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Abstract

The number of spatial dimensions clearly manifests in the laws of physics,
and generalizing these laws to different dimensions gives hints as to why
we live in 3 + 1 spacetime. Spacetime is a notion that emerged with rel-
ativity in the early 20th century and is a way of unifying space and time
where a N + D spacetime is a world with N spatial dimensions and D tem-
poral ones. For the sake of sanity, we assume throughout that D=1 and
N is variable given that a world with multiple time dimensions is an even
greater challenge to think and talk about. Dimensionality implicitly influ-
ences the form of force laws for gravity and electromagnetism and changing
the rate at which these forces vary with distance has far-reaching conse-
quences. In different dimensions, the stability of circular orbits is no longer
a safe assumption, nor is our “traditional” model of 3d quantum mechan-
ics, which describes the behavior of atoms and their electrons. Assuming
that a prospective dimensionality must be a positive whole number, we
would expect it to be very large if picked at random. After all, a number
chosen randomly between 1 and 1,000,000 is less than 100 only 0.01 per-
cent of the time, and this is with an artificial upper limit. Intuitively, a
world with this many dimensions seems chaotic and improbable–the An-
thropic Cosmological Principle tells us that the world we observe must
be conducive to the development of intelligent life, and perhaps our low-
dimensional universe is exactly that. Thus, in addition to discussing a
few interesting anecdotes and purely mathematical results, my thesis ex-
plores the various ways in which the undergraduate physics curriculum
would differ in higher/lower dimensional space, offering insight into the
nature of different-dimensional universes. Topics such as generalized waves
and geometries are touched on, but the majority of the thesis is concerned
with orbits, rocketry and quantum mechanics. It is shown that the the-
ories of both Newton and Einstein predict the impossibility of stable or-
bits (circular or otherwise) in higher dimensions. The equation of a self-
powered two-dimensional rocket travelling in a variable gravitational field
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is formulated, and the feasibility of 2d rocketry is investigated with a com-
puter simulation. In essence, this chapter analyzes the likelihood of space
travel/exploration in a world where gravity is much stronger. Lastly, the
arbitrary-dimensional atom is studied via the behavior of its electrons’ or-
bitals and through generalized solutions to the governing equation of quan-
tum mechanics, the Schrodinger equation. Many of these findings point to
the convenience, if not necessity of 3 +1 dimensional spacetime for the evo-
lution of advanced life.
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1 Introduction

And even as we, who are now in Space, look down on Flatland
and see the insides of all things, certainly there is yet above us
some higher, purer region, whither thou dost surely purpose to
lead me.

-Edwin Abbott, Flatland, 1884

The dimension of a space, or its “dimensionality,” is the minimum number
of coordinates needed to uniquely specify a point. The familiar x-y-z space
of math and physics is an example relevant to our own universe–fixing one
coordinate describes a plane (z=constant, for example) and two coordi-
nates describe a line. Thus, three is the minimum number needed to iden-
tify a single point in space. If we want to describe an “event” in our 3 + 1
spacetime, which requires both a time and place, three spatial coordinates
in addition to a temporal one are necessary. It’s almost impossible to imag-
ine a world having more than three indepedent directions; a world where
our entire universe is but a tiny slice of some more complicated reality, a
world where a chair with three legs could not stand up. These inscrutable
questions and abstract wonderings were the exact reason I became inter-
ested in this topic–I hoped that the language of math (in the context of
physics, of course) might help ease the burden of understanding the con-
sequences of higher dimensional space. While mathematics and intuition
can be two very separate things, it seems that math is the only meaning-
ful point of access into questions about different universes. Generalizing
the laws of physics to different dimensions necessitates the assumption that
the structure of these worlds is qualitatively similar to ours; that the fun-
damental forces still exist, that the speed of light is still constant, etc. We
make as few assumptions as possible, follow the math and hopefully come
to appreciate some of the strangeness that tampering with the very fabric
of our reality entails.

Preamble The following few examples are non-mathematical introduc-
tions into thinking about dimensionality. We look first at the omnipres-
ence of a higher dimensional being. Then, just as a sphere in 3d space is
built up of many planar rings, a four dimensional sphere comprises a vast
array of spherical cross sections. This is impossible to envision in a Zen-
riddle kind of way–it is so at odds with intuition that it seems like a ridicu-
lous statement. But despite the inherent challenges in visualizing hyper-
spheres (more to come in the next chapter), the tesseract is an interesting
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tool for visualizing a hypercube. The Necker cube provides another enig-
matic glimpse into higher dimensions, and the next section discusses the
relevance of mirror images to higher dimensions. These few anecdotes il-
lustrate the fundamental challenge of seeing beyond our three-dimensional
bias, and the various ways that we can try. Things get more mathemati-
cal with the treatment of waves, which hints at the privileged nature of our
specific universe. The Anthropic Principle is way of making sense of this
claim, and is touched on afterwards.

Higher Dimensions It seems that being in a higher dimension gives a
privileged look into lower dimensional worlds. In Edwin Abbott’s “Flat-
land,” a square inhabiting a flat universe is contacted by a sphere and
brought news of the third dimension. This sphere convinces our four-sided
protagonist of his three-dimensionality by describing the contents of a locked
cabinet, then proceeding to (gently) poke and prod the square’s “inside.”
In A.K. Dewdney’s “Planiverse”, university students contact a different
two-dimensional world (named Arde) through a compupter simulation,
and marvel at how Ardean engineers managed to construct a steam engine
without being able to access its inside directly. Perhaps a four-dimensional
being would be impressed by our internal combustion engines, which pro-
hibit direct examination of their sealed chambers. An important aspect of
observing some subspace from a higher dimension, and perhaps a tool for
visualization, is seeing the inside of all things in that subspace. There is
nowhere for a Flatlander to hide an object from a three dimensional ob-
server. A four dimensional surgeon could peform heart surgery without
ever making an incision.

Cross Sections A sphere crossing through a plane would look like a
point at first, would grow in size (to the sphere’s radius), then shrink back
down until disappearing. The Flatlander’s only see a changing series of
cross sections from which the sphere is built. Analogously, a hypersphere
crossing through our universe would suddenly manifest as a point, grow
to become a sphere with the same radius as the hypersphere, then con-
tract back down to a point and vanish. The rate at which this took place
would depend on how quickly the hypersphere passed through our space.
Cross sections of a hypersphere are, well, spherical. Picture a person, or
any other sufficiently complex object, falling through Flatland. The cross
sections would be confusingly variable and irregular. A complicated 4d ob-
ject crossing through our space would be totally inexplicable.
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Tesseract A tesseract is conventionally understood as a representation
of a hypercube. To see why this is the case, consider looking at a regular
cube head on. What does it look like? Simply a large square with a smaller
square inside of it, with vertices connected by lines. A tesseract is the ex-
act anaolgue–assuming we are looking at a hypercube head on, it should
appear as two nested cubes with connected vertices.

Necker Cube In 1832, the Swiss crystallographer Louis Albert Necker
published the now famous optical illusion called a Necker Cube (he is also
responsible for another illusion called the “impossible cube”). It is a line
drawing of a cube with no cues as to its orientation, so the front side of the
cube, or the side perceived to be closest to the viewer, could be the lower-
left or upper-right face of the line drawing. With some effort, the viewer
can make the cube flip, where it appears to change its orientation from one
state to the other. This alone is interesting; however, if we mark the cube
with an X and an O on one of the two potential front faces, we gain infor-
mation about the cube’s orientation, but are still able to make it flip. See-
ing the lower-left face as the front, the markings are interpreted as being
on the outside of the back face (we are, in effect, seeing through the cube).
If we were to rotate the cube 180 degrees around a vertical axis in order
to bring the marked side closest to the viewer, the markings would face us
and the O would be on the left, the X on the right. Return to the origi-
nal marked Necker Cube and flip it so the upper-right face is outwards, as
are the markings. Now the X is on the left and the O on the right. There
is no three-dimensional rotation that can take one state of the marked
Necker cube to the other. What we have observed is a rotation through
four-dimensional space. This anecdote is a useful way of imagining a higher
spatial dimension, a rotation which essentially turns the cube inside out.
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An object’s mirror image is equivalent to being flipped in a fourth spa-
tial dimension. The states of the marked Necker cube are mirrored. Let’s
use the Flatland analogy to better illustrate this point. Say there were
two Flatlander twins that were mirror images of each other. No rotation
in their plane could make them the same; however, lifting one twin into
the third dimension and flipping them “upside down” would make the two
twins indistinguishable. The philosopher Immanuel Kant proposed an anal-
ogous problem concerning left and right hands. In a universe empty but for
a single human hand, does it make sense to label it right or left? To me,
it seems that the answer is: it depends. If we confine the hand to three di-
mensions, it has an inherent orientation, independent of what we happen
to name it. We do not need an oriented object to recognize a right hand
versus a left one. However, the possibility of rotating it four-dimensionally
clearly destroys the utility of left- and right-handedness.

Envision the world of Flatland as the x-y plane (z=0) and yourself as
a three-dimensional observer able to freely move up and down the z-axis,
taking on either positive or negative values. You observe Flatland from
above or below, but neither orientation is preferential. Everytime you cross
through the plane, Flatland becomes its own mirror image. In other words,
it appears one way from above, and another from below. It’s odd to imag-
ine that “handedness,” (meaning three-dimensional objects that are mirror
images of each other) is arbitrary to a higher dimensional observer.
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Chirality An interesting application of handedness appears in chemistry.
Chirality is a property of certain molecules that is best understood with
an image. Interestingly, the word chirality comes the Greek word for hand.
Chiral molecules are made of the same constituent elements in the same
relative configurations but cannot be interchanged by rotation. A chiral
molecule is not superimposable on its mirror image. An enantiomer is a
molecule that exhibits chirality. Enantiomers have many of the same chem-
ical properties such as boiling point and solubility, but behave differently
in some situations. In fact, enantiomers only exhibit divergent chemical be-
haviors when interacting with other chiral molecules, and will act the same
in any other reaction. There is a striking parallel with our everyday experi-
ence of chirality (handedness). The only time we notice our handedness is
when interacting with other oriented objects. Gloves, instruments and cars
are chiral objects and this property influences how we interact with them.
Left handed guitarists could not play a right handed guitar, for example.
Although handedness is arbitrary in the context of higher dimensions, it
influences the ongoings (human, chemical, etc) of our world in important
ways.

Waves The n-dimensional wave equation can be written in the form

∂2ψ

∂x2
1

+ · · ·+ ∂2ψ

∂x2
n

=
∂2ψ

∂t2

where we assume for simplicity that the speed at which the wave prop-
agates is unity. Given that the wave is spherically symmetric, ψ can be
written exclusively as a function of radius (r) and time (t) where r2 =
x2

1 + ...+ x2
n. A few useful facts follow from this:∑

(
∂r

∂xi
)2 = 1

∑ ∂2r

∂x2
i

=
n− 1

r
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Using the multivariate chain rule and product rule, the derivatives of ψ(r, t)
can be expressed in terms of r’s and xi’s. We then manipulate and employ
the previous identities to cast the wave equation only in terms of radius.

∂ψ

∂xi
=
∂ψ

∂r

∂r

∂xi

∂2ψ

∂x2
i

=
∂r

∂xi

∂2ψ

∂r∂xi
+
∂ψ

∂r

∂2r

∂x2
i

The mixed partial can be simplified

∂2ψ

∂r∂xi
=

∂

∂r

∂ψ

∂xi
=

∂

∂r
(
∂ψ

∂r

∂r

∂xi
) =

∂r

∂xi

∂2ψ

∂r2

Therefore,
∂2ψ

∂x2
i

=
∂ψ

∂r

∂2r

∂x2
i

+ (
∂r

∂xi
)2∂

2ψ

∂r2

Summing over all i and using the identities introduced earlier, we arrive at∑ ∂2ψ

∂x2
i

=
∂2ψ

∂t2
=
∂2ψ

∂r2
+ (

n− 1

r
)
∂ψ

∂r

Now define a new variable φ(r, t) = rkψ(r, t) so that

∂2φ

∂r2
= rk

∂2ψ

∂r2
+ 2krk−1∂ψ

∂r
+ k(k − 1)rk−2ψ

If we divide through by rk then set k = n−1
2

, we end up with

1

r
n−1
2

∂2φ

∂r2
=
∂2ψ

∂r2
+
n− 1

r

∂ψ

∂r
+

(n− 1)(n− 3)

4r2
ψ

At this point, its easy to recognize the first two terms on the right side of
the expession as ∂2ψ

∂t2
, so we write

∂2ψ

∂t2
=

1

r
n−1
2

∂2φ

∂r2
− (n− 1)(n− 3)

4r2
ψ

Multiplying through by r
n−1
2 , we get

∂2φ

∂t2
=
∂2φ

∂r2
− (n− 1)(n− 3)

4r2
φ

The wave equation has been transformed in such a way to show how di-
mensionality manifests in its solution. For n=1, the second term on the
right side vanishes and the solution is simple, as would be expected in the
one-dimensional case. However, n=3 makes the second term vanish and is
effectively one-dimensional, the difference being that φ = rψ which corre-
sponds to the amplitude of the wave decreasing as it travels outward. It is
now clear that the wave equation exhibits special and simple behavior in
the case of n=3.
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Huygen’s principle states that every point on a wavefront can be thought
of as a source of future waves and the resulting wave is the superposition
of all these tiny contributions. This is the same as saying that every distur-
bance in the medium supporting the wave travels at single, definite speed.
It can be shown that Huygen’s principle is only true in odd-dimensional
spaces. Odd-dimensional waves have a sharp front and rear, as wide as
the wave speed multiplied by the time it took to create the disturbance.
They do not get wider or more diffuse as they propagate. This is in con-
trast to even-dimensional waves, such as those on the surface of a pond.
Dropping a stone into water doesn’t create a single plane wave, rather a
series of waves whose amplitudes quickly diminish with time. The ability
to process clear, undistorted signals is key in the development of an ad-
vanced civilization, and an even number of dimensions does not allow for
sharply defined signals in the form of waves. A close analysis of solutions of
the traditional wave equation in higher odd dimensions shows that waves
traversing large distances become distorted, thus three dimensions is the
only case of high-fidelity wave transmission.

Anthropic Cosmological Principle The Anthropic Cosmological Prin-
ciple states that we must observe the universe to be conducive to the evo-
lution of conscious, intelligent life. Dimensionality is just one of many facets
of the principle–scientists turn to the measured numerical values of funda-
mental constants as proof. Changing the strength of the electromagnetic
force by fractions of a percent drastically upsets the production of oxygen
and carbon in stars, two crucial elements for life. A balance between a va-
riety of these constants also leads to the atomic stability of matter. The
fact that the dimensionality of our universe corresponds to the most conve-
nient behavior of waves, and thus the ability to transmit information, also
evinces the anthropic principle. Throughout the coming explorations of the
role of dimensionality in physics, it is interesting to consider how unique
the case of n=3 is for the development and evolution of conscious life as we
know it.
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2 Hypersphere

Instead of moving, you merely exercise some magic art of van-
ishing and returning to sight; and instead of any lucid descrip-
tion of your new World, you simply tell me the number and
sizes of some forty of my retinue, facts known to any child in
my capital.

-Edwin Abbott, Flatland, 1884

Preamble A hypersphere is a generalization of a sphere to higher di-
mensions (think hyperspace). A unit circle is expressed mathematically
as x2 + y2 = 1, and a unit sphere is x2 + y2 + z2 = 1. Adding a dimension
translates to adding another squared coordinate to the sum on the left side
of the equation. Thus, an arbitrary dimensional unit hypersphere is sim-
ply

∑
x2
n = 1. This short chapter investigates mathematical consequences

of geometry in very high dimensions, and is not particularly relevant to
physics. That being said, the results of looking at these limiting cases are
fascinatingly counterintuitive, thus illustrating the utility of math as tool
for peering into these divergent worlds.

We begin with the formula for an n-dimensional sphere expressed in
Cartesian coordinates x2

1 + x2
2 + · · · + x2

n ≤ R2 and note that the n-
dimensional volume is the integral of the (n-1)-dimensional surface area
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integrated from 0 to R. This can be easily checked for the familiar two and
three dimensional formulas. We also write the volume as the integral of the
differential volume element.

Vn(R) =

∫ R

0

Sn−1(R)dr

Vn(R) =

∫
V

dV =

∫
· · ·

∫
x21+x22+···+x2n≤R2

dx1 . . . dxn

Additionally, we know that the volume formula should be of the form CnR
n

ie. a constant dependent on the dimensionality times the n-th power of
the radius, which is easily seen from dimensional analysis. Equivalently,
Sn−1(R) = dVnn−1

dR
= nCnR

n−1. Therefore∫
· · ·

∫
x21+x22+···+x2n≤R2

dx1 . . . dxn =

∫ R

0

Sn−1(R)dR = nCN

∫ R

0

rn−1dr

The n-dimensional Cartesian differential volume element can be written in
spherical coordinates as dx1 . . . dxn = rn−1drdΩn−1 where the Ω term repre-
sents the n-1 angular coordinates. Looking back to the previous expression,
its clear that

∫
· · ·

∫
dΩn−1 = nCn. We now consider the following expres-

sion in order to determine the constant Cn:∫ ∞
−∞
· · ·

∫ ∞
−∞

e−(x1+···+x22)dx1 . . . dxn =

∫
e−x

2
1dx1· · ·

∫
e−x

2
ndxn = π

n
2

Writing the same integral in spherical coordinates and using earlier results
yields∫ ∞

0

rn−1e−r
2

dr

∫
dΩn−1 = nCn

∫ ∞
0

rn−1e−r
2

dr =
1

2
nCnΓ(

n

2
) = CnΓ(1 +

n

2
)

This means that Cn = π
n
2

Γ(1+n
2

)
and using the formula for volume as a func-

tion of this constant and the relation between surface area and volume we
can write

Vn(R) =
π

n
2Rn

Γ(1 + n
2
)

Sn−1(R) =
nπ

n
2Rn−1

Γ(1 + n
2
)

As Figure 1a shows, the surface area and volume for a unit hypersphere
reach a maximum and then eventually decay away to 0. Unfortunately, the
meaning of a comparison among volumes with different units is unclear, so
in Figure 1b, the n-th root is taken of the volume and surface area formu-
las so as to keep the units as distance1.
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Figure 1: a) Surface area and volume peak at low n values, then decay
away and b) the n-th root of volume and surface still decay away, but at
a much lower rate
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Using the data cursor in matlab, we can find the dimensionality that cor-
responds to maximum unit surface area and volume. Figure 1a shows the
coordinates for the point of maximal area, revealing that n=7 is the inte-
ger dimension of largest surface area. The same approach shows that n=5
maximizes the unit volume.

Other strange things happen in these high dimensional geometries. The
hypercube that contains the unit hypersphere (side length of 2) has a vol-
ume of 2n and the distance from its center to a vertex is ||(1, . . . , 1)|| =√

(1 + · · ·+ 1) =
√
n, which both diverge as n gets large, whereas the hy-

persphere’s volume goes to 0.

We now look at another interesting geometric result involving hyper-
spheres. First, we notice that Vn(R) = Vn(1)Rn which follows from the
formulas derived in the past section. Consider a shell at the surface of an
arbitrary dimensional hypersphere with thickness a. The percent of the
volume concentrated in this shell is

Vn(R)− Vn(R− a)

Vn(R)

which can be rewritten as

Vn(1)(Rn − (R− a)n)

Vn(1)Rn
= 1− (1− a

R
)n

This expression can be graphed against the number of dimensions n for
some fixed value of a. Choose a = 0.01R so that we are plotting the func-
tion 1 − .99n. As Figure 2 shows, for extremely high dimensionality, nearly
all the volume is concentrated in this thin shell at the hypersphere’s sur-
face.
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Figure 2: When the dimension is large, nearly all of the hypersphere’s
volume is found in the shell comprising the outermost 1 percent of the

radius
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3 Orbits

For the light comes to us alike in our homes and out of them,
by day and night, equally at all times and in all places, whence
we know not.

-Edwin Abbott, Flatland, 1884

Preamble Earlier, we showed that waves exhibited special behavior in
three dimensions–special in the sense of being different from all other cases,
but also particularly conducive to the sending and recieving of complex sig-
nals. As it turns out, the same can be said for orbits. In fact, many have
cited the necessity of three dimensions for stable orbits as a reason why life
would not develop in alternate universes–a reliable source of energy is cen-
tral in the world of biology. A rogue planet, following some non-closed tra-
jectory (a parabola or hyperbola probably) is unlikely to spend much time
near a star, and very unlikely to be at the “right” distance from the star
to foster a climate amenable to the formation of life. Fortunately, there is
no disagreement between Newtonian and General Relativistic theories on
this topic. This is a classic example of evoking the anthropic cosmologi-
cal principle–we, as intelligent observers, find ourselves in a universe that
seems to be perfectly tailored to our needs. Conversely, if the universe was
not fit for the evovlution of conscious life, there would be no life to observe
it. The convenience of 3d orbital mechanics is one of many fine-tuned ele-
ments of our laws of physics and is commonly cited as support for the an-
thropic principle.
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History Isaac Newton was born on December 25, 1642 in Lincolnshire,
England.37 Preceeding Newton, the only thing known about planetary or-
bits were the three laws of Johannes Kepler (1571-1630) which stated that
orbits follow elliptical paths, that at every point along their path an equal
area is swept out within the plane of the orbit and that the period of the
orbit squared is proportional to the cubed distance to the center of the
orbit.38 These laws explained the character of orbital mechanics without
claims about the origin of these phenomenon. Newton knew that an ob-
ject would follow a straight path unless acted on by an external force, and
surmised that some invisible force must be causing the curved trajectories
observed in the motion of the planets. At once connecting why (famously)
apples fall to the ground and why the earth revolves around the sun, he
conceived of gravity and formulated its accompanying force law to desribe
it quantitatively. As the following analysis will illustrate, the case of n=3 is
a sweet spot with respect to Newton’s (and Einstein’s) theories of gravity.

The most straightforward way the dimensionality of space manifests in
classical mechanics is through the gravitational potential. The potential is
a power law of the form V (r) = −A

rn−2 where A is a constant and r represents
the radial distance from a mass. In this power law, n represents the dimen-
sionality of space. This can be seen employing a few basic results from me-
chanics. First, recall that V (r) = −

∫
F (r)dr and that F (r) = mg(r)

where m is the mass of the smaller object, (the one whose motion we are
interested in) and g(r) is the gravitational field. Gauss’ Law of Gravity, an
example of the well-known divergence theorem, tells us that in three di-
mensions ∫ ∫

g · dA = −4πGM

where the integral is taken around the boundary of a Gaussian surface.
The law can be easily generalized to n-dimensions∫

· · ·
∫
g · dA = −nCnGM

where Cn is the coefficient of n-dimensional volume derived in the last
chapter and nCn is the coefficient for surface area. Making this general-
ization, we solve for g(r) using the problem’s inherent spherical symmetry

g · Sn−1(r) = g · nCnrn−1 = −nCnGM → g(r) = −GM
rn−1
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Therefore, we recover the familiar form of the force law and potential but
with different exponents

F (r) = mg(r) = −GMm

rn−1
V (r) = −GMm

rn−2
=

We want to say something about the relationship between dimensionality
and the behavior of orbits. A result from classical mechanics is that the
effective potential, defined as Veff (r) = l2

2mr2
− V (r), fully describes the

sort of orbits a planet can take on. The constant l is angular momentum,
a conserved quantity. A stable orbit is one for which small disturbances do
not drastically alter its character (a small push will not send the planet to
infinity, for example). An effective potential with a minimum is one that
allows for stability. Elementary calculus tells us that a minimum must sat-

isfy
dVeff
dr

= 0 and
d2Veff
dr2

> 0 so we investigate the relationship between
these expressions and the dimensionality n.

d

dr
Veff =

d

dr
(
l2

2mr2
− A

rn−2
) = − l2

mr3
+

(n− 2)A

rn−1
= 0→ A =

l2rn−4

m(n− 2)

d2Veff
dr2

=
3l2

mr4
− (n− 1)(n− 2)Ar−n > 0→ 3l2

mr4
> (n− 1)(n− 2)Ar−n

Plugging in for A and simplifying we get n < 4. This rules out all dimen-
sions greater than our’s for orbital stability. One might wonder whether
the angular momentum l is in fact a conserved quantity in an arbitrary
number of dimensions. The n-dimensional Lagrangian L = T − V (the
difference between kinetic and potential energy) expressed in plane polar
coordinates reads 1

2
m(ṙ2 + r2θ̇2)− A

rn−2 . Applying Lagrange’s equations, we
obtain

d

dt
(
∂L

∂θ̇
) =

∂L

∂θ
= 0 =

d

dt
(mr2θ̇)→ mr2θ̇ = l

This is the standard argument to show the conservation of angular momen-
tum, but it relies on the fact that all three-dimensional orbits occur in a
plane. If we can show that orbits in n-dimensional space are confined to a
2d subspace, we are free to choose θ as the angular coordinate within this
plane and invoke the preceeding result. We know from linear algebra that
two linearly independent vectors can be transformed into an orthogonal ba-
sis via Graham-Schmidt decomposition and that a plane is, by definition, a
space spanned by two basis elements. Regardless of the dimensionality, an
orbiting planet will have a velocity vector tangent to its path and a force
vector along the line connecting it to the mass it orbits. Therefore its mo-
tion is fully determined by two independent vectors, and the orbit must
remain in a plane.
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Stability and Dimensionality Continued Although we have shown
that a necessary condition for orbital stability is n < 4, a more advanced
argument, called Bertrand’s Theorem, rules out any force law except Hooke’s
Law (n=0) and the inverse square law of our universe (n=3). Because a
zero dimensional universe is not particulary interesting, we conclude that
n=3 is the only dimensionality that allows for stable orbits in classical me-
chanics.

General Relativity In 1963, F.R. Tangherlini showed that general rel-
ativity agrees with the result that n<4 is required for orbital stability. As-
suming Schwarzschild geometry outside of a large mass M, we generalize
the metric to read (in G=c=1 units)

ds2 = (1− 2M

rn−2
)dt2 − (1− 2M

rn−2
)−1dr2 − r2dθ2

where all other angular coordinates introduced to account for the higher
dimensionality are set to 0 because the orbital motion is planar. Following
Tangherlini’s notation, we introduce two conserved quantities correspond-
ing to relativistic energy and angular momentum

(1− 2M

rn−2
)
dt

ds
= k0 r2dθ

ds
= kθ

Next, we make the subsititution u = 1
r

and obtain the expression

1

2
(
du

dθ
)2 +

1

2
u2 − Mun−2

k2
θ

−Mun =
k2

0 − 1

2k2
θ

Which can be verified via a lengthy calculation by substituting in for u, kθ,
k0 and rearranging until the Schwarzschild metric is recovered. The first
term on the left is analogous to kinetic energy whereas the constant on the
right side can be interpreted as total energy, thus we define the effective
potential

Veff (u) =
1

2
u2 − Mun−2

k2
θ

−Mun

and perform the same analysis that we did on the Newtonian effective po-
tential. Setting

dVeff
du

= 0 we find that k−2
θ = u−Mnun−1

M(n−2)un−3 . Remembering

that a necessary condition for a minimum to exist is that
d2Veff
du2

> 0, we
compute the second derivative and plug in for k−2

θ to find that

1− (n− 3)− 2Mnun−2 > 0
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The third term on the left side is always greater than zero, but can be
made small for certain choices of M and u. Thus, this expression demon-
strates that for n > 3, the inequality cannot be satisfied and no minimum
in the effective potential exists. General Relativity agrees with the simpler
Newtonian result.

The Evolution of Life The fact that orbital stability requires the three-
dimensionality of space is a fascinating result. Although we implicitly as-
sume the laws of physics take the same basic form in different-dimensional
universes, this tells us that our universe, among all the possible ones, is
very well-suited for the development of intelligent life. After all, if the di-
mensionality of the universe were totally random, we would expect it to be
a very large number. Although there is a non-zero chance that natural nu-
clear reactions could occur and supply energy for some strange life form on
a non-orbiting mass in space, orbital stability is instrumental in the evolu-
tion of complex organisms. Without it, we would not have reliable energy
from a star, nor predictable seasons or a consistent climate. Perhaps the
structure of the universe we observe is not entirely coincidental.
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4 Rocketry

It seemed that this poor ignorant monarch–as he called himself–
was persuaded that the straight line which he called his King-
dom, and in which he passed his existence, constituted the whole
of the world, and indeed the whole of space.

-Edwin Abbott, Flatland, 1884

Preamble Looking into lower dimensions is quite a bit simpler than
dealing with higher ones–not necessarily because the math is inherently
easier, but because visualization presents no challenges. In addition, our
ability to peer down on Flatland makes the fourth dimension feel closer
than ever; where and what is this unseen fourth dimension that makes
cubes turn inside out and planets fly off into space? As it turns out, Flat-
land (where n=2) is totally pathological with respect to planets, gravity
and space travel. The reason originates in the drastic change of behavior
of the gravitational potential energy when n=2. Escape velocities become
meaningless and the distances at which signals can be transmitted gain a
theoretical upper limit. This chapter focuses on mathematically simulat-
ing a 2d space mission and investigates its feasibility. Unfortunately, we are
forced to recycle three dimensional constants such as the mass of the earth
and the distance to the moon in lieu of any better information. However,
to make this Flatland planet as earthlike as possible, the gravitational con-
stant has been adjusted to fix surface gravity at the good old 9.81 m/s2.
The merciless 2d gravity that the Flatlanders are stuck with presents se-
rious difficulties for any hopes of sending a rocket ship into space. Cele-
brated earthen intellect be damned, imagine the acuity (and size, presum-
ably) of the two-dimensional brain that manages to power a Flatlander
space craft through a logarithmic gravitational potential energy!

Escape velocity is the minimum speed at which an object moving radi-
ally away from a gravitational mass must travel in order to come to rest at
a distance of r = ∞. It is obtained by setting the kinetic energy equal to
the gravitational potential at ∞. Using the n-dimensional force law, this
reads

1

2
mṙ2 =

∫ ∞
R

GMm

rn−1
dr

This expression can usually be solved for the escape velocity ṙ as a func-
tion of an arbitrary radial distance R. However, in the case of n=2, the in-
tegral diverges and we end up with a logarthmic potential function. This
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means there is no finite velocity which, on its own, will get an object to
r = ∞. Given this lack of escape velocity, and the fact that the force of
gravity is proportional to r−1, it is natural to ask about the possibility of
space travel in two dimensions.

Escape Velocity and Horizons In three dimensions, escape velocity
ensures that the kinetic energy is zero at infinity, where the potential also
goes to zero. This is not possible in two dimensions, as the previous para-
graph outlines, because the logarithmic potential diverges. There must be
a finite radius where an object sent radially outward with initial velocity
comes to rest. This radius will be denoted rstop. Conservation of energy
tells us that T1 + V1 = T2 + V2 → 1

2
mv2 +GMmln(R) = 0 +GMmln(rstop)

where v is the initial velocity, R is the initial radius, m is the mass of the
object and M is the mass of the planet. Consequently,

v =

√
2GMln(

rstop
R

)

This is the closest analogue to escape velocity that exists in two dimensions–
we choose a certain radius we want the object to arrive at, and this sets
the speed. Farther distances require higher velocities. Certain values of
rstop will require velocities greater than light (M and R are assumed to be
given). We will call the radius at which the required velocity is the speed
of light “c” the communication horizon, reminiscent of the term “event
horizon” which comes from the study of black holes. The event horizon
is the outer-most boundary of a blackhole, which marks where the escape
velocity becomes greater than light. No concept of escape velocity exists
in two-dimensions, so we instead talk about the communication horizon,
which delineates the distance that information can be communicated given
the details of a planet. It can be expressed as

rCH = R ∗ exp( c2

2GM
)

This is a startling conclusion. Because of the nature of the potential en-
ergy, every mass has a communication horizon of varying radius. No infor-
mation sent out from this object (electromagnetic or otherwise) can cross
this barrier. The math tells us that the smallest possible communication
horizon is at the surface of the mass, as the argument of the exponential
scaling R can never go negative. In essence, every mass in two dimensional
space behaves like a black hole, preventing information from travelling past
a certain radius. While this seems problematic, we might imagine plan-
ets or galaxies existing within a communication horizon so large as to be
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unimportant. If, for example, the horizon of a galaxy is a large fraction of
the observable universe, it may have no consequences in space travel and
commmunication. Before we can insert values into this expression, we must
come up with a 2d version of the gravitational constant G. Let’s call it G2–
its necessity is obvious as the argument of an exponential must always be
dimensionless and this condition is only met if the units of G2 change as
outlined by the 2d force law. Because the gravitationl constant is mea-
sured, (ie does not follow analytically from any physical laws), we must
make some assumptions about this flat universe. For the sake of compar-
ison, we’ll say that acceleration at the surface of 2d earth is still 9.81m

s2
.

Then, using F = G2Mm
r

, G2 = 1.046 ∗ 10−17. The new gravitational constant
should be smaller, as force decays with distance much more slowly.

Plugging in the three dimensional values for the mass/radius of earth
and the new gravitational constant, we find that our planet has a com-
munication horizon that is too large for a handheld calculator to display.
The radius of our observable universe is on the order of 1026, thus the earth
poses no problems for any intelligent 2d life forms’ galactic exploration.
Similarly, the communication horizon of the sun can be found. It is also so
large as to be essentially non-existent.

A little more rigor Normally, Newton’s shell theorem allows us to re-
place spherically symmetric bodies with a point at their center of mass.
This is why the force law and potential energy appear as simple expres-
sions independent of the specific spherical geometry of the planet under
consideration. The coordinate r is the distance from the center (not the
surface, for example) and M is the total mass. In the preceeding analysis,
we have assumed that the shell theorem holds in two dimensions. This is
to say that circular 2d planets can be replaced with point masses at their
center. This result follows from a specific interaction between the form of
the force law and the dimensionality, and is not guaranteed. A brief proof
ensures that we are justified in the assumptions previously made, and of-
fers more evidence for the generalized form of the force law I have claimed.
To start, imagine a ring of total mass M and radius R, with linear mass
density σ = M

2πR
. We calculate the potential at a point outside the planet

by summing the contributions from each infinitessimal section around the
ring. The set up is illustrated in Figure 3.
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Figure 3: Visual representation of 2d shell theorem method

The potential is a function of r (lower case), where this is the distance
from the ring’s center to somewhere outside. The variable φ is irrelevant
because the potential is a scalar. S is rewritten using the law of cosines.
The integral then reads

V (r) =

∫ 2π

0

G
M

2πR
Rdθln(

√
R2 + r2 − 2Rrcosθ)

We know force is −dV
dr

so we take an r derivative and bring it into the inte-
gral. Some algebra shows that this yields

−GM
2r
− GM(r2 −R2)

4π

∫ 2π

0

dθ

R2 + r2 − 2Rrcosθ

This integral is difficult to evaluate using traditional calculus methods, but
Maple can solve it to yield 2π

r2−R2 so that the expression evaluates to −GM
2r

,

thus recovering the two dimensional force law F (r) = −GM
r

. This treat-
ment has been dealing with force and potential per unit mass, thus m does
not appear.

Rocketry We are now tasked with finding the equation of motion for a
rocket travelling in a variable gravitational field. For simplicity, drag forces
will be ignored. That being said, one might speculate that the effect of
drag in two dimensions would be much greater than in three, as there is
less “room” for the air to be parted around the rocket. Take the surface
of our 2d planet as an inertial reference frame with the radial distance r
pointing upwards. Newton’s second law states that d

dt
(mṙ(t)) =

∑
Fext but

we are dealing with a variable mass system, as the rocket’s mass decreases
with time as fuel is burned off.

ṁ(t)ṙ(t) +m(t)r̈(t) =
∑

Fext
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This expression tells us that external forces are responsible for any net
change in momentum of the rocket. The two forces acting on the rocket are
thrust propelling the rocket upwards and gravity pulling the rocket back
towards its starting point. We are considering a universe that is empty ex-
cept for the rocket and planet.∑

Fext = T −G = ṁ(t)Vmuzzle −
GMm(t)

r

Vmuzzle is the speed at which fuel is ejected from the rocket’s engines and
M is the mass of the planet. The units for the thrust term are easily veri-
fied as force. To make this problem more tractable, we assume that ṁ(t) =
−c, a negative constant because mass is decreasing with time. Addition-
ally, the total mass m(t) can be rewritten as m0 − ct where m0 is the ini-
tial mass of the rocket + fuel. Lastly, we assume that the fraction of the
rocket’s mass that is fuel is denoted by p, so mfuel = 0 at t = p∗m0

c
. This

will be the time where the thrust term goes to zero and the only external
force becomes gravity. Nasa’s Saturn V moon rocket was over 90 percent
fuel by mass, and a 2d rocket would need to carry more fuel and would
have less space to store it. The rocket equation is now

(m0 − ct)r̈(t)− cṙ(t) +
GM(m0 − ct)

r
= cVmuzzle

which is subject to the initial conditions r(0) = 0, ṙ(0) = 0, tstage1 = p∗m0

c
.

At t > tstage1, we solve

(1− p)m0r̈(t) +
GM(1− p)m0

r
= 0→ r̈ =

GM

r

where the initial conditions of this equation are given by the final position
and velocity of the rocket when it runs out of fuel ensuring continuity of
the rocket’s trajectory.

Although this is the rocket equation for a two dimensional universe, we
can simply substitute r2 in the denominator of the gravitational force term
to obtain the 3d solution. In this way, we can compare the physics of space
travel in the two universes. We have addressed the problem of communi-
cation horizons already–the laws of physics allow the rocket ship to travel
any reasonable distance in space. Would going to the moon from an earth-
like planet be possible for a flat civilization? We first must solve this sec-
ond order non-linear differential equation for position. No elementary tech-
nique can solve it analytically, so we must turn to numerical methods in-
stead.
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Euler’s step approximation method can be used to numerically evalulate
the differential equations of interest. Plotting radius as a function of time
will give insight into the rocket’s behavior. Before moving to the two di-
mensional case, the code can be tested with 3d force laws and known val-
ues of constants. Every appearance of r can be replaced with r2 and the
dimensionality is effectively changed. We can use data from real rocket
missions to assign values to muzzle velocity, rate of change of mass and
mass of the rocket in addition to using the usual gravitational constant
G/the radius of the earth as an initial condition. Furthermore, we should
observe the rocket escaping earth’s gravitational field for the appropriate
choice of velocity, and the rocket should turn around for velocities below
vescape. We know the thrust of the rocket cVmuzzle must be greater than the
rocket’s initial weight m0 ∗ g = 9.81m0 for the rocket to achieve lift off.
This is another aspect of the code to check; we fix a mass rate of change
c and test muzzle velocities above and below the threshold. The following
subplots of Figure 4 show these situations.
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Above and Below Escape Velocity

Above and Below Necessary Muzzle Velocity

Figure 4: Testing rocket’s trajectory against a variety of known outcomes

It appears the code is working! As a last check, we can change the step size
in the approximation to see if the nature of the solution changes. Reduc-
ing and increasing this value does not alter the rocket’s trajectory, so we
conclude the code is functioning correctly and proceed to use it to generate
results. At this point, its time to transition to the two dimensional rocket.
We know that there should be no escape velocity–the rocket should always
turn around regardless of how large the muzzle velocity or how far away it
gets. Earlier, we chose G2 so that gravity at the surface of the earth was
still 9.81m

s2
which means that the necessary thrust is the same in our 2d

world (assuming the mass rate of change is the same constant). It is rea-
sonable to expect that the rocket needs a higher muzzle velocity to travel
any significant distance due to the nature of the gravitational field. An-
other component of the simulation we have control over is the burn time,
which is related to what percent of the rocket’s mass is fuel. For two and
three dimensions, an excessive burn time will put the rocket so far away
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from earth that gravity is negligible and it will appear to escape, even for
muzzle velocities marginally larger than what is required for lift off. In the
2d case, keeping the burn time small simply makes the rocket’s behavior
easier to detect. We know it will always stop and turn back towards earth,
but that might be an impractically large time if the engines fire until the
rocket is millions of kilometers away.

Figure 5: The rocket ship, despite travelling the distance to Pluto, still
turns around in the two-dimensional gravitational field

Figure 5 shows a two-dimensional rocket ship travelling in the r−1 grav-
itational field. We have assumed the rocket is 35 percent fuel, it starts at
rest on the surface of the flat earth in an otherwise empty universe and
that it’s muzzle velocity is 5.7 ∗ 104m

s
, approximately an order of magni-

tude larger than that of a real rocket. It travels billions of kilometers away,
comes to rest and falls back to earth. This is a shocking result, and con-
firms the analytical predictions the physics made. There is no escape veloc-
ity, thus every unpowered rocket will eventually turn around and fall back
towards the planet from which it came, or some other massive celestial ob-
ject. Our rocket makes it all the way to Pluto (7.5 billion kilometers, at its
farthest), but still has not escaped the r−1 gravitational field of earth.

Moon Mission Now let’s simulate a rocket going to the moon. In the
spirit of adopting real values from our galaxy, we’ll say the moon is ap-
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proximately 400 million meters away. Additionally, we will assume that the
rocket is mostly fuel, as was the case for all real space missions. Setting
p = 0.8 makes the approximate minimum muzzle velocity to achieve this
distance 7.6 ∗ 104m

s
. Figure 6 shows the rocket’s trajectory.

Figure 6: The 2d rocket travels to the moon before being turned around by
the ever-present earth gravity

To discuss the topic of two dimensional rocketry, it is necessary to draw
parallels between our universe and the hypothetical flat one. There is no
way to know what scale rockets and planets would exist on with respect to
our units of meters, kilograms and seconds, so we simply recycle known
constant values for the sake of the simulation. True, we can calculate a
new gravitational constant under the assumption that surface gravity is the
same, but we are forced to use 3d masses and distances in the 2d rocket
problem. These assumptions are not always viable. Consider the case of
the 2d Moon Mission, where 80 percent of a 500,000kg rocket is fuel. How
big would a flat rocket need to be to contain this? First, note that atomic
bond lengths are on the order of 10−10m, so we can expect 1020 atoms to
fit in a square meter at most. Fuel’s are hydrocarbons, so we can use the
mass of a carbon atom to find an estimate for surface density of rocket
fuel.

1020atoms

m2
∗ 2 ∗ 10−26 kg

atom
= 2 ∗ 10−6 kg

m2
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Given that the rocket requires 400,000kg of fuel, this equates to a storage
area of 2∗1011m2. The width of the Saturn V rocket was about one-quarter
of its height, which would make the 2d rocket 2.25 ∗ 105 meters wide, a pre-
posterously large value, especially considering that it would be an insur-
mountable obstacle for 2d beings to try to get around. Although borrowing
from three dimensions offers an easy way to gain qualitative insight into
the physics of a flat universe, there are many necessary assumptions which
do injustice to the details of such a world. Could a rocket ever balance fuel
capacity and size? If it could, it seems that 2d chemistry would have to
be different either in nature or scale. Perhaps two dimensional drag would
have unexpected effects on the rocket’s motion. What does it even mean
to talk about the mass of an infinitely thin object? We appear to be un-
equipped to answer seemingly simple questions like these, whereas many of
the physical results come easily.
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5 The N-Dimensional Atom

All is confined to the narrowest band of vision imaginable; an
infinitesimal line, encompassing me, contains my entire visual
world.

-A.K. Dewdney, The Planiverse, 1984

Preamble This chapter is by far the longest and most technical. We
begin by proving bizarre generalizations of standard quantum theory to
different dimensions–first discussing the improbably large Bohr radius of
higher dimensional atoms, then to the question of atomic stability, and fi-
nally treating energy eigenvalues/ionization energy. The consequences of
this analysis suggest either that our quantum model does not apply in dif-
ferent dimensions (given the strangeness of its predictions) or that, once
again, a three dimensional universe is custom-fit to the needs of biological
life. This is especially true with regards to the size and stability of atoms.
As before, we are forced to begrudgingly reuse values of 3d fundamental
constants such as ε0. The anthropic cosmological principle should be kept
in mind throughout these sections–the instability of atoms and planetary
orbits are sufficient grounds to disqualify alternate universes as poten-
tially life-bearing. The bulk of this chapter is dedicated to the laborious
undertaking of solving the radial Schrodinger equation in N dimensions.
To make this goal tractable, it was necessary to generalize the Laplacian
operator but not the form of the potential energy, as we’ve done thus far.
Further work could certainly be done in generalizing both the Laplacian
and the potential, as solutions to this radial Schrodinger equation should
reflect the predictions of the generalized Bohr radius, energy eigenvalues,
ionization energy, etc. of the first sections of the chapter.

Bohr Radius In traditional 3 + 1 dimensional quantum mechanics, the
Bohr radius and the orbital radii of higher energy levels can be calculated
by claiming that the centrepital force on the electron is balanced by the
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Coulomb force from the nucleus. Formally, mv2

r
= Ze2

r2
where Gaussian units

are used to avoid having to write out the constant 4πε0 in Coulomb’s law.
Equivalently, r = Ze2

mv2
(Z is the atomic number and e is the charge of the

electron). Standard quantum mechanics tells us that the maximum allowed
value of angular momentum is quantized by energy level n, meaning that
L = mvr = nh̄ = nh

2π
, so v = nh

2πmr
. Plugging in for v in the first expression,

we find that

r =
n2h2

4π2mZe2

Thus the familiar Bohr radius for the hydrogen atom is r = h2

4π2me2
. In

higher dimensions, the Couolmb force takes a different form–for dimension-
ality N, we say that mv2

r
= Ze2

rN−1 which is simply generalizing in the same

way that we did for gravitational force. In this case, rN−2 = Ze2

mv2
. Given

that the expression for angular momentum is independent of dimension,
plugging in as before yields

r = (
4π2mZe2

n2h2
)

1
N−4

With this result, there are a number of aspects of the different-dimensional
atom to analyze. First, let’s look at how the ground state radius of the
hydrogen atom varies with dimension (Z=n=1). In Gaussian units, the
charge of the electron is 4.803∗10−10cm3/2g1/2s−1 = 1.5188∗10−14m3/2kg1/2s−1

It’s mass is 9.109 ∗ 10−31kg. The table below shows the Bohr radii as a
function of dimension.

Dimensionality Bohr Radii (m)
1 3.7545e-04
2 7.2750e-06
3 5.2926e-11
4 Undefined
5 1.8894e+10
6 1.3746e+05
7 2.6634e+03
8 370.7509
9 113.5706
10 51.6085

In Gaussian units, the vacuum permittivity ε0 is built into the definition
of charge so it’s been implicitly assumed that the value of ε0 does not vary
with the dimension, but its units do to keep the Bohr radius as a measure
of meters. As expected, the three-dimensional Bohr radius is reproducued
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by this generalized expression. Interestingly, it is by the far the smallest
value in the table. The expression breaks down for N=4 because the ex-
ponent diverges. The five-dimensional Bohr radius is enormous, as are all
the other higher dimensional ones compared to the 10−10 m scale we are
accustomed to.

When the dimension N is less than 5, the exponent in the atomic radius
expression is negative and increasing principal quantum number n increases
the orbital radius. Figure 7 depicts this behavior:

Figure 7: Orbital radius increases with principal quantum number in
traditional 3d quantum mechanics

Once N≥5, the exponent is positive and the orbital radius decreases with
increasing quantum number. Because n corresponds to the energy levels of
the atom, higher energy states are held closer to the nucleus. This suggests
that electrons will fall into the nucleus. The huge orbital radii of the five-
dimensional atom in addition to their decreasing size are highlighted in
Figure 8.
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Figure 8: Higher dimensional atoms display behavior contrary to their 3d
counterparts

Although this does not prove the instability of atomic orbitals in higher di-
mensions, it certainly does hint at it. If the orbitals were to remain stable,
an atom’s outer electrons would have the lowest energy. The consequences
of this for higher dimensional chemistry are far-reaching and undoubtedly,
very complicated. We would expect that it would be almost unrecognizable
to us.

Atomic Instability To assess whether the electron is confined to an or-
bital or falls into the nucleus/flies away, we can look for a minimum in it’s
energy. It has kinetic energy and is subjected to the potential energy from
the atomic nucleus. In general, E = KE + PE = p2

2m
− Ze2

rN−2 where we
again employ Gaussian units for the sake of simplicity. The orbital angular
momentum of the electron is nh̄ = mvr = pr, therefore the linear momen-
tum can be written as p = nh̄

r
. Plugging in, (and deciding to look at the

hydrogen atom where Z=1), we find that the total energy of an electron in
N-dimensional space is

E =
n2h̄2

2mr2
− e2

rN−2

When N=3, the energy E(r) has a minimum at which radius the electron
has a stable orbital. Again, there is intersting behavior around N=5. For

36



N≤3, there is always a minimum. The case of N=4 is ambiguous and will
be addressed separately. Once N≥5, a minimum becomes impossible be-
cause the potential (in other words, the negative term) dominates as r→ 0
and the energy can become arbitrarily negative. Figure 9 shows qualita-
tively the distribution of the electron’s energy as a function of radius for
any dimension greater than 4. There is a maximum, but no minimum and
the electron either flies away or falls into the nucleus depending on which
side of the peak it is located. No stable orbit is possible, thus atoms them-
selves are unstable and would not exist in high dimensions.

Figure 9: The lack of a minimum in the potential of higher dimensional
atoms indicates instability of the electron’s orbit

The case of four dimensions has been delayed because it does not follow
the same line of logic as above. When N=4, both terms in the energy are
inverse squares and can be combined so that the energy is now E = n2h̄2−2me2

2mr2

where the sign depends on a balance among the constants h̄, e, m and n.
Using these constants’ three-dimesional values, and for any reasonable en-
ergy level n, the numerator is negative so all electrons fall into the nucleus.
However, we don’t know how these constants could vary with dimension-
ality, so the 4d electrons could also fly off. Either way, they are not stable.
To be more precise, we can appeal to the special relativistic formulation of
kinetic energy where we replace p2

2m
with

√
p2c2 +m2c4. Using the fact that
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p = nh̄
r

, the energy reads

E =

√
n2h̄2c2

r2
+m2c4 − e2

r2

Now it is clear that as r→0, the − 1
r2

potential term dominates and the en-
ergy can become arbitrarily negative. Thus the ambiguity is cleared up and
the electrons fall into the nucleus in four dimensions.

Energy Eigenvalues In three dimensions, it is commonly known that
the allowed energies of a hydrogen atom are quantized by the principal
quantum number n and obey the relation E = −13.6eV

n2 . It is easy to gen-
eralize a relation between energy and principal quantum number to N-
dimensions. First, note that the electron’s energy is −1

2
mv2 and its velocity

can be determined as a function of radius with mv2

r
= Ze2

rN−1 → v =
√

Ze2

mrN−2

which is a simple force balance. Plugging in for v, we get

E = − Ze2

2rN−2

Now, we use the previous result about atomic orbital radii, namely r =
(Zme

2

h̄2n2 )1/(N−4) and plug this in for r:

E = −Ze
2

2
(
h̄2n2

Zme2
)
N−2
N−4

For N=3, this expression tells us that −(Z
2e4m
2h̄2

) 1
n2 which for the hydrogen

atom (Z=1), correctly yields −13.6eV 1
n2 . Interestingly, the case of N=4

brings about a dramatic divergence in behavior. When N < 4, the expo-
nent is negative and the factor n2 ends up in the denominator, meaning
that increasing principal quantum number makes the energy less negative
(bigger), so the electron’s energy and energy level increase together as ex-
pected. However, when N > 4, n2 is in the numerator so as the energy
level increases, the energy becomes more negative (smaller). The highest
energy state is the ground state n=1, totally opposite of 3d quantum me-
chanics. We have now found a potential reason why the orbital radii de-
crease with the PQN n–the largest orbital is the “ground state” n=1 (no
longer an accurate term) which also corresponds with the highest energy
orbital. As the energy becomes more negative with increasing n, the size of
the orbital radius goes down. Perhaps the principal quantum number for
N > 4 simply has a reciprocal relationship to its 3d analogue.
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Ionization Energy In three dimensions, the virial theorem allows us
to simply express the total energy of an electron at a given energy level.
Because electron energies are negative, and E=0 corresponds to the elec-
tron being at r = ∞ where the potential has decayed away, the ionization
energy is the absolute value of the total energy. Adding this amount of en-
ergy would ensure the electron “escapes” the potential well of the nucleus
and is said to ionize the atom. As we have seen, when N ≥ 5, increas-
ing the principal quantum number decreases the radius of the orbital, a
huge qualitative shift in behavior from the typical 3d atom. Interestingly,
the virial theorem analysis parallels this shift, breaking down when N=4
and yielding unusable results for N ≥ 5 (it predicts a positive energy of
the electron, and thus a negative ionization energy which is non-sensical).
Consequently, we are able to find an exact ionization energy for the two-
dimensional atom and must resort to a different approach for higher di-
mensions.

Virial Theorem and the Two-Dimensioinal Atom For forces arising
from a potential of the form V (r) = a

rN−2 , the virial theorem reads

2〈T 〉 = −(N − 2)〈V 〉

where T is the kinetic energy and V is the potential. The angular brackets
represent time averages, but will be dropped moving forward. The total
energy is then

E = V + T = V +
−N + 2

2
V = (2− N

2
)V

We are interested in the case of N=2, (and Z=1, assuming we’re working
with the hydrogen atom), so we plug this in for the virial theorem coeffi-
cient and write out the potential using Gaussian units E = e2ln(r), but we

know from previous work that r = ( me
2

n2h̄2
)

1
N−4 , therefore

E = e2ln(

√
n2h̄2

me2
)

In writing V = e2ln(r), we’ve assumed that the base unit definition of
the electron’s charge e has changed to keep the units of energy the same,
namely that [e] = m ∗ g1/2 ∗ s−1. As before, we’ll fix the value of e in lieu
of any better information. In that case, we can plug in to find the ground
state ionization energy of the two-dimensional hydrogen atom. The ioniza-
tion energy is 1.7036 ∗ 10−8 eV, many orders of magnitude less than the
13.6 eV ground state ionization energy of the 3d hydrogen atom.
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Higher Dimensional Ionization Energy The virial theorem fails to
be able to meaningfully express the total energy of the electron for higher
dimensional atoms. There is also the added quirk that the “ground state”
of the electron is the farthest out, and increasing the PQN brings electrons
closer to the nucleus. As a result, we must find the integer value of the
principal quantum number n that keeps the electron outside of a nucleus
of finite size. In other words, we fix a size of the nucleus for the higher di-
mensional atom (it could be constant, it could depend on dimension but
it is an assumption either way), and use the expression for orbital radii
as a function of PQN to find the largest n-value that does not locate the
electron within the nucleus. Using this PQN, we can use the generalized
energy eigenvalue expression to write the total energy of the closest held
electron. The absolute value of this quantity is the ionization energy, and
is the analogue to the ground state ionization energy. It is easy enough to
test two different assumptions about the nucleus: one, that it does not vary
with dimension and has a radius of 8.783 ∗ 10−16 (hydrogen atom) or two,
that the radius of the nucleus is always the same fraction of the Bohr ra-
dius as it is in the 3d case. By plotting the orbital radius as a function of
PQN for a wide range of n-values, we use the data cursor on matlab to find
the largest n-value that keeps the electron out of the nucleus for a given di-
mension. Plugging in this integer value and taking the absolute value gives
ionization energy in Joules (J), which can be converted to electron volts
(eV) knowing that 1eV = 1.602 ∗ 10−19J . The following table lists higher-
dimensional ionization energies for nucleii fixed at the 3d size.

Dimension N Max PQN (n) Ionization Energy (eV)
5 4.638e+12 1.0624e+36
6 1.565e+20 1.2097e+51
7 5.281e+27 1.3777e+66

These values are astronomical–the assumption that the nucleii have a con-
stant size is likely illogical, especially considering the huge Bohr radii of the
5, 6 and 7 dimensional hydrogen atoms. We know that the Bohr radius of
the 3d atom is 5.2926 ∗ 10−11 m and that the hydrogen nucleus has a radius
of 8.783 ∗ 10−16 m. Dividing the latter by the former gives the fraction of
the Bohr radius that the nucleus occupies. Assuming that this ratio is fixed
gives the following ionization energies:

Dimension N Nucleus Radius (m) Max PQN (n) Ionization Energy (eV)
5 3.1355e5 245 2.3084e-26
6 2.2811 6.025e4 2.6576e-11
7 0.0442 1.478e7 4.30e-3

40



These values, while closer by order of magnitude, are extremely small. A
universe governed by either assumption would present many challenges for
harnessing electricity and magnetism. Throughout this analysis, (as be-
fore), it has been implicitly assumed that the constant ε0, which is built
into Gaussian units of charge, is independent of dimension. Perhaps finely
tuning it’s value would lead to more reasonable ionization energies.

Schrodinger Equation To understand more thoroughly the structure of
the N-dimensional atom, we can solve a generalized version of the Schrodinger
equation. It reads

− h̄2

2m
∇2ψ − Ze2

r
ψ = Eψ

Although until now, the potential has been generalized to an inverse N-2
power rule, we will assume it keeps the same r−1 form and analyze how
the radial solutions change with the N-dimensional Laplacian. This makes
the already laborious algebra more tractable and still offers insight into the
behavior of the atom with the introduction of new angular coordinates.
To tackle this problem, it is first necessary to establish how the Laplacian
varies with the dimensionality.

For arbitrary curvilinear coordinates in N-dimensions, the laplacian can
be written as a function of the metric tensor

∇2 =
1√
detg

∂

∂xi
(
√
detg gij

∂

∂xj
)

Where “det g” means the determinant of the metric g and gij represents
the components of the inverse metric. The Einstein summation convention
is used to avoid having to write a sum explicitly. All metrics of interest will
be diagonal, thus the determinant is the product of the diagonal entries
and the only non-zero terms are when i=j. To check the validity of this
formula, let’s use three-dimensional spherical coordinates and compare to
the corresponding laplacian which is tabulated in many places. The metric
is

gij =

1 0 0
0 r2 0
0 0 r2sinθ


Conveniently, the inverse of a diagonal metric is computed by taking the
reciprocal of it’s elements. It’s easy to see that

√
detg = r2sinθ. The first

component of the laplacian (i=j=r) is

1

r2sinθ

∂

∂r
(r2sinθgrr

∂

∂r
) =

1

r2

∂

∂r
(r2 ∂

∂r
)
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The second component is

1

r2sinθ

∂

∂θ
(r2sinθ gθθ

∂

∂θ
) =

1

r2sinθ

∂

∂θ
(sinθ

∂

∂θ
)

The third component is checked similarly. The 3d laplacian in spherical
coordinates is the sum of all these. The formula gives the desired result,
which in its entirety is ∇2 = 1

r2
∂
∂r

(r2 ∂
∂r

) + 1
r2sinθ

∂
∂θ

(sinθ ∂
∂θ

) + 1
r2sinφ

∂2

∂φ2
. The

same process can be repeated for cylindrical coordinates.

Having confirmed the validity of this prescription, we are tasked with
generalizing the spherical coordinate metric to an arbitrary number of
dimensions. This coordinate system is chosen because solutions to the
Schrodinger equation exhibit spherical symmetry. In plane polar coordi-
nates (two dimensions), x1 = rcosφ1 and x2 = rsinφ1. In 3d spherical
coordinates, x1 = rcosφ1,x2 = rsinφ1cosφ2 and x3 = rsinφ1sinφ2. φ1 is the
angle measured down from the vertical axis (x1) and ranges between 0 and
π. The angle φ2 goes across the equator of the sphere and ranges between
0 and 2π. In N-dimensions, there is one radial coordinate and N-1 angular
coordinates. One of the angular coordinates will range between 0 and 2π
and the rest between 0 and π.

x1 = rcosφ1

x2 = rsinφ1cosφ2

x3 = rsinφ1sinφ2cosφ3

...

xN−1 = rsinφ1 . . . sinφN−2cosφN−1

xN = rsinφ1 . . . sinφN−2sinφN−1

In order for the xN ’s to be positive or negative, and being consistent with
the naming scheme we have introduced, the highest indexed angular co-
ordinate (φN−1) will be in the range [0,2π). We are now in a position to
formulate the N-dimensional spherical coordinate metric tensor. Define
R=(x1, x2, . . . , xN) ie the vector of all the coordinate with their associated
formulas. The metric is then

gij =


|∂R
∂r
|2
| ∂R
∂φ1
|2

. . .

| ∂R
∂φN−1

|2
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which is simply a concise way of writing a coordinate transformation for
the line element ds2 = gijdxidxj. Computing the magnitude of these
derivatives and generalizing the pattern, the metric works out to be

gij =



1
r2

r2sin2φ1

r2sin2φ1sin
2φ2

. . .

r2sin2φ1sin
2φ2 . . . sin

2φN−2


Taking the product of the diagonal elements,

detg = r2(N−1)sin2(N−2)φ1sin
2(N−3)φ2 . . . sin

2φN−2

Using the formula for the laplacian, the first term (i=j=r) is 1
rN−1

∂
∂r

(rN−1 ∂
∂r

).
Although we are mostly interested in the radial component of the lapla-
cian, the second term (φ1) can be computed as well. It is 1

r2sinN−2φ1
∂
∂φ1

(sinN−2φ1
∂
∂φ1

).

Separation of Variables Finally, we have all the necessary pieces to
solve the Schrodinger equation. We are interested in the radial solution, so
we write the laplacian as

∇2 =
1

rN−1

∂

∂r
(rN−1 ∂

∂r
) +

1

r2
Λ2

where Λ contains all information about angular coordinates and will even-
tually be factored out. Following the convention of separation of variables,
(the method used to solve the 3d Schrodinger equation and many other
partial differential equations), we assume a solution that is a product of
two functions, each depending on different variables. In this case, let’s say
ψ = R(r)f(φ) so that the function R only depends on the radial coordinate
r and f can depend on any of the angles (φ1, . . . , φN−1). Once again, the
Schrodinger equation reads

− h̄2

2m
∇2ψ − Ze2

r
ψ = Eψ

Plugging in the assumed solution, we get

− h̄2

2m
(f(φ)

1

rN−1

∂

∂r
(rN−1∂R

∂r
)) +

1

r2
R(r)λ2f(φ)− (

Ze2

r
− E)R(r)f(φ) = 0
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where E has been replaced with −|E| becasue the energy for a bound state
is always negative. Following the convention, we divide through by R(r)f(φ)
to obtain

− h̄2

2mR(r)
(

1

rN−1

d

dr
(rN−1dR

dr
)) +

1

r2

λ2f(φ)

f(φ)
− (

Ze2

r
− E) = 0

Partial derivative have been replaced by regular derivatives because the
functions only depend on one variable. It is now necessary to rearrange
this expression so that one side of the equality depends on r and the other
on the angular coordinates φ. If two functions are the same but depend on
different variables, they must equal a constant β.

h̄2r2

2mR(r)
(

1

rN−1

d

dr
(rN−1dR

dr
)) + r2(

Ze2

r
− E) =

λ2f(φ)

f(φ)
= β

We now have an ordinary differential equation in the coordinate r. After
some manipulation, it reads

1

rN−1

d

dr
(rN−1dR

dr
)− β

r2
R +

2m

h̄2 (
Ze2

r
− E)R = 0

Knowing that β is constant, define it as β = L(L + N − 2) where L is a
positive integer. To de-dimensionalize this equation, we can define

ρ = (8mE/h̄2)1/2r λ = (
Z2e4m

2h̄2E
)1/2

which are both dimensionless. With these new quantities defined, a substi-
tution and some algebra shows that the new radial Schrodinger equation
is

d2R

dρ2
+
N − 1

ρ

dR

dρ
− L(L+N − 2)

ρ2
R + (

λ

ρ
− 1

4
)R = 0

Assuming a solution of form R(ρ) = ρLeρ/2S(ρ) (analogous to the three-
dimensional approach) reduces this equation to a Laguerre ODE with known
solutions. Taking derivatives and plugging in yields

e−ρ/2(ρL d
2S
dρ2

+ (2LρL−1 − ρL)dS
dρ

+ (L(L− 1)ρL−2 − LρL−1 + 1
4
ρL)S+

N − 1

ρ
(
ρL−1

2
((2L− ρ)S + 2ρ

dS

dρ
) + (

−L(L+N − 2)

ρ2
+
λ

ρ
− 1

4
)(ρLS))

Which after tedious algebra, reduces to

d2S

dρ2
+ (

2L+N − 1

ρ
− 1)

dS

dρ
+ (

λ− L− (N − 1)/2

ρ
)S = 0
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The Laguerre equation is

[
d2

dρ2
+ (

p+ 1

ρ
− 1)

d

dρ
+

(q − p)
ρ

]Lpq(ρ) = 0

Therefore, p = 2L+N − 2 and q = λ+ L+ N−3
2

.

The differential equation for S can be solved with a series solution of the
form S(ρ) =

∑∞
j=0 ajρ

j which terminates at some j = nf and is therefore
a polynomial. The radial wave function must be normalizable, (as it is a
probability distribution), so ψ → 0 as r → ∞. Plugging in the solution, we
can find a recursion relation for the coefficients aj:

∞∑
j=0

j(j−1)ajρ
j−2+(

2L+N − 1

ρ
−1)

∞∑
j=0

jajρ
j−1+(

λ− L− (N − 1)/2

ρ

∞∑
j=0

ajρ
j = 0

∞∑
j=1

((j − 1) + (2L+N − 1))jajρ
j−2 +

∞∑
j=0

(λ− L− (N − 1)/2− j)ajρj−1 = 0

∞∑
j=0

((j + 2L+N − 1)(j + 1)aj+1 + (λ− L− (N − 1)/2− j)aj)ρj−1 = 0

The only way for this sum to be 0 is if every individual term vanishes, so

aj+1 =
j + L+ (N − 1)/2− λ

(j + 1)(j + 2L+N − 1)

It is now clear why the series solution must terminate: the sign on the co-
efficients aj is always positive, so even if an infinite series converged to an
analytic function, it would not meet the condition that ψ → 0 with increas-
ing r. Additionally, because anf+1 = 0 by definition, the recursion relation

tells us λ = nf + L + N−1
2

. Let’s call this the generalize principal quantum
number (traditionally named “n”) in analogy with the three-dimensional
solution. Therefore, n = nf + L+ 1 in three dimensions.

Effective Potential Let’s return to the radial Schrodinger equation with
m = h̄ = 1 units. It is

1

rN−1

d

dr
(rN−1dR

dr
)− L(L+N − 2)

r2
R + 2(−V − E)R = 0

Which for N=3 becomes

−1

2

1

r2

d

dr
(r2dR

dr
) + (

L(L+ 1)

2r2
+ V (r))R = E ∗R
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Traditionally, the subsitution u(r) = r ∗R(r) is made, which transforms the
previous equation to

−1

2

d2u

dr2
+ (V (r) +

L(L+ 1)

2r2
)u = E ∗ u

Consequently, Veff = V (r) + L(L+1)
2r2

for the three-dimensional atom. For

arbitrary dimension N, we can make the substitution u(r) = r
N−1

2 R(r):

Eu(r)r
1−N

2 = −1
2
(d

2u
dr2
r

1−N
2 + du

dr
r

−1−N
2 + 1−N

2
du
dr
r

−1−N
2 + 1−N

2
−1−N

2
u(r)r

−3−N
2 )

− N − 1

2
(
du

dr
r

1−N
2 +

1−N
2

u(r)r
−1−N

2 ) + (
L(L+N − 2)

2r2
+ V (r))u(r)r

1−N
2

After a great deal of algebra, this expression simplifies to

−1

2

d2u

dr2
+ (V (r) +

L(L+N − 2)

2r2
+

(N − 3)(N − 1)

8r2
)u(r) = Eu(r)

meaning that the generalized effective potential is

Veff = V (r) +
L(L+N − 2)

2r2
+

(N − 3)(N − 1)

8r2

This expression clearly reduces to the known three-dimensional effective
potential when plugging in N=3. Equating the coefficients on 1/r2 for the
3d and N-dimensional effective potentials L′(L′ + 1) = L(L + N − 2) +
(N−1)(N−3)

4
, it’s easy to see that

L′ = L+
N − 3

2

where the primed L is the three dimensional version. This equation is use-
ful because it shows the relation between the constant L in 3 and N di-
mensions. Again, the 3d principal quantum number n = nr + L + 1
so we can claim that the N-dimensional principal quantum number n′ =
n+ N−3

2
where the prime indicates the generalized PQN. We now synthesize

a handful of previous results: the radial Schrodinger equation was manipu-
lated to look like a Laguerre equation for S(ρ), which also depended on the
two functions p = 2L+N−2 and q = λ+L+N−3

2
= n+L+N−3 because λ =

n′ = n + N−3
2

. The radial solution was defined to be R(ρ) = ρLe−ρ/2S(ρ)
so that multiplying the solutions to the Laguerre equation (Lpq(ρ), known

functions) by ρLe−ρ/2 gives the radial solution R as a function of the modi-
fied radius ρ. Therefore,

R(ρ) = AρLe−ρ/2L
(2L+N−2)
(n+L+N−3)(ρ)
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where the normalization constant A has been introduced because the square
of the wave equation is a probability distribution and must equal 1 when
integrated over all space.

A2

∫ ∞
0

[ρLeρ/2L
(2L+N−2)
(n+L+N−3)(ρ)]2rN−1dr = 1

The variable ρ can be rewritten using it’s original definition and that λ =
n′ = n+ N−3

2
as

ρ =
2me2

h̄2(n+ N−3
2

)
r

The potential has remained a 1
r

power law, (unlike in the earlier treatment

of generalized atomic orbital radii), so the Bohr radius a0 (= h̄2

me2
)does not

depend on the dimension N. After making these substitutions, the integral
expressing normalization of the wave function reads

A2(
a0(n+ N−3

2
)

2
)N

∫ ∞
0

e−ρρ2(L+(N−3)/2)L
(2L+N−2)
(n+L+N−3)(ρ)2ρ2dρ = 1

Recycling a result from the 3d atom, the N-dimensional normalization con-
stant is

A = (
2Z

a(n+ (N − 3)/2
)N/2(

(n− L− 1)!

2(n+ (N − 3)/2)((n+ L+N − 3)!)3
)1/2

Separation of variables led us to assume a solution that was the product
of radial and angular functions R(r) and f(φ1, φ2, . . . , φN−1). Having deter-
mined the normalization constant, we now know the radial solution. The
angular solutions, known as hyperspherical harmonics (denoted Y(φ)),
are less interesting and much more complicated. Thus we conclude the
analysis at this point, content to understand the radial solution for the N-
dimensional atom. At long last, we can write

ψ(r, φ1, . . . , φN−1) = A ∗R(ρ) ∗ Y (φ1, . . . , φN−1) =

(
2Z

a(n+ (N − 3)/2)
)N/2(

(n− L− 1)!

2(n+ (N − 3)/2)((n+ L+N − 3)!)3
)1/2e−ρ/2ρLL

(2L+N−2)
(n+L+N−3)(ρ)Y (φ)

This is the full solution but moving forward the hyperspherical harmonics
will not be included because the goal is to plot radial solutions. The final
step is to write out the relevant Laguerre polynomials. We will change the
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form of the Laguerre solutions to make this task easier. Until now, the La-
guerre equation was

(ρ
d2

dρ2
+ (p+ 1− ρ)

d

dρ
+ (q − p))Lpq = 0

The constants p and q were found when compared to the differential equa-
tion for S

(ρ
d2

dρ2
+ (2L+N − 1− ρ)

d

dρ
+ (λ− L− (N − 1)/2))S = 0

But it was determined that λ = n′ = n + N−3
2

(λ was defined as the N-
dimensional PQN, which is related to the 3d PQN). The equation can be
rewritten as

(ρ
d2

dρ2
+ (2L+N − 1− ρ)

d

dρ
+ (n− L− 1))S = 0

and compared to the more commonly tabulated Laguerre differential equa-
tion

(ρ
d2

dρ2
+ (p+ 1− ρ)

d

dρ
+ k)Lpk = 0

The new Laguerre polynomials that will appear in the solution to the ra-
dial wave equation are L

(2L+N−2)
(n−L−1) (ρ) which are simpler not only because

they are common, but also because the dimensionality N drops out of the
lower index. As in the 3d atom, L is the angular momentum quantum
number and ranges from 0 to n-1, where n is the principal quantum num-
ber. Let’s plot the solution for a number of n, N and L values.

Figure 10: Table of relevant Laguerre polynomials
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These are the Laguerre polynomials required to generate solutions. Let’s
start with reproducing the three-dimensional results, namely the 1s (N=3,
n=1, L=0), 2p (N=3, n=1, L=1) and 3s orbitals (N=3, n=3, L=0). Let’s
plot against the modified radius ρ (which is just a constant ∗ r) and set the
normalization constant A=1 for simplicity. These solutions are displayed
in red, and are obtained by plugging in to the indices we found on the La-
guerre solutions and using the table. Higher and lower dimensional radial
solutions are then overlaid for ease of comparison.

Figure 11: Overlaid plots of 1s orbital shapes for three different
dimensionalities
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Figure 12: Overlaid plots of 2p orbital shapes
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Figure 13: Overlaid plots of 3s orbital shapes

The N-dimensional radial solution reproduces the known shapes of the 3d
orbitals. On the first plot, the two and three dimensional solutions are ex-
actly the same and appear as one. Looking at the Laguerre polynomials
for two, three and four dimensional 2s orbitals shows that they all have the
same shape. These polynomials are the cause of any meaningful change in
the nature of the solution, as other appearances of the dimension N simply
scale the solution. The derivation of the N-dimensional radial wave func-
tion simply amounts to finding a generalized form of the Laguerre polyno-
mials and showing definitively that the rest of the solution is analogous to
the 3d case. With a potential energy that is assumed to be independent
of dimension and a generalized Laplacian, the orbital’s are qualitatively
the same in all the dimensions tested, as the overlaid graphs show. The
indices on the Laguerre polynomials work out so that, regardless of the di-
mension, they are first order for 1s, constant for 2p and second order for
3s. Squaring R(ρ) turns probability amplitude into the radial component of
the probability distribution |ψ|2.
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6 Conclusion

Outside his world . . . all was blank to him; nay not even blank,
for blank implies Space; say, rather, all was non-existent.

-Edwin Abbott, Flatland, 1884

We have seen many manifestations of dimensionality from hyperspher-
ical geometry to quantum strangeness. Visualizing and building intuition
for higher dimensions is a noble quest, yet usually a futile one–math is
clearly the most powerful tool to understanding these worlds. Simple meth-
ods of generalizing waves, volumes and surface areas or the laws of physics
have fascinating and unexpected consequences. From showing the neces-
sity of three dimensions for orbital and atomic stability to demonstrating
the uniquely simple form of the three-dimensional wave equation, it is clear
that our universe is a special one. Life as we know it requires a consistent
source of energy from a star, stable matter in a variety of states and the
ability to transmit and recieve signals, among many other things. If we
want to be able to explore the galaxy, we must be permitted escape from
our home planet’s gravity. None of these things are possible in a universe
of different dimensions–we are forced to assume that our three-dimensional
world is not just privileged, but essential. In summary, we looked at the
behavior of waves, hyperspheres, orbits, rockets and the atom in higher
and lower dimensional spaces. It is frustrating and enlightening to imagine
the unimaginable; a sort of Zen-like riddle. We challenged the automatic
assumption that our universe is the only possible type by investigating
phenomena in higher and lower dimensions–a chair could just as well need
four legs to stand; perhaps left and right hands aren’t that different after
all. Curiously, this same investigation showed the necessity of our specific
world in order to ask these questions.
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