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1 Introduction

Buckling is a question of the geometric stability of a structure independent of
material failure. The general idea of buckling is that the displacement of a
structure acts to exaggerate the effect of the applied forces, leading to a kind
of feedback and eventual instability. This is the case with the most familiar
example of beam/column buckling: if the axially loaded beam/column somehow
develops small bending displacements, these bending displacements increase the
moment arm of the applied compressive force. This leads to more bending, which
leads to larger offsets from the compressive load, and so on. The structure
eventually becomes unstable (reaches a point where no further force can be
equilibrated) as a result of this feedback. A structure can be unstable and
“fail” through buckling well before material failure occurs. In fact, structural
instability can occur even within the material’s elastic range, when strains are
still small. It is interesting to think of structural instability as an additional
source of failure, outside of plasticity or fracture, which requires its own analysis.
We survey a few common topics in buckling with this report. The hope is to
put a together a nice general introduction to the subject for someone familiar
with solid mechanics but with little exposure to buckling.

2 Simplest Example

Consider a vertical bar of length L loaded by a vertical force P with a torsional
spring of stiffness k at its root. Assuming that angle θ measures the clockwise
rotation from vertical, a torque balance yields

PL sin θ − kθ = 0

For small angles θ, a Taylor series expansion of sine yields

(PL− k)θ = 0

This is a strange problem. We apply an axial force which we would expect
under the idealized conditions of this problem to produce no rotation. This is
reflected in the solution to the linearized equation θ = 0. Another possibility
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Figure 1: Some basic concepts from buckling can be introduced with this simple
example of a pinned bar with a torsional spring.

is that P = k/L for which there are non-zero θ that satisfy this equation. We
do not, however, know the values of these angles. This is a common theme for
buckling analysis in the linear regime–computing load values such that a lin-
earized problem has non-zero equilibrium solutions with unknown displacement
magnitudes. If we do not linearize the problem, the governing equation is

PL sin θ = kθ

where for small values of P , the only solution is θ = 0 but as the load becomes
sufficiently large, solution(s) exist for non-zero rotation angles θ. In this case,
the value of θ can be computed. Note that only two solutions will be physical,
corresponding to the situation where the moment arm of the force begins to
decrease again after θ passes through π/2. Any further solutions beyond this
correspond to complete rotations of the bar.

3 Buckling of Euler Beams

Consider an Euler beam pinned at both ends with an applied compressive axial
load P and length L. Though it is not clear that this scenario should pro-
duce transverse displacements w(x), we ask the question: if there were to be
transverse displacements, what displacements would satisfy equilibrium? The
governing equation for this problem is

EIw,xx + Pw = 0
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The moment from axial bending stresses must balance the moment from the
applied force (which obtains an offset from deflection w). The general solution
is

w(x) = A cos

(√
P

EI
x

)
+B sin

(√
P

EI
x

)
There is no displacement on either end of the beam, thus w(0) = w(L) = 0.

This immediately implies A = 0, so we are left with

B sin

(√
P

EI
L

)
= 0

Similar to the rotation of the rigid rod, this requirement is trivially satisfied
for zero displacement (B = 0). However, there is another solution which comes

from treating the applied load as an unknown, namely
√

P
EIL = nπ. Thus, for

fixed material parameters and beam geometry, we have a solution which satisfies
equilibrium when

P =
n2π2EI

L2

Like the rigid rod, we cannot know the magnitude of the displacement B for
this “critical” load. Buckling is said to occur at the first mode shape

Pcr =
π2EI

L2

In summary, for a linear buckling theory we assume a non-zero transverse
displacement and investigate the conditions of equilibrium. Satisfying equilib-
rium for the non-zero displacement gives a condition on the force which leaves
the magnitude of the displacement unspecified. The force for which equilibrium
is satisfied at non-zero transverse displacement is said to produce buckling. This
is because arbitrarily large displacements satisfy force equilibrium, so that the
displacement can grow without needing additional loading. The loss of unique-
ness between force and displacement is a notion of instability that we encounter
often in buckling.

Another approach to buckling is to assume an initial “imperfection” such
that a displacement arises naturally out of the axial load. In the case of Euler
beams, we can model this imperfection as a slight offset of the axial load so that
a moment is produced even in the absence of the transverse deflection. The
general solution to the problem of an offset compressive load is

w(x) = e
[
tan

(
L

2

√
P

EI

)
sin

(√
P

EI
x

)
+ cos

(√
P

EI
x

)
− 1
]
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where e is the offset from the centroid of the beam. As the applied load P
approaches Pcr, the tangent function will become unbounded indicating collapse
of the beam. The primary difference is that non-zero displacements occur even
before Pcr unlike the idealized beam. This furnishes a second definition of
linear buckling: the load at which the response of an imperfect system becomes
unbounded.

4 Eigenvalue Buckling

For the case of linear buckling of a beam, we can modify the energy so that the
axial force contributes a transverse displacement

Π =

∫
1

2
EIw2

xx − 1

2
Pw2

xdx

There is work both from the moments associated with stresses and from the
axial force when the beam deflects. The first term in the energy is the usual
energy as a result of bending displacements for an Euler beam. The second
term is a work term which comes from computing the axial displacement as a
result of small rotations of the beam. This term does not show up in typical
beam analysis because we neglect the coupling between the axial and bending
problems. If we expand the solution for the displacement w(x) with global shape
functions, it can be seen that the energy can be written in terms of coefficients
q as

Π =
1

2
qiKijqj −

1

2
qiPKG

ijqj

such that when we take the gradient to minimize energy we have(
Kij − PKG

ij

)
qj = 0

The matrices arise from plugging in spatial shape functions to the energy,
factoring out coefficients, and computing integrals. This expression tells us that
either qj = 0 and there is no transverse displacement or the matrix Kij −PKG

ij

is singular and the displacement can be of arbitrary magnitude. This is a gen-
eralized eigenvalue problem where eigenvalue/eigenvector pairs will correspond
to buckling forces and buckling shapes. The lowest eigenvalue will be the load
at which buckling initiates. A similar analysis can be carried out for buckling
of plates, in which planar forces generate out of plane displacements by as-
sumption, and thus contribute to the overall potential energy. The system is
discretized with global shape functions, and the corresponding stiffness matrix
is made singular by increasing the planar loading. This provides an estimate for
the buckling mode shapes and applied load at buckling. The buckling behavior
of plates is more complex and depends on their aspect ratio, and whether the
force is shear or normal. Note that this is called an eigenvalue problem because
we solve for the applied force P such that
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det
(
Kij − PKG

ij

)
= 0

A problem of this sort arises from an eigenvalue problem of the form

Kq = PKGq

This is a generalized eigenvalue problem with buckling modes (eigenvectors)
q and corresponding eigenvalues P . Because solving this eigenvalue problem
allows us to determine forces for which the displacement becomes unbounded,
this is called eigenvalue buckling. It requires us to postulate a priori the way in
which buckled displacement responses will generate energy.

5 Simple Geometric Nonlinearity

Figure 2: A nice large deformation instability problem with an analytical solu-
tion is the snapthrough of a two bar truss.

Consider the two bar truss structure shown in Figure 2. All joints are pinned,
and we will assume that the displacement response is symmetric, meaning that
a single coordinate describing the vertical displacement under the applied force
characterizes the response of the structure. A useful way to formulate this
problem is with the total potential energy. This reads

Π(x) =
1

2
A

∫ L

0

2σϵdx− Fx

The stress/strain response of the two bars is equivalent, thus the factor of
the two in the integrand. We assume a 1D stress state, thus the cross-sectional
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area appears outside the integral. We will make the additional assumption that
the bars are linear elastic, and that the stress is constant over their length. The
energy is then

Π(x) = EALϵ(x)2 − Fx

We need to write the strain in terms of the displacement coordinate x. Let’s
define the initial length of each bar as

L :=
√
a2 + b2

The strain is then

ϵ =
∆L

L
=

L(x)− L

L
=

1

L

(√
(a− x)2 + b2 − L

)
Plugging this into the energy, we obtain

Π(x) =
EA

L

(
(a− x)2 + b2 + L2 − 2L

√
(a− x)2 + b2

)
− Fx

Note that the strain is “geometrically nonlinear” even though we used the
small strain definition ϵ = ∆L/L because it is a nonlinear function of the dis-
placement, which accounts for the fact that small variations in the displacement
have different effects on the strain depending on the current state of the dis-
placement. In other words, if the two bars are deformed to the point of being
horizontal, changes in the displacement in either direction act to decrease the
strain, whereas in the undeformed configuration, displacements obviously act to
increase strain. This is a nonlinear effect which arises purely from the geometry
of the deformation. Solutions to the elastic problem are governed by extrema
of the energy. These can be computed with

∂Π

∂x
= 0

The simplest way to study this problem is to look at an interactive plot. We
can see that in general, the gradient of the energy has three zero crossings. This
means that there are three solutions to this problem, or three configurations of
the truss that satisfy force equilibrium. The first is the obvious one: a small
displacement in the direction of the force. This is what we would obtain from
a purely linear analysis. The second is quite counterintuitive, as the bars are
pretty much horizontal. The last solution corresponds to the truss completely
inverting. One can play with the force and material/geometric parameters to see
how the displacement solutions, identified as the zero crossings of the gradient
of the energy, vary.

The first and third solutions seem physically reasonable, though we can rea-
son that to obtain the third solution, the force would need to be large enough
to invert the structure, and then decreased to its current value. The necessity
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of this “loading path” can be observed by increasing the force in the plot un-
til there is only one solution, corresponding to the inversion of the structure.
The third solution would be obtained if a force of this magnitude or larger
was applied then decreased. The second solution does not make much physical
sense. In fact, we can show that this solution is unstable by looking at the
second derivative of the energy. We can think of the concavity of the energy at
an extremum as determining whether there are restoring forces to a displace-
ment that satisfies force equilibrium. A positive second derivative indicates a
concave up energy function, meaning that nudges to the displacement around
the extremum increase the energy. There will be restoring forces in this situa-
tion, making the equilibrium stable. Alternatively, a negative second derivative
means concave down, and nudges to the displacement will decrease the energy,
moving the system away from this equilibrium. There are no restoring forces,
and this configuration is unstable. It can be seen that the second solution cor-
responds to an unstable equilibrium. Thus, even though the balance of forces
is satisfied, any disturbance to this displacement will cause the truss system to
snap into another stable configuration. This is why we don’t expect to observe
this solution in reality. We can then say that

∂Π

∂x
= 0,

∂2Π

∂x2
> 0 =⇒ stable equilibrium

∂Π

∂x
= 0,

∂2Π

∂x2
< 0 =⇒ unstable equilibrium

The two bar truss can be considered an example of buckling because the
system has the potential to “snap” from one stable equilibrium to another.
Naturally, it will pass through the unstable configuration if there is any mo-
mentum to this process. Like buckling of beams, this is a situation where the
geometry of the displacement response leads to drastic loss of stiffness, inde-
pendent of failure of the material. Note that for linear problems, the energy
functional has only one extremum and is always stable.

6 Buckling in General Nonlinear Analysis

When working in the finite strain setting, the interaction between the displace-
ment and the loading is automatically captured. For example, an axially loaded
beam described with finite strain models will be able to account for the fact that
transverse deflections increase the moment arm of the force and thus reduce the
effective stiffness. We were only able to accomplish this in the linear setting
with some a priori knowledge of the coupling between the axial and transverse
responses. A beam-like structure modeled in a general linear 3D finite element
setting will not be able to account for the fact that transverse deflections am-
plify the effects of the axial load. In other words, nonlinear elastic models have
the ability to model the “geometric” coupling between the displacement and the
applied loads. Figure 3 and 4 show examples of how a nonlinear elastic model
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Figure 3: A hyperelastic frame structure loaded symmetrically by a downward
traction on the upper horizontal surface. Because hyperleastic material models
make use of finite strain measures, buckling effects are naturally incorporated
into the analysis.

can naturally capture the displacement field’s destabilizing interaction with the
applied force. Note that some nonlinear finite element solvers will not predict
buckling for a column loaded perfectly at its center, because there is nothing to
introduce the initial transverse displacements. This likely depends on how the
solution is initialized in the nonlinear solve. To account for this, small perturba-
tions to the load can be introduced to break symmetry, modeling imperfections
in any real material system.

7 Linearized Buckling Analysis

The above method requires numerically solving a nonlinear elastic problem,
almost certainly with load stepping to carefully resolve the instability. In other
words, applying a force large enough to cause structural instability all at once
(without incrementally approaching it) would likely cause convergence issues
in the nonlinear solve. This can be an expensive operation. Additionally, it
may be somewhat vague to define the exact onset of instability. One remedy
to these problems is “linearized buckling analysis.” This method relies on using
the St. Venant-Kirchhoff material model of a solid undergoing finite strains. In
a sense, this is the simplest material model in nonlinear elasticity. It says that
the second Piola-Kirchhoff stress tensor (PK2) is linearly proportional to the
Green-Lagrange strain:

SIJ = CIJKLEKL

where CIJKL is a tensor of constants, and the Green-Lagrange strain is
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Figure 4: The symmetric compressive traction loading is applied to the frame
structure at various magnitudes and the displacement at the center of the top
surface of the structure is recorded. We see that the response is nonlinear, and
that the structure moves towards instability as the force is increased. Note that
the frame structure can also “buckle” to the side, and the response would be
stiffer if it was made symmetric (no x1 displacement along the vertical center
line). The nonlinear elastic analysis models instability with no additional theory
of buckling.

EIJ =
1

2

(
∂uI

∂XJ
+

∂uJ

∂XI
+

∂uK

∂XI

∂uK

∂XJ

)
Both the PK2 stress and Green-Lagrange strain are defined fully in the

reference configuration, thus uppercase letters are used by convention. It is
outside the scope of these notes to clearly motivate these stress and strain
measures, but we can briefly note that the Green-Lagrange strain measures
changes in the squared length of differential line elements in the reference and
deformed configurations. Imagine etching a small line on a body, deforming
it, and taking the difference in the square of the length of this line before and
after deformation. This is what EIJ is getting at. Given a normal vector in
the reference configuration, the PK2 outputs a force vector which is mapped
back from the deformed configuration. It can be shown that the strain energy
density for the St. Venant-Kirchhoff material model is

Ψ =
1

2
CIJKLEIJEKL

which is analogous to linear elasticity up to the definition of the strain. With
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these preliminaries established, our first task is to show that the discretized
governing equations can be written as(

KL
QS +KNL

QS (U)
)
US = FQ

This says that there is a linear part of the stiffness matrix, and a non-linear
part which depends on the displacement, which both multiply the displacement
degrees of freedom to obtain the force vector. It is natural that if there were to
be an additive decomposition of this sort, the nonlinear part would depend on
the displacement (otherwise the problem would be linear), but it is not clear that
such an additive decomposition exists. We can motivate this in the following
way. We start with the total potential energy of the problem, and compute its
variation to find a minimum:

Π =
1

2

∫
CIJKLEIJEKLdΩ−

∫
TIuIdS

=⇒ δΠ =

∫
CIJKLEIJ

∂EKL

∂
(

∂uM

∂XN

) ∂δuM

∂XN
dΩ−

∫
tIδuIdS = 0

This is how we derive governing equations for the variational nonlinear elas-
ticity problem. With no loss of generality, discretize the test function with
δuI = HIJWJ where H is a matrix of spatial shape functions and WJ are ar-
bitrary degrees of freedom. The displacement is discretized in the same way as
uI = HIJUK . Using that the weights on the test function are arbitrary, we have
at once that ∫

tIδuIdS =

∫
tIHIQdS = FQ

Admittedly this is somewhat out of sequence but it agrees with the eventual
result. This is the simple term. The strain energy term, which will give us the
stiffness matrices, starts with working out the following derivative:

∂EKL

∂
(

∂uM

∂XN

) =
1

2

(
δKMδLN + δLMδNK + δPMδNL

∂uP

∂XK
+ δPMδNK

∂uP

∂XL

)

This comes from the definition of the Green-Lagrange strain in terms of the
displacement gradients. Using that ∂δuM

∂XN
=

∂HMQ

∂XN
WQ, we can evaluate more

terms in the strain energy density

∂EKL

∂
(

∂uM

∂XN

) ∂δuM

∂XN
=

1

2

(
δKMδLN + δLMδNK + δPMδNL

∂uP

∂XK
+ δPMδNK

∂uP

∂XL

)
∂HMQ

∂XN
WQ

=
1

2

(
∂HKQ

∂XL
+

∂HLQ

∂XK
+

∂uM

∂XK

∂HMQ

∂XL
+

∂uM

∂XL

∂HMQ

∂XK

)
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where we have factored out the arbitrary WQ as with the force vector. Plugging
in the discretization of the displacement to this expression, we finally obtain

=
1

2

(
∂HKQ

∂XL
+

∂HLQ

∂XK
+ UT

(
∂HMT

∂XK

∂HMQ

∂XL
+

∂HMT

∂XL

∂HMQ

∂XK

))
Now, the discretized Green-Lagrange strain can be written as

EIJ =
1

2

((
∂HIS

∂XJ
+

∂HJS

∂XI

)
US +

∂HKS

∂XI

∂HKR

∂XJ
USUR

)
At long last, we can write the strain energy term of the total potential as

∫
CIJKLEIJ

∂EKL

∂
(

∂uM

∂XN

) ∂δuM

∂XN
dΩ =

1

4

∫
CIJKL

([
∂HIS

∂XJ
+

∂HJS

∂XI

]
US +

∂HKS

∂XI

∂HKR

∂XJ
USUR

)
∗

([
∂HKQ

∂XL
+

∂HLQ

∂XK

]
+ UT

(
∂HMT

∂XK

∂HMQ

∂XL
+

∂HMT

∂XL

∂HMQ

∂XK

))
dΩ

This is quite a nasty expression. What we can see, however, is that we
obtain the additive decomposition we were looking for. The terms in the square
brackets, when multiplied together, form the linear part of the stiffness matrix.
These only involve one power of the displacement degrees of freedom US , so
they can be factored out to form a matrix-vector product. All of the other
terms which arise from expanding the multiplication between the parentheses
involve higher orders of the displacement. But the dependence is polynomial, so
it is clear that one power can be factored out to form a matrix-vector product
where the matrix depends on U . Ultimately, this expression can be simplified
to

= KL
QSUS +KNL

QS (U)US

The governing equation for the finite element problem is then(
KL

QS +KNL
QS (U)

)
US = FQ

We now have the tools in hand to formulate the linearized buckling problem
which avoids the full nonlinear solve with incremental solution to determine the
point of instability. The first step is to compute a “reference” solution. This
involves choosing a configuration of the loads whose buckling effects we want
to assess. We will call this force F 0. Its magnitude is sufficiently small that no
significant buckling or instability occurs. We then solve either a linear or non-
linear numerical problem for the displacements corresponding to this reference
solution. This would take one of the two forms:

U0 = KL,−1F 0,
(
KL +KNL(U0)

)
U0 = F 0
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The linear problem can be solved explicitly whereas the nonlinear problem
cannot. From what I understand, the goal of this step is to compute displace-
ments which just model the onset of buckling. We then argue that the nonlinear
part of the stiffness matrix, capable of modeling instability from geometric in-
teractions between the force and displacement, is linearly proportional to the
force vector. Mathematically, this reads(

KL + λKNL(U0)
)
U = λF 0

In other words, we take the reference displacements, use them to compute
the nonlinear part of the stiffness matrix, and then assume that this contribution
to the “total” stiffness matrix varies linearly with the magnitude of the force.
This is accomplished with a load factor λ. Intuitively, this makes some sense:
there is some initial loss of stiffness due to buckling at the reference solution,
and increasing the force only acts to increase this effect. Mathematically, I do
not see where this expression comes from. If this were a true linearization, there
should be a Taylor series behind the scenes, but I have not been able to decipher
where it is. Either way, the next step is to say that the onset of stability is when
there is a loss of uniqueness between the force and displacement. This is to say
that the effective stiffness matrix becomes singular. We thus solve the following
problem for the load factor:

det
(
KL + λKNL(U0)

)
= 0

As in the case of linear eigenvalue buckling presented before, this problem
is equivalent to a generalized eigenvalue problem:

KLU = −λKNL(U0)U

Computing the value of the load factor then allows us to estimate the mag-
nitude of the load for which the structure becomes unstable. After having seen
this material, one can see that we what we are doing here can be summarized
with: find the load level for which the displacement can be increased arbitrarily
without changing the force. This indicates a point at which the structure stops
being able to carry additional load. This is an instability.
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