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A Provocation

We often speak of individuals and groups as being acted on by external
“forces.” I suspect we use the word force, borrowed from the language of physics,
to illustrate that environmental factors such as technology, work, and politics
appear to produce certain responses in people. Just as mechanical forces act on
physical systems, there are forces which act on “human systems”–this is simply
a logic of cause and effect. In helping make sense of how humans respond in
different situations, these intuitive models are used to aid in decision making.
Whether these decisions are political (introducing a new policy) or personal
(choosing how to spend your time), we use informal mental models of the world
to assess the consequences of taking certain actions. In physics and engineering,
models are used to avoid costly experiments. Similarly, people use mental mod-
els to avoid a trial and error–we can experiment with different possible worlds
in our imaginations, and take the actions which seem likely to lead to the best
outcomes.

A force applied to a mass-spring-damper system causes the system to change
state via motion of the mass. Analogously, we will consider a changing envi-
ronment as a force which causes human systems to change “state.” Unlike the
mechanical system, it is not clear what a good measure of the state of a hu-
man system is. But the notion of a state, however vague, is supported by our
intuitions about these complex systems. It is obvious that changes in the envi-
ronment cause some change in people, even if it is hard to pinpoint or quantify
what precisely is changing. Do occurrences like the advent of large language
models, war in Ukraine, or starting/finishing college affect you? If so, then you
have already have some notion of a state. As an experiment, what if we take
this analogy even further? Perhaps we might write

s(t) = G
(
f(t)

)
This relation is intended to mean “the state of a person in time s(t) is a

function G(·) of time-varying external forces f(t).”1 Again, we do not neces-
sarily need to have clear understanding of how a state s(t) is measured, and

1G(·) is technically an operator as it maps from one space of functions to another.
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certainly not precise knowledge of the function G(·) which relates the human
state to external forces. Forces are perhaps easier to understand, as they are
conceptualized as things in the environment which may have an influence on
individuals or groups. At this point, the idea is to cast an existing qualitative
way of thinking about human systems into a general mathematical framework
and see where it takes us.2 It is often interesting and useful to model the time-
dependent response of a system in physics or engineering, so we do the same
here. The time dependence of our hypothetical model suggests that we care
about the human response to a dynamic environment. For example, our tech-
nological environment is constantly changing and being disrupted–the present
and future effects of this innovation are the subject of many books, articles,
and discussions. Informal models of how society will respond in time to these
emerging technologies are used in thinking through these questions. Thus, time
dependent forces and states seem to be a reasonable framework for our model.
See Figure 1 for a graphical depiction of this approach.

Figure 1: Schematic of a “human system.” Because it relates input forces to
output states, we call G(·) a model.

Exploring the Model

Now that we have established a general framework, we can use intuition about
how we as individuals respond to influences from our environment to see what
kind of properties the model should have. The first question we will ask of our
hypothetical model is

if s1(t) = G
(
f(t)

)
and s2(t) = G

(
cf(t)

)
2Economics is the field most interested in developing mathematical models of social sys-

tems. Some specific social phenomena of interest are: disease spread, rumor circulation,
population growth, casualty in warfare, migration from one political party to another, and
economic effects of climate change.
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s2(t)
?
= cs1(t)

for an arbitrary constant c. In words, this is asking: if we know the state
produced by environmental influence f(t), does multiplying that environmental
influence multiply the output state in the same way? We are investigating
scaling properties of the model. Let’s consider an example: if the force f is a
measure of technology use, and the state s is a measure of anxiety, does doubling
the amount of technology use double anxiety? I would argue not necessarily.
Intuitively, we might think that at low levels of technology, increasing technology
use does not increase anxiety at all. Looking to the distant past, transitioning
from the use of hand tools to simple machines might lower anxiety through
facilitating manual labor. But when technology is more prevalent, doubling
technology use might have a very different effect, possibly leading to a dramatic
increase in anxiety. This is perhaps the case in an era of widespread digital
technologies, where an hour or so of daily social media use may have no mental
health impact, but multiple hours spent online each day may be psychologically
harmful. Increasing technology use in the case of hand tools reduces anxiety,
but in the case of digital technology, it increases. We have come up with a
plausible counterexample to show that the scaling property should not hold in
general. Thus, we can say the following

G
(
cf(t)

)
̸= cG

(
f(t)

)
Without specifying precisely what G(·) is, we have learned something about

its properties. It is interesting to note that we can establish some properties
essentially by common sense. Now, as before, we will use existing intuition about
human systems to ask another question of the model. We want to investigate
the following:

if s1 = G
(
f1(t)

)
and s2 = G

(
f2(t)

)
G
(
f1(t) + f2(t)

)
?
= s1 + s2

In words, we want to determine if the combined effect of two forces is the
sum of the responses to each force individually. Here, we are investigating inter-
action properties of the model. Again, we will try to think of a counterexample
to demonstrate this property should not hold in general. This is a bit trickier
than the scaling property. If f1 measures the force associated with digital tech-
nologies, and f2 that of political polarization, there is good reason to believe
that an individual’s response to these two forces is NOT simply the sum of the
response to each force separately. In other words, digital technology and po-
litical polarization interact in some way to produce a new effect which cannot
be decomposed into two distinct contributions.3 This is equivalent to saying

3In making this argument, we are not being careful to consider the meaning of the time
dependence of f1 and f2. To be more precise, we can think of these as measuring the evolution
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that the response to the influence of digital technology depends on the level
of political polarization, and conversely, the response to political polarization
depends on the amount of digital technology. This seems fair to say in a world
where the creation of and reaction to polarization is intimately intertwined with
online media platforms. Thus, we can say that

G
(
f1(t) + f2(t)

)
̸= s1 + s2

Our model of the human response to environmental forces should account
for the fact that these forces frequently interact with each other in meaningful
ways. We cannot look at a human system’s response to individual forces in
isolation and expect to get the full picture.

It will perhaps be familiar to engineers that by investigating these scaling
and interaction properties, we have shown that the the model G(·) is non-
linear. Based on these simple thought experiments, it is clear that any model
which seeks to capture human responses to external stimuli must be non-linear
in order to be realistic. Whether or not such models can be built is not clear.
All I claim is the following: if a good model of this sort were built, it would have
to be non-linear. Though it is not yet clear, we will see that this essentially
guarantees these systems are highly complex.4

A Particular Non-linear System

Having argued that any realistic model of a human system must be non-linear
in order to capture two intuitive properties, we can now explore the behavior of
a particular model. I have invented this model as a potential description of the
time evolution of anxiety a(t) and sense of meaning m(t) driven by changes in
the level of physical comfort f(t). Positive values of these two state variables
indicate high anxiety and a “large” sense of meaning respectively. Anxiety has
its everyday definition, and meaning describes a sense of purpose, direction,
or understanding in life. Physical comfort alludes to access to food, shelter,
medicine, health, etc. These variables have been chosen because intuitively,
they are related in some way. A sense of meaning acts to decrease anxiety,
but persistent anxiety may also decrease meaning. On top of these effects,
one could argue that the anxious person interprets the world through a lens of
anxiety, which creates more apparent stressors. This indicates that anxiety is
self-perpetuating. As basic survival becomes a guarantee and people need to

of digital technology and polarization in time. The full argument states that the human
response in time cannot be decomposed into separate parts from the respective histories of
polarization and digital technology.

4The study of “complex systems” has its own body of literature within which complexity
is given a technical definition. For example, a complex system is distinguished from a compli-
cated one by not being decomposable into a sum of its parts. Here, I use the term in a more
colloquial way to indicate a system which is very unpredictable.
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find new and more abstract goals in life, physical comfort may reduce meaning.
But, reliable access to basic comforts also acts to reduce anxiety.

You are completely free to, and probably justified in, contesting the relation-
ships I am proposing. However, the goal of this informal model is to be reason-
able, not rigorous. It is simply a candidate framework for this anxiety-meaning-
comfort human system which is grounded in apparently plausible assumptions
about how these variables are related. Whether this model is understood on
the individual or societal level is not important–we are interested in getting a
qualitative sense of the dynamics of this model. In other words, we want to
investigate how predictable the system’s behavior is.

As is common in physics and engineering, differential equations are the natural
framework for modeling the time evolution of interrelated state variables. Be-
cause we model the interaction of the two quantities anxiety (a(t)) and meaning
(m(t)), this will be a system of differential equations.5 And finally, remember
that for this system to even have a chance of reproducing intuitive features of
the human system, it must be non-linear! One possible non-linear system which
reflects the qualitative sketch of the relationships between these variables is the
following: {

da
dt = a3 −m

3
7 − f2(t)

dm
dt = −a5 − f(t)

To solve for how anxiety and meaning evolve over time, we must specify a
time history of comfort (force) for our toy human system and initial conditions
a(0) and m(0). These initial conditions are interpreted as the baseline states of
anxiety and meaning before we observe the effect of changing physical comfort
perturbing the system. They are starting points. The time trajectory of comfort
we will experiment with is a “saturating” exponential:

f(t) = c0
(
1− e−rt

)
This represents a fast initial increase of comfort which eventually levels off.

The parameters c0 and r respectively determine the final value of comfort and
the rate at which change takes place. Note that a generic non-linear system of
differential equations will diverge to ±∞ unless carefully tuned. To avoid this,
additional terms can be introduced to the system which discourage the state
variables a(t) and m(t) from exceeding specified limits.6 In some sense, this
can be given a real world interpretation–in a well-functioning society, there are

5In this context, G(·) is conceptualized abstractly as the solution to the system of equations
for a given force and set of initial conditions.

6To accomplish this, I add a penalty term to each time derivative of the form
−xn tanh(p(|x| − ℓ)) + 1 where x is the state variable, ℓ is the specified limit, n controls
the strength of penalty, and p is a positive number. As the limit ℓ is approached, this term
becomes large and pushes the state variable back to zero. Plot this function to see how it
works!
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Figure 2: A non-linear system of differential equations representing the anxiety-
meaning-comfort system. The restoring force terms are approximately zero
unless the limits are approached, and are not shown here.

often restoring forces which tend to keep human systems from taking on extreme
states. We will arbitrarily set the limits on the anxiety and meaning state
variables at ±1 for simplicity. See Figure 2 for interpretation of the governing
equations of the system.

We now have a candidate mathematical model of the system. It is non-linear
in order to reproduce the richness of human responses. It is motivated by a
qualitative understanding of how anxiety, meaning and physical comfort might
interact, but cast in a somewhat arbitrary quantitative form. Furthermore, we
have chosen the limits on the system states arbitrarily. The parameters c0 and
r do not have clear physical meaning–what does an initial value of physical
comfort f(0) = 3 (for example) correspond to in real life? Is the rate parameter
r shifting a time scale of hours, weeks, months, or years? These questions are not
important for our purposes. We are less concerned with the precise quantitative
predictions of the system. What we want to investigate is how predictable its
qualitative behavior is. Do anxiety and meaning oscillate? Does one go up and
the other go down? Are these responses sensitive to initial conditions? Are they
sensitive to magnitude and rate of the changes in physical comfort? To answer
these questions, we can solve the system over given time intervals for different
initial conditions and parameters of the forcing function. MATLAB’s built-in
differential equation solver “ODE45” is used to solve the non-linear system. See
Figures 3-6 for an exploration of some of the properties of the anxiety-meaning-
comfort system.
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Figure 3: For a given force f(t) small changes in initial conditions lead to
different final states. On the left, anxiety and meaning start at the same level
and both approach their lower bound. On the right, meaning starts at a slightly
higher initial value, decreases at first, then approaches its upper bound. This
demonstrates the final states of the system are sensitive to initial conditions.

Figure 4: For given force f(t), small changes in initial conditions can lead to
the system approaching the same final state in very different ways. On the
left, meaning approaches its upper bound and anxiety its lower bound. On the
right, a small decrease in the starting value of meaning leads to a large initial
decrease in meaning, which eventually is reversed. This is another indication of
sensitivity to initial conditions.

Results

Figure 3 shows that the final state of the system is very sensitive to the
initial conditions. Figure 4 shows that the manner in which the same final
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Figure 5: For given initial conditions and final value of comfort, the system is
sensitive to rate at which change takes place. On the left, comfort changes more
quickly. Meaning approaches its upper bound whereas anxiety tends towards its
lower bound. On the right, changes in comfort happen slowly and both variables
approach their lower bound. This demonstrates that the final value of comfort
does not determine the final state of the system.

Figure 6: For given initial conditions and rate of change of comfort, the system
is sensitive to the final value of comfort. On the left, anxiety and meaning
approach their lower bound with significant oscillations in anxiety. On the
right, a small change in the final value of comfort has meaning attaining its
upper bound and anxiety its lower bound. This demonstrates that the system
response does not scale with the input force.
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state is approached can also be very sensitive to the initial conditions. Figure
5 demonstrates that the character of the system response depends on how the
final value of comfort is approached. Finally, Figure 6 shows that the nature of
the system response also depends on what the final state of comfort is. Remem-
bering that these features should apply to generic human systems, this should
be troubling and counter-intuitive.7 We do not expect that the dynamics of
these systems depend chaotically on the minutia of environmental forces. We
tend to assume that big effects must be the result of big causes. Yet, in the
grand scheme of things, this is an extremely simple system: the two variables of
anxiety and meaning are interrelated and change in time according to the state
of physical comfort. We have made an attempt to capture these dynamics with
differential equations, which we know must be non-linear to be realistic, and
for which there are straightforward mathematical techniques to solve. It should
be apparent that this model is a gross simplification and not to be taken too
seriously. The point is not that this model tells us anything credible about the
dynamics of anxiety and meaning in our lives. I hope you will agree that real
human systems, depending on vast networks of interconnected “variables” and
the vagaries of human will, are strictly more complex than our toy model here.
Yet, this toy model is already so complex as to defy intuition. Through extreme
sensitivity to small changes in inputs and initial conditions, it exhibits chaotic
behavior which makes even qualitative features of the response very difficult to
predict. And in general, increasing the complexity of a model will only serve to
exaggerate its unpredictability.

Conclusion

If you accept my argument about the scaling and interaction properties of
any candidate model of human behavior, you will accept that models of human
systems must be non-linear. And if you also accept that toy models in the
form of systems of ordinary differential equations are strictly simpler than real
human systems, you have placed a serious restriction on how predictable you can
expect human systems to be. Even the simplest non-linear ODE’s exhibit chaos
to the point of being totally baffling. You may argue that this is a particular
non-linear system, and that other non-linear models should not be this chaotic.
I would encourage you to experiment with some others to test this hypothesis!
The properties we have shown here should be expected of a generic non-linear
model. Furthermore, you may argue that human systems cannot or should
not be modeled mathematically, a point which deserves serious consideration.
But here, I claim not that math is a good model for human behavior, but
that in their inherent non-linearity, high-dimensional structure,8 and aversion

7The idea of the “butterfly effect,” which states that a butterfly flapping its wings in
one continent could cause a hurricane in another, comes from these properties of non-linear
systems. This is another example of a troubling consequence of non-linearity.

8This just means that there are many interrelated variables needed to describe the state
of the system.
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to formalization, human systems are strictly more complex (and therefore less
predictable) than these toy mathematical systems. And these simple systems
already exceed the abilities of our intuitive reasoning! Given that effective
personal and political decision making requires informal models of how the world
responds to potential interventions, this is rather a troubling conclusion. If
human systems are so complex as to resist mathematical formulation, and even
simple mathematical systems surpass the capabilities of intuition, how can we
have any faith in the decisions we make in the world? Can we have confidence
that our visions for change and progress are beneficial if we cannot understand
or predict how the world responds to such changes? We often encounter claims
of apparent certainty about what should be done in social and political contexts.
Implicitly, this a claim that given causes will produce a particular set of effects.
The purpose of the admittedly clunky anxiety-meaning-comfort system was not
to solve a particular problem, but to raise the general question: is it ever fair
claim certainty about cause-and-effect where human systems are concerned?

Though mathematics may never be the lingua franca of personal and po-
litical decision making, it can give us insight into why these problems remain
hard even after hundreds of years of scientific and technological advancement.
If nothing else, this thought experiment should be humbling–next time you find
yourself saying if X then Y without a well-defined mathematical model in hand,
consider that you may be claiming to have intuition about a high-dimensional,
non-linear system. In some situations, the tools to solve problems of this sort
exist. Predictive models are powerful tools for simple and low-stakes experi-
mentation with cause-and-effect relations. They tell us something about how
possible actions map onto possible outcomes. This is the domain of computa-
tional science–from aerodynamics to drug discovery, high-dimensional non-linear
systems are mined daily in industry and academia to much avail. But rarely do
these explicit mathematical models exist for human systems. In the absence of
these quantitative models, we rely on tools such as intuition to make sense of
the world. But, as we have seen, intuition is not a trustworthy guide in making
precise predictions about non-linear phenomena. This is a deliberately disturb-
ing conclusion–I interpret this to mean that in spite of all our technological
and scientific sophistication, we operate essentially in the dark with regards to
many important social and political questions. We simply do not know what
the consequences of taking certain actions in the world will be.

How are decisions made about complex problems then? I would argue values
are one answer to this apparent bind. Values are first-principle commitments
which are to some extent outcome-independent. An act can be viewed as inher-
ently right or wrong, thus ignoring uncertain downstream effects. Values such
as freedom, justice, equality, compassion, etc. can be used as filters to constrain
action and make some sense of what should be done. As I see it, it is an act
of faith to believe that adherence to values leads straightforwardly to desirable
personal and social outcomes. Yet I think we do this unconsciously: we do not
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demand exact predictive models as prerequisites to making decisions, rather we
subject possible actions to the test of values. People successfully take action and
the world is not entirely unpredictable, at least most of the time. There must
be some hidden epistemic trick at work, wrangling the chaos of life’s various
non-linearities. So I think the bottom line is this: when a system is too complex
to model mathematically or make sense of intuitively, there may be no alterna-
tive but to lean more heavily on values as guides to shepherd decision making.
And in realizing that we make decisions constantly despite the unreliability of
our mental models, I think there is benefit in reflecting more seriously on what
values drive these decision making processes.
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