relation. In non-
linear problems, we could still use an FNN to learn the independent components
of the constitutive tensor; however, they will depend on the strains applied to
the RVE. In a non-linear setting, the map to learn is

θ1
...
θp
ϵ1
ϵ2
ϵ3


− hidden layers →


CH

1

CH
2
...

CH
6

 (29)

Having a surrogate model of this sort would greatly expedite Newton itera-
tions in a non-linear solver. Instead of solving a non-linear problem on RVE’s
at every integration point in the finite element mesh to obtain effective material
properties, only a forward pass through the surrogate model would be required.

4 Results

4.1 DeepOnet–Stress

Given that stress is most likely to be the quantity of interest in a multiscale anal-
ysis (whether to predict damage or effective material properties), it is logical to
use DeepOnet as a surrogate model for stresses as a function of material gov-
erning the microstructure and the applied strains. See Figure 9 for a schematic
of the Young’s Modulus field E(x, y). Inside the unit domain Ωy = [0, 1]× [0, 1],
the microstructure is parameterized with

E(x, y) = E0

(
1 + a sin(2πx) sin(2πy)

)
(30)

where a is a parameter sampled from uniformly from the interval [−0.5, 0.5].
DeepOnet takes in the parameter a along with three applied strain components
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Figure 8: An example fully connected neural network. In the multiscale prob-
lem, the microstructure of the RVE is governing by the spatially varying Young’s
Modulus E(y; θ) where θ is a set of parameters. The parameters θ are passed
into the input layer, and the network is trained to predict the components of
the homogenized tensor in the output layer.

and a position in space and outputs a prediction of the 2D stress tensor. Applied
strain components are sampled uniformly and independently from the interval
[−1, 1]. One problem with using stress as the quantity of interest in DeepOnet
is that stress fields are not necessarily continuous. This violates assumptions
behind the universal approximation theorem of operators which motivated the
development of the DeepOnet framework in the first place. This is something
to keep in mind, despite the fact that the particular parametric microstructures
here have smoothly varying material properties thus ensuring continuity of the
stress. Note the material parameter a enters into both the branch and trunk
network. See Table 4.1 for a list of parameters governing the construction
and training of the DeepOnet to predicted stresses in the RVE. Note that one
“sample” in the training data is the stress at the center of every element in a
finite element simulation (ie one combination of applied strain and material for
all spatial positions within RVE).

Training and test performance are shown in Figures 10-11. Though not shown
here, the sigmoid activation function performs very poorly compared to Leaky
ReLu in this problem. The basic architecture of DeepOnet can be “deepened”
by adding additional hidden layers in the branch and/or trunk networks. We
call this an “augmented” DeepOnet structure.

4.2 DeepOnet–Displacement

The same parametric microstructure as above is used to predict displacements
within the RVE as a function of the applied strains, material, and spatial po-
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Figure 9: The form of the perturbation to a nominal Young’s Modulus value
within the RVE used in all DeepOnet surrogate models.

Hyperparameter Value
Learning Rate 0.05

Nominal Young’s Modulus (E0) 1E7
Poisson Ratio (v) 0.3

Training Batch Size 10000
Samples in Training Data 10000
Samples in Test Data 500

Table 1: The finite element mesh which generated the data for the stress-based
DeepOnet consists of 25× 25 nodes. Other hyperparameters are varied to fine
tune performance of the network.

Figure 10: Training and validation for traditional DeepOnet structure with hid-
den layer width n = 35 and dot product size p = 35, and LeakyReLu activation
function.

sition. The displacement field is continuous, so the assumptions of the univer-
sal operator approximation theorem are respected. Whereas above, stresses at
element centers were predicted, we now train the network on nodal displace-
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Figure 11: Training and validation for augmented DeepOnet structure where a
second hidden layer is added to the branch network and a hidden layer added
to the trunk network. Despite the vast increase in size of this network, the
validation accuracy does not improve significantly.

Hyperparameter Value
Learning Rate 0.1

Nominal Young’s Modulus (E0) 1E7
Poisson Ratio (v) 0.3

Training Batch Size 10000
Samples in Training Data 10000
Samples in Test Data 500

Table 2: The finite element mesh which generated the data for the displacement-
based DeepOnet consists of 25× 25 nodes. Other hyperparameters are varied
to fine tune performance of the network.

ments. See Table 4.2 for a list of fixed hyperparameters. It was observed that
a larger learning rate was advantageous for training the DeepOnet on displace-
ment data, and that the sigmoid activation function performed much better
than LeakyReLu (opposite of above). See Figures 12-14 for results of train-
ing and validation of the DeepOnet focused on predicting displacements. In
a nutshell, these models perform much better than the stress predictions and
have the benefit of generalizing to more complex microstructures with stress
discontinuities.

4.3 Deeponet–Stresses and Homogenized Tensor From Dis-
placement

Now that we have models trained to predict displacements, we can use Py-
Torch’s gradient computations to obtain stresses from the displacement fields
fit by the network. We take gradients with respect to inputs into the trunk
network (two spatial coordinates), use the strain-displacement relation to ob-
tain the strain vector, then the constitutive model for stresses. MATLAB stress

21



Figure 12: Traditional DeepOnet structure tested on 500 unseen microstructural
displacement fields with branch hidden layer width n = 30 and dot product size
p = 30. The displacements are multiplied by

√
E0 for normalization.

Figure 13: Traditional DeepOnet structure tested on 500 unseen microstructural
displacement fields with branch hidden layer width n = 35 and dot product size
p = 35. The displacements are multiplied by

√
E0 for normalization. The

average magnitude of the error between stress components is 3%.

data is generated, whereby the spatial position, applied strain, and material
parameter are stored along with corresponding stress tensor values. This is an
interesting test of the network in two ways–first, the network is trained on nodal
displacements, whereas stresses are computed at element centers. Second, and
probably more important, is that we have not enforced any constraints on gra-
dients of the network! We are, in a sense, hoping that the interpolation of the
training data is sufficiently smooth to produce reasonable gradients. Thus, we
predict a displacement for a given set of inputs, then compute the stress corre-
sponding stress through the neural network, and compare against the MATLAB
solution. Once again, sigmoid activation shows the best performance so results
from other activation functions will not be shown. See Figure 15 for validating
the accuracy of the stress predictions for two different models. As outlined in
the figure, the gradient operation only incurs a slight increase in the percent
error of the predictions compared to displacements. A simple linear regression
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Figure 14: Augmented DeepOnet structure tested on 500 unseen microstructural
displacement fields. A second hidden layer is added to the branch network and
a hidden layer added to the trunk. All hidden layers widths are n = 25, while
the size of the dot product combining the branch and trunk is p = 35. The
displacements are multiplied by

√
E0 for normalization. The average magnitude

of the error between stress components is 1%.

analysis is used to determine whether the applied strain components, material
parameter, or spatial position can be used to predict the error in the stresses.
In addition to these predictors, a quadratic basis function (x(1−x)) is added to
gauge whether error is concentrated in the center of the RVE, which would not
be picked up by a traditional linear regression. It was found that only a small
percent of the variation in the stress error is explained by any of these predictor
variables, thus the error appears more like noise than a systematic trend.

Figure 15: The model on the left is traditional DeepOnet structure with n = p =
35 and on the right, the augmented DeepOnet structure with additional hidden
layers. Both models are tested against 5000 input/stress tensor pairs from
MATLAB. The traditional DeepOnet went from 3% error in the displacements
to 8% error in stresses, whereas the augmented DeepOnet went from 1% error
in displacements to 4% in stresses.
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As a final test of the DeepOnet trained on displacements, we can compute the
homogenized tensor from stress predictions generated by computing displace-
ment gradients. This is similar to testing the accuracy of the stress predictions,
except that the homogenized tensor depends only on the accuracy of stress pre-
dictions from the three unit strains. If the model does not accurately predict the
stress fields from the unit strains specifically, it will not produce accurate effec-
tive material properties of the RVE (regardless of how accurate stress predictions
from other applied strains may be). Using the definition of the homogenized
tensor from Eq. ??, we loop through the positions of element centers, compute
the stresses from the three unit strains at this position with DeepOnet (going
first through displacements and using a given material parameter a), and add
them to the microstructural constitutive matrix. A single homogenized tensor
is produced for each material parameter a, and we can compare the eigenvalues
of the tensor predicted by DeepOnet against a true value from MATLAB. See
Figure 16 for the results of this analysis.

Figure 16: Black line indicates no error in eigenvalues, whereas scatter plots are
results of DeepOnet homogenization compared against true values. The trend is
matched very well but with a constant shift–it seems that DeepOnet consistently
overpredicts eigenvalues of the homogenized tensor. The error might arise from
the fact that the unit strains are “extreme” inputs given that components of
applied strains are sampled from [−1, 1] to train the network. Despite the shift,
the magnitude of the error is still quite small.
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Hyperparameter Value
Learning Rate 0.01

Activation Function Sigmoid
Width of Layer 1 30
Width of Layer 2 30

Samples in Training Data 10000
Samples in Test Data 500

Table 3: Parameters governing the construction, training, and testing of two-
layer fully-connected network. The finite element mesh which generated the
data consisted of 25× 25 nodes.

4.4 FNN–Homogenized Tensor

The accuracy of the predictions from the surrogate model are assessed by com-
paring the three eigenvalues of the true and predicted homogenized tensors. See
Figure 17 for the results of the FNN’s performance and the above table showing
problem parameters. The training is done in batches of 3000 data points. No
over-fitting is observed in the data, but the error saturates after about 15000
epochs. In a basis of eigenvectors, the homogenized tensor is diagonalized with
the three eigenvalues, thus they characterize the behavior of the transformation
and are a reasonable choice for comparing two tensors. The surrogate model per-
forms very well except for a handful of outliers, which are especially prominent
in the first and second eigenvalues (ranked greatest to least). The FNN replaces
three finite element solves for the unit strains with a single forward pass. If the
few outliers are dealt with in some way, this seems to be a promising approach
to expedite multiscale linear elastic analysis and optimization problems.

5 Code Roadmap

This is a list of MATLAB and Python codes used in this semester of research
for future reference.

• “deeponet stress parameterized material.m” – MATLAB driver script for
generating RVE stress data for parametric microstructure

• “deeponet displacement parameterized material.m” – MATLAB driver script
for generating RVE displacement data for parametric microstructure (also
creates stress and homogenized tensor to compare DeepOnet predictions
against)

• “FNN homogenized tensor wild ellipse.m” – MATLAB driver script for
generating homogenized tensor for RVE with elliptical hole controlled by
three parameters
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Figure 17: Results of using fully-connected network to predict homogenized ten-
sor for RVE material controlled by three parameters. The predicted eigenvalues
match the true eigenvalues very well apart from some outliers. The black line
indicates perfect agreement between the two models.

• “homogenized tensor.m” – MATLAB script that calls other functions to
compute homogenized tensor for given Young’s Modulus field

• “RVE displacement.m” – computes stress and displacement in RVE for
given mesh size, applied strain, and Young’s Modulus field

• “calfem data structures.m” – Called in beginning of driver scripts to pro-
duce necessary data structures for calfem finite element analysis on tensor
mesh with equal elements

• “DEEPONET RVE STRESS.py” – Python driver script reading in data
from text files, building neural network, training, and validating for stress
predictions

• “DEEPONET RVE DISPLACEMENT.py” – Python driver script build-
ing neural network to predict displacement, computing stresses from these
displacements, and building homogenized tensor from stresses (longest
script of three python files)

• “homogenized tensor FNN wild ellipse.py” – Python driver script build-
ing fully connected network to predict six components of homogenized
tensor from three parameters governing RVE microstructure
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Appendices

A Stress Equilibrium Convolution Filter

In two dimensions, stress equilibrium in the absence of body forces is

∂σ11

∂x1
+

∂σ12

∂x2
= 0

∂σ12

∂x1
+

∂σ22

∂x2
= 0

Imagine we want to approximate stress equilibrium at a point P inside a
square mesh where the stress tensor is known at surrounding points. Call the
element below P south (S), to the right east (E), above north (N), and to the
left west (W). Using central differencing and Voigt notation for 2D stresses, this
relation is approximated as[

R1

R2

]
=

1

2∆x

[
(σE

1 − σW
1 ) + (σN

3 − σS
3 )

(σE
3 − σW

3 ) + (σN
2 − σS

2 )

]
where R1 and R2 represent residuals which will be small if equilibrium is ap-
proximately satisfied. When the stress tensor is known at the four surrounding
elements, this can be written in matrix form as

Ri =

[
R1

R2

]
= Fijsj =

1

2∆x

[
0 0 −1 1 0 0 0 0 1 −1 0 0
0 −1 0 0 0 1 0 1 0 0 0 −1

]
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Note that the stress tensor will be a prediction from the neural network.

If the network is trained to predict displacements, a scheme of this sort could
be used to apply some constraints on the displacement gradients. The benefit
of this approach is that it has a similar structure to convolution filters, which
could simplify implementation. However, if constraints are put on displacement
gradients, we might as well train on stress and displacement data. It is important
to note that in the microscale finite element problem, there are non-zero body
forces in the form of volumetric strains. Thus we expect non-zero residuals in
the stress equilibrium shown above.
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B Material Reconstruction

Two important facts about engineering materials are known from experimental
evidence: empirical constitutive laws for a given material differ between spec-
imens under identical test conditions, and the microstructure varies spatially
within/between specimens in an apparently random manner. As we know from
homogenization, the microstructure influences the effective material properties
and thus the first point may be explained by the second: random spatial varia-
tions in the microstructure introduce uncertainty into the effective constitutive
properties of a material. Thus, the field of Material Characterization & Re-
construction (MCR) is required in order to, well, characterize the variations of
the microstrucure and reconstruct novel but statistically equivalent macroscopic
structures from a limited number of experimental samples of the microstructure.
Defining “statistically equivalent” is the essence of the field.

Figure 18: Microstructural CT scan. This could be a porous material or two-
phase composite. Statistical properties of the two phases can be estimated from
images of this sort and then used to reconstruct novel materials by sampling.

A common approach is to treat the microstructure as an image, and en-
sure that statistical properties of the different phases (colors) within image are
preserved for a reconstructed material. A popular technique for two-phase com-
posite materials is the two-point correlation, which measures spatial autocorre-
lations of the microstructure in different directions. For a given vector r, the
two-point f ij

r correlation measures the probability of finding phase j at position
x+r when the phase is i and position x. Though this technique has had success
in reconstructing representative microstructures, it offers no control over the
effective material properties of the RVE.

Generative models such as Variational autoenconders (VAE) and generative
adversarial networks (GAN) have been widely used content which is novel but
statistically equivalent to a training data set. These models can be trained on
images of a certain object, and then sampled to produce a novel image of that
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object. They use the language of statistics and neural networks to fit complex
distributions to vectorized image data, and require that samples from the fit
distributions correspond to images which are similar to the training set. Neu-
ral networks are convenient here because additional terms are simple to add to
the loss function which trains the network–in addition to training the model to
produce microstructures (in the form of images) which visually and statistically
resemble training data, we could compute homogenized properties of the gen-
erated images and penalize microstructures which differ significantly from the
effect properties of training data. In fact, we might be able to fit the distri-
bution of experimental constitutive laws so that the variation in reconstructed
microstructures corresponds to that of experiments!

Figure 19: Generative Adversarial Network framework for material reconstruc-
tion problem. Inputs to the generator network are sampled from simple distri-
butions (noise), and the network is trained to produce images of microstructures
which maximize false classifications from the discriminator. This ensures that
the discriminator, which is trained alongside the generator, cannot tell the dif-
ference between real microstructural images and the generated ones. Simultane-
ously, outputs from the generator are homogenized to obtain effective material
properties, and microstructures which deviate from the empirical distribution
of homogenized properties are penalized.
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