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1 Introduction

The purpose of this document is to demonstrate the connections between elas-
ticity and thermodynamics. This involves primarily the first and second law of
thermodynamics, which explain the thermal and mechanical exchanges of en-
ergy of continuum particles, and impose restrictions on the direction of such pro-
cesses. These results are interesting because they connect continuum mechanics
with thermodynamics, and show how they are complementary. Continuum ther-
modynamics is useful because it gives a better sense of how proper constitutive
relations are formulated, which becomes essential for complex materials (for
example, some horrifying thing like “temperature-dependent viscoelasticity at
finite strains”). It is also necessary for deriving the governing equations of bod-
ies whose thermal and mechanical responses are coupled. To the extent that
thermal-mechanical coupling is a relatively familiar thing (a ductile metal re-
peatedly bent back and forth will heat up), sorting out the interrelations of
elasticity and thermodynamics is not some pedantic exercise in obscure 20th
century physics. It is the only way to tie together concepts of stress, strain,
work, heat, energy, temperature, dissipation, etc. In writing these notes, I have
made use of the Malvern textbook on continuum mechanics, this webpage from
the University of Utah, this paper on thermoelasticity, and the Holzapfel text-
book on nonlinear solid mechanics.

2 Power Input

The work done by a displacement dependent force F (x) over some deformation
up to position x∗ is

W =

∫ x∗

0

F (ξ)dξ

For a time dependent displacement x(t), the work done is a function of time
through the displacement only:

W (t) =

∫ x(t)

0

F (ξ)dξ

By definition, power is the time derivative of the work. Work is the transfer
of energy by mechanical forces, so we think of power as a rate of mechanical
energy exchange. Because the time dependence of the work depends entirely on
the limit of integration, we must use the Leibniz rule to compute this derivative.
Notice the assumption of no explicit time dependence of the force. The following
expression for power would look different if the force depended on time explicitly,
rather than an implicit dependence through the displacement. The power is
computed as

P =
∂W

∂t
=

∂

∂t

∫ x(t)

0

F (ξ)dξ =
∂x

∂t
F (x(t))
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This is where the familiar definition of force times velocity comes from. We
can now extend this to elastic systems undergoing large strains. The total power
of the body comes from external forces in the form of surface tractions t and
body forces f . The power now involves dot products of the force with the
velocity:

P =

∫
tividS +

∫
fividΩ

This an extension to vector-valued forces defined over volumes and surfaces.
The integral is taken over some arbitrary region of material which not be the ac-
tual boundary of the solid. The notation dS is used to indicate surface integrals,
and dΩ for volume integrals. These integrals are taken in the current config-
uration. The traction vector is related to the Cauchy stress with ti = σijnj .
Plugging this into the above expression and using the divergence theorem, the
power can be written as

P =

∫
∂

∂xi

(
σijvj

)
dΩ+

∫
fividΩ

We can distribute the divergence, and use the governing equation of force
equilibrium in the current configuration (σij,j + fi = ρDvi/Dt) to arrive at

P =

∫
ρ
Dvi
Dt

vj + σij
∂vj
∂xi

dΩ

The material time derivative is used because we track the change in velocity
of a particle (on which Newton’s second law applies), as opposed to whatever
chunk of material happens to inhabit a certain region of space. The Reynolds
Transport theorem allows this time derivative to be factored out, yielding

P =
D

Dt

∫
1

2
ρvividΩ+

∫
σij

∂vj
∂xi

dΩ

To reiterate, the material time derivative is used to indicate that we look at
the time rate of change of a fixed collection of particles, as opposed to a region
in space. We can now recognize the first term as the time derivative of the total
kinetic energy of the region, and the second term is the power associated with
deformation. This second term, called the “stress power,” is associated with an
exchange of energy that does not cause macroscopic motion of the continuum.
We will make use of this expression for the power of a region of a continuum
soon.

3 Heat Input

Consider the same region of material as above. We showed how applied vol-
umetric forces and elastic contact forces with the surroundings are associated
with power. Power was conceptualized as a rate of energy flow. Another source
of energy flow for the body arises from thermal effects–both heat sources and
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conduction within the body. Because the vector normal to the region under
consideration is defined as outwards, we can write the inflow of heat as

Q = −
∫

qinidS +

∫
rdΩ

where the first term defines the inflow of heat into the body from conduction by
looking at the normal component of the heat flux vector qi. The second term is
a volumetric heat source, which could model phenomena such as internal dissi-
pative heating or thermal radiation. Power and heat are the two ways in which
energy is exchanged between regions of space for most mechanical systems. Of
course, this ignores phenomena such as electromagnetism or chemical reaction,
which are not dominant effects in many engineering systems. Before relating
heat and power, we take a brief detour to investigate the idea of exact differ-
entials and path dependence, which is useful in understanding thermodynamic
processes.

4 Path Dependence

Consider an arbitrary function f . Assume that two variables x and y influence
the value of f in some way. A small change in f as a function of these coordinates
coordinates can be written as

df = Q(x, y)dx+ P (x, y)dy

where Q and P are arbitrary functions which quantify the sensitivity of the
function f to changes in its coordinates. Say that we integrate df along some
path which returns to its starting point. A path is understood as a parameteri-
zation of the position-like coordinates x and y in terms of a time-like coordinate
t. This can be written as∮

df =

∮
Qdx+ Pdy =

∫ T

0

[
Q
P

]
·
[
x′(t)
y′(t)

]
dt

The contour integral is meant to indicate that the path is closed. The final
time T of the parameterization is such that [x(0), y(0)]T = [x(T ), y(T )]. The
integral around the closed path is not equal to zero in general. Consider this
situation: a particle slides around on a flat surface (x − y plane) with friction.
A small increment of work is given by Fds, where F is a frictional force and
ds is the distance traveled in the x − y plane. Note that the frictional force
always opposes the velocity. The work done by friction in moving the mass in
a closed loop will not be zero. Parameterizing the coordinates in terms of a
time-like variable, the total work done is computed as the time integral of the
instantaneous work rate, or power. Assume that the particle returns to its final
state at time t = 1. The integral can be computed as

W =

∫ 1

0

− F√
x′(t)2 + y′(t)2

[
x′(t)
y′(t)

]
·
[
x′(t)
y′(t)

]
dt ̸= 0
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This expression looks a little messy, but simply says that the frictional force
is opposite the velocity and has magnitude F . Note that the frictional force is
typically related to the weight and a friction coefficient, but this is not important
to us. Because the integrand never changes sign, this integral is guaranteed to be
nonzero. When the path integral is zero, we say that df is an “exact differential,”
implying that

Q =
∂f

∂x
, P =

∂f

∂y

When df is an exact differential, we can measure its change by looking at
end states alone. Mathematically, this means that

∆f = f(x2, y2)− f(x1, y1)

An example of this is the gravitational potential. Considering a particle
moving in the x − y plane where y is the vertical height, and x the horizontal
position. The gravitational potential is

V = Fy(t)

In this case, the force of gravity is computed with with the gradient of the
potential. The work done by traveling is a closed loop (same parameterized
path) is given by

W =

∫ 1

0

∇V ·
[
x′(t)
y′(t)

]
dt = 0

See this interactive plot for a comparison of the path dependent frictional
process, and the path independent process involving the force of gravity. A
process involving a potential is guaranteed to be path independent. It is also
often called a “state variable,” meaning that its value is uniquely determined
by its “state” (x, y). There is notion of the “state” of the work of friction,
because looking at the position (x, y) tells you nothing about how much work has
been done. Naturally, it is called path-independent because we can understand
the change in its value by looking only at the initial and final points, without
considering the path that connects them. In contrast, a path dependent process
depends on the details of how the process was carried out. When the position
is parameterized in terms of a time-like variable, this means that for a path
dependent process∫ 2

1

df =

[
Q
P

]
·
[
x′(t)
y′(t)

]
dt ̸=

∫ 2

1

df ′ =

∫ [
Q
P

]
·
[
q′(t)
s′(t)

]
dt

where this means that the change in the function f depends on the path taken
between the end points. It is helpful to think of functions which are path
independent as quantifying the “storage” of something, usually energy of some
sort.
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5 First Law

It can be shown empirically that the total mechanical energy exchanged through-
out a time-dependent a process is path dependent. This means that∮

Pdt ̸= 0

There is no “stored mechanical energy” for which the power is the rate of
change. Power only gives the instantaneous rate of change of the mechanical
energy, but cannot be computed as a time derivative of a total mechanical
energy function. The same can be said for the heat transfer. It has been proven
empirically that ∮

Qdt ̸= 0

meaning that there is no “stored thermal energy” function for which the heat
flux is the time rate of change. A cyclic process can occur which generates
or absorbs heat. Heat flux gives the instantaneous rate of change of thermal
energy, but is not the rate of change of some heat function. What can be said,
however, is the following: ∮

(P +Q)dt = 0

This is also an empirical statement. It says that the sum of heat flux and
power is a path independent quantity. We call this the total energy of the
system. Because it is path independent, the change in the energy depends only
on the initial and final points of a process. We think of “points” in a process as
defined by state variables such as strain, temperature, etc. Because the energy
depends on states and not the specifics of the path between states, it is called
a function of state. Denoting the total energy by E, the differential form of the
above statement says that

Ė = P +Q

Let’s say that we have two state variables x and y. They are used for the
purpose of demonstration, so their meaning is not important. The above tells
us that

dE = (P +Q)dt

As we have remarked, the energy E is a function of state, so it can be
integrated without reference to the path a process takes. This is not true for
the power and heat flux individually, only their sum. We parameterize the path
in terms of time with x(t) and y(t). The change in energy is then

∆E =

∫ 2

1

dE = E
(
x(t2), y(t2)

)
−E

(
x(t1), y(t1)

)
=

∫ 2

1

(
P (x(t), y(t))+Q(x(t), y(t))

)
dt
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That the energy is a function of state alone says that for any two paths with
the same endpoints, the integral involving heat and power shown above will
yield the same value. What we have shown is that the energy changes in time
due to power and heat inputs. This is the first law of thermodynamics.

Returning to the continuum body considered in deriving the power and heat
input expressions, we apply the first law to an arbitrary volume of material.
The total energy E is split up into a kinetic energy term, which quantifies the
energy associated with macroscopic motion, and an internal energy term, which
quantifies the energy associated with microscopic motion (temperature) and
deformation. Using the expressions we derived for the power and heat inputs,
the first law applied to a continuum reads

D

Dt

∫
1

2
ρvividΩ+

D

Dt

∫
ρedΩ =

D

Dt

∫
1

2
ρvividΩ+

∫
σij

∂vj
∂xi

dΩ−
∫

qinidS+

∫
rdΩ

The left side is the time rate of the change of the energy written for a
collection of particles found at the current instant of time in the region defined
by the volume integrals. We introduce the notation e as the specific internal
energy of the solid (energy per mass). The kinetic energy terms cancel out, and
the divergence theorem can be used to convert the surface integral for heat flux
into a volume integral. The integral expression of the first law for a continuum
then reads

D

Dt

∫
ρedΩ =

∫
σij

∂vj
∂xi

dΩ−
∫

∂qi
∂xi

dΩ+

∫
rdΩ

The volume over which this expression holds has been chosen arbitrarily. For
this to hold in general, it should be satisfied in a pointwise sense. Localizing
the integrals, we have the strong form of the first law:

ρ
De

Dt
= σij

∂vj
∂xi

− ∂qi
∂xi

+ r

The Reynolds Transport theorem is used to pass the material time derivative
inside the integral. This explains why there is no time derivative on density,
even without assuming that it is constant.

6 Discussion

So far, we haven’t done anything too crazy. The first law of thermodynamics
says that heat and work come together to change the total energy of a system.
This is a statement that mechanical and thermal energy can be converted into
one another. From Newton’s second law, we can derive the governing equations
of an elastic body in the current configuration:

ρ
Dvi
Dt

=
∂σij

∂xj
+ fi
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This is the balance of linear momentum, a fundamental mechanical principle
which we have already made us of in deriving the expression for the power. The
reader is assumed to be familiar with this. We have introduced an additional
principle of mechanics, which is the first law of thermodynamics for a continuum:

ρ
De

Dt
= σij

∂vj
∂xi

− ∂qi
∂xi

+ r

Note that all of these expressions could be converted to the reference con-
figuration if desired–this is shown in many texts. We operate in the current
configuration for simplicity. When there are no thermal effects incorporated
into the analysis of an elastic body, the balance of momentum (along with a
constitutive relation between stress and strain) is sufficient to find the displace-
ment. However, when a thermodynamic variable like temperature is introduced
as an additional unknown, we need to appeal to the first law in order to close
the system. The balance of linear momentum and the balance of energy are
thus coupled. At least they might be, for example in the case of a dissipative
material. A dissipative material is one for which mechanical energy is converted
into heat, thus introducing a connection between the elastic and thermal re-
sponse. If the stress-strain relation is dependent on the temperature, there is
additional coupling. It is not clear at this point how to actually solve a problem
of this sort. The reason is that we do not know what the specific internal energy
e is. Presumably, it depends on the deformation and thermal response of the
material in some way. The crux of understanding and solving a thermoelastic
problem is understanding the specific internal energy. It should be thought of as
a constitutive relation which does more than simply connect stress and strain.
The internal energy quantifies how a material stores energy both in terms of the
mechanical and thermodynamic aspects of the body’s response. It turns out
this is quite a complex thing. Unfortunately, we will have to defer discussion on
computational aspects of thermoelasticity to later. We first need to explore ad-
ditional restrictions imposed by the thermodynamics of continua before solution
techniques can be discussed.

7 Second Law

The first law states that mechanical work and heat can be converted into one
another. At a given total energy level of a system, the first law does not differ-
entiate between the conversion of mechanical energy into thermal energy, and
thermal energy into mechanical energy. But we know from experience that ther-
mal and mechanical energy behave differently. The kinetic energy of a car is
converted into thermal energy by using the brakes. But once the brake pads
heat up, we cannot recover the kinetic energy of the car. Mechanical energy
naturally is converted into heat, but heat does not spontaneously transition to
mechanical energy. In some sense, we can think of motion as a “battery” for
thermal energy (we could heat something up with friction), but temperature
is not a “battery” for motion (more effort and thought is required to extract
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mechanical work from a hot object). This asymmetry between heat and work is
not reflected in the first law of thermodynamics. These questions are addressed
by the Second Law of Thermodynamics. This will involve trying to wrap our
heads around entropy. Inevitably, this is where things go off the rails.

8 Entropy in Statistical Mechanics

This section and the following are included for some background on entropy and
can be skipped if desired. Entropy in statistical mechanics is all about counting
the number of microstates that a system could be in while being consistent with
macroscopic variables such as energy or volume. These thought experiments
are typically conducted for the canonical “gas in a box” system. What is a
microstate? A microstate is thought of as a vector of observations of the position
and momenta of all the particles in the box. If there is one particle in a 3D box,
one microstate might be s1 = [x, y, z, px, py, pz]

T = [1, 2, 3, 4, 5, 6]T . Another
microstate is s2 = [6, 5, 4, 3, 2, 1]T . It is not possible to directly count the number
of microstates gas particles can take on because the position and momentum
take on continuous values. However, what we can do is say that the number
of microstates available to a gas is proportional to the volume in state space
defining position/momenta for all of the particles. If there are no constraints
imposed on the gas, meaning that it could have any energy, volume, etc., there
are an infinite number of microstates available to the system. This is because
we integrate over the entirety of state space in finding the volume of possible
states. However, if we impose a constraint, such as that the total kinetic energy
of the collection of particles is equal to some constant E, we limit ourselves to
a subset of state space with finite volume. We know that the energy of a single
particle is p2/2m. This means that a collection of N particle has a given energy
when

N∑
i=1

3∑
j=1

1

2m
p2ij = E

where pij is the j component of momentum for particle i. This equation defines
a hyperpshere in state space. The number of microstates available to a system
with given energy is thus proportional to the area of this hypersphere, whose
radius is

√
E. Using the notation Ω(E) to mean “the number of states with

total energy E,” we can write that

Ω(E) ∝ E3(N−1)/2

Thus, we see that increasing the total energy of the system increases the
number of microstates which are consistent with that energy. Similarly, in-
creasing the number of particles increases the number of available microstates.
We can see a similar influence of the volume of the box of gas on the number
of states available to the system. The volume V imposes restrictions on the
possible positions that particles can occupy, unlike the energy which imposed
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requirements on the momenta. If we double the volume of a box occupied by a
single particle, we double the volume of state space it can occupy. If there are
two particles, the whole system can occupy four times as much volume in state
space. Thus in general, we see that that

Ω(V ) ∝ V N

In statistical mechanics, the definition of entropy is

S = k ln(Ω)

where k is Boltzmann’s constant and Ω is the number of microstates, which we
have been counting by measuring volumes in state space. The effect of changing
the energy and volume on the number of states is multiplicative, meaning that
for a system whose volume and total energy changes, we have that the entropy
is

S ∝ k ln
(
E3(N−1)/2V N

)
≈ kN

(
lnV +

3

2
lnE

)
We do not have all of the details carefully sorted out here. It can be shown

from statistical mechanics that the temperature (θ) is proportional to the av-
erage kinetic energy of particles in the box. Thus E ∝ θ. This is explored in
“Equilibrium and Statistical Mechanics” notes. It suffices for our purposes to
say that

S ∝ lnV + ln θ

where θ is the temperature. The idea is that from the perspective of statistical
mechanics, entropy quantifies how many different versions of the system can be
consistent with the macroscopic variables. There are many ways to distribute
momentum between two particles such that they have the same total kinetic en-
ergy. Entropy quantifies this multiplicity of microstates. High entropy systems
are ones for which many configurations, defined in terms of the position and
momenta of the constituent particles, lead to the same macrostates of energy,
volume, pressure, and so on. Counting microstates gives some insight into how
this multiplicity is influenced by these macroscopic variables.

9 Entropy in Classical Thermodynamics

The classical and statistical definitions of entropy seem completely different,
but are ultimately shown to be equivalent. One motivation for the classical
conception of entropy is the Carnot cycle, shown in Figure 1. See the Figure
and caption for a brief description of the cycle. The reader is assumed to have
some familiarity with this, as this presentation is very brief. In the Carnot
cycle, heat is not a conserved quantity around the cycle because it is a function
of path. In doing a full loop through the cycle, the change in heat is non-zero.
But if we define a new variable S = Q/T , we can see that over the whole process
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Figure 1: The Carnot cycle requires heat input in AB for the gas to stay at
the same temperature as it expands. The internal energy does not change in
this system because for an ideal gas the internal energy is only a function of
temperature. The work done equals the heat absorbed. In BC, the piston is
insulated so there is no heat transfer, but because the gas does work, the internal
energy changes so it cools down. In CD, the gas is attached to a cool reservoir
so that it can stay at the same temperature while being compressed. It thus
dumps heat into the cool reservoir but stays at constant temperature. Finally,
the piston is insulated again and the gas continues to be compressed and heats
up until it returns to its original temperature. The total work that the system
does is WAB +WBC +WCD +WDA = Q1 +Q2. The efficiency of the engine is
work done divided by heat absorbed η = |Wtot|/Q1. The fact that this value is
less than 1 indicates that thermal energy cannot be perfectly transformed into
mechanical energy.

∆S =
Q1

T1
+ 0 +

Q2

T2
+ 0

The two zeros are from the adiabatic (insulated and reversible) legs of the
cycle. We know that in the isothermal legs, the internal energy of the ideal
gas does not change, so the heat exchanged is equal to the work done. Using
W =

∫
pdV and the ideal gas law, it can be shown that

∆S = 0
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This implies that our new variable S is a function of state, given that its
net change is zero around a closed loop. It can be shown that this is only true
for reversible processes. This quantity is interesting by virtue of being a state
variable, but its definition in terms of heat exchanged at given temperatures does
not clarify its physical interpretation. Given that the entropy S is a function of
state, we can write it as an exact differential

dS =
δQ

T
=⇒ S2 − S1 =

∫ 2

1

δQ

T

The notation “δ” is used to indicate a small, instantaneous quantity which
is not the differential of some state function.

As a final note on the classical conception of entropy, we can motivate the
equivalent of classical and statistical mechanical definitions with a simple ex-
ample. Consider an ideal gas which undergoes reversible processes. For this
situation, we have the ideal gas law and the differential form of the definition
of entropy:

pV = Rθ, δQ = θdS

Assuming that the energy is only a function of temperature (E = E(θ)), we
can write the interval energy in terms of the specific heat:

dE = cvdθ

From the first law for an ideal gas, where mechanical work is associated with
the variables of pressure and volume, we have that

dE = δQ− pdV = cvdθ

Plugging in the ideal gas law expression of the pressure and dividing by
temperature, we obtain

δQ

θ
=

cv
θ
dθ +R

1

V
dV

The change in entropy is then∫ 2

1

dS =

∫ 2

1

δQ

θ
=

∫
cv
θ
dθ +

∫
R

V
dV ∝ ln θ + lnV

This is the same dependence we had in the case of statistical mechanics
for a box containing gas particles. Working out the details more carefully can
demonstrate that the equivalence is more exact than this proportionality. To
me, it remains a mysterious and baffling fact that counting microstates can
somehow be equivalent to heat exchange and temperature.
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10 Entropy in Continuum Mechanics

None of this really makes much sense, and it seems that repeated attempts to
change this are futile. Please, if you have a good sense of the equivalence between
classical and statistical definitions of entropy, or a nice physical interpretation
of this quantity, let’s talk. Let’s just take this entropy business as a given,
and generalize it to the case of a continuum. The real sticking points are the
basics of entropy. The generalization to points in a continuum may seem a
bit strange, but this is no different than what we do with forces. Note that it
is not self-evident what statistical mechanics even has to say about entropy for
points in a solid. How do we count states of position and momenta for molecules
that are no longer free to move, as they are in the case of gas? These are tough
questions, so we forget them for now. Analogous to the classical thermodynamic
definition, the entropy input rate is computed by taking a heat flux and dividing
it by temperature. For the continuum, this is done for both the volumetric heat
input r and the heat transfer across the boundary. For an arbitrary region of
solid, the entropy input rate is

Sin =

∫
r

θ
dΩ−

∫
qini

θ
dS

The specific entropy is now defined as s. The second law of thermodynamics
states that the rate of entropy increase for a collection of particles is greater
than or equal to the entropy input from heat transfer. For the continuum, this
reads:

D

Dt

∫
ρsdΩ ≥

∫
r

θ
dΩ−

∫
qini

θ
dS

The divergence theorem, the Reynolds Transport theorem, and localizing
the integral allow us to write the local form of the second law

ρ
Ds

Dt
≥ r

θ
− 1

θ

∂qi
∂xi

+
1

θ2
qi

∂θ

∂xi

Note that this inequality should hold in all situations, including those for
which there is no volumetric heat source (r = 0), and when there is no spatial
gradient in the heat flux (qi,i=0). Because the temperature is on an absolute
scale, it is never negative, which implies that

qi
∂θ

∂xi
≤ 0

which means that heat flows against temperature gradients. Because a gradient
points from low to high values, this means that heat flows opposite of this, from
high temperatures to low. This demonstrates that the negative sign in Fourier’s
Law of heat conduction is a physical requirement imposed by the second law:

qi = −κ
∂θ

∂xi
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for κ > 0. For a reversible process, we obtain the equality in the second law.
Multiplying through by temperature, this reads

ρθṡ = r − ∂qi
∂xi

+
1

θ
qi

∂θ

∂xi

11 Thermodynamic Potentials

Remember that the local form of the first law is

ρė = σij ϵ̇ij −
∂qi
∂xi

+ r

where we have replaced the spatial gradient of the velocity with the time deriva-
tive of the strain and material derivatives with dots to ease the notation. We
can solve for the heat flux in the first law and plug in to the second law for
reversible processes to obtain

0 ≥ ρė− σij ϵ̇ij − ρθṡ+
1

θ
qi

∂θ

∂xi

We want to expand the time derivative of the internal energy with the chain
rule, and the variables on which it depends are suggested by the terms that
already have time derivatives on them. Taking the hint, this reads

0 ≥
(
∂(ρe)

∂ϵij
− σij

)
ϵ̇ij +

(
∂(ρe)

∂s
− ρθ

)
ṡ+

1

θ
qi

∂θ

∂xi

This suggests that the “natural” variables used to write the internal energy
are the strain and entropy. Note that this relation says that for constant entropy
and zero temperature gradient, the stress is the strain derivative of the internal
energy. But because the entropy and strain are independent variables, the
inequality must hold for any arbitrary deformation and entropy process. This
ensures that

∂(ρe)

∂ϵij
= σij ,

∂(ρe)

∂s
= ρθ

Consider a new thermodynamic quantity, called the “Helmholtz Free En-
ergy.” It is defined as

ρΨ = ρe− sθ

This is a Legendre transformation of the internal energy used to switch
dependence on entropy and strain to dependence on temperature and strain. A
nice reference for further reading on the Legendre transform can be found here.
To illustrate this, note that

d(ρe) =
∂(ρe)

∂ϵ
dϵ+

∂(ρe)

∂s
ds = σdϵ+ θds
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Figure 2: The area of the rectangle defined by the dotted lines is sθ. Remember

that θ = ∂(ρe)
∂s , which implies that ρe =

∫
θds. We recognize the internal energy

as the blue shaded area in the figure. We can see that sθ − ρe = (−ρΨ) is the
“complementary” energy, or the remainder of the area once the internal energy
is subtracted off. We recognize the computation of this complementary area as
the Legendre transform, yielding the Helmholtz energy in terms of the internal
energy: ρΨ = ρe− sθ.

See Figure 2. This is a differential form of the first law commonly seen in
classical thermodynamics. The effect of the Legendre transform is observed by
computing differentials of ρΨ:

d(ρΨ) = d(ρe)− sdθ − θds = σdϵ− sdθ

The appearance of the density everywhere gets a little wild. This does not
seem particularly fundamental, and there may be some errors here. The above
relation says that Ψ is a path independent state variable which depends on
the strain ϵ and the temperature θ, and whose differentials give the stress and
negative of entropy. When we solve for the internal energy in terms of Ψ, take
the time derivative, plug this into the first law, and then substitute the resulting
expression into the second law, we obtain

0 = ρΨ̇− σij ϵ̇ij + ρsθ̇ +
1

θ
qi

∂θ

∂xi

By another route, we have shown that the natural variables of the Helmholtz
energy are strain and temperature. Expanding the time derivative, this can be
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seen with

0 =

(
∂(ρΨ)

∂ϵij
− σij

)
ϵ̇ij +

(
∂(ρΨ)

∂θ
+ ρs

)
θ̇ +

1

θ
qi

∂θ

∂xi

The Helmholtz energy is advantageous because it allows us to characterize
the thermal and mechanical constitutive response of the material in terms of
strain and temperature, which is more intuitive than entropy as a state variable.
The dependencies of the energy function might be conceptualized as “causal”
variables–when we write the strain energy in terms of strains, we implicitly state
that strains cause stresses. To me, stress is a more abstract concept than strain,
so it is nice to treat it as a response rather an input. A similar thing is at
play with entropy and temperature–temperature is a concept backed by fairly
clear physical intuition, whereas entropy is quite nasty and abstract. It is nice
to think of the problem as driven by temperature, with entropy as a kind of
response and/or means to an end of computing a solution. It seems that the
Helmholtz energy allows us to not think too much about entropy, while still
being consistent with the thermodynamics.

12 Dissipation Function

The local form of the second law multiplied by temperature, and not assuming
a reversible process, reads

ρθṡ− r +
∂qi
∂xi

− 1

θ
qi

∂θ

∂xi
≥ 0

From the local form of the first law, we have that

r = ρė− σij ϵ̇ij +
∂qi
∂xi

Substituting this into the second law, we have

ρθṡ− ρė+ σij ϵ̇ij −
1

θ
qi

∂θ

∂xi
≥ 0

We have already remarked that because heat flux goes against temperature
gradients, the last term in the above equation is independently greater than
zero. A stronger form of the second law states that

D := ρθṡ− ρė+ σij ϵ̇ij ≥ 0

It is not entirely clear what the reasoning is in eliminating the heat flux term
from the full form of the second law, but perhaps it is under the assumption that
the second law should be satisfied even in the absence of temperature gradients.
We call this the dissipation function. If it seems odd to define a dissipation
function, which intuitively would convert mechanical energy into heat, under the
assumption of no temperature gradients, one might imagine a situation where
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a negative heat source takes away the heat generated by dissipation such that
no temperature gradients result. Similarly, dissipation could be such that the
change in temperature is uniform across the body. Either way, this dissipation
function is non-negative independent of the heat flux term from the second
law. Dissipation is zero for reversible processes and non-zero when there are
irreversible effects. In terms of the Helmholtz free energy, the dissipation is

D := σij ϵ̇ij − ρΨ̇− ρsθ̇ ≥ 0

Note that the dissipation function is a nice way to see that stress and entropy
emerge as derivatives of the Helmholtz energy for reversible deformations. When
the deformation is reversible, the equality is obtained and we have(

∂(ρΨ)

∂ϵij
− σij

)
ϵ̇+

(
∂(ρΨ)

∂θ
+ ρs

)
θ̇ = 0

13 Helmholtz Energy as a Constitutive Relation

As a brief aside, let’s think about where we’re at. We assumed familiarity
with the balance of momentum principle, and made use of this formulating the
mechanical power input to a region of material. The heat input was also de-
rived, both of which quantify the flow of energy into a region. The first law
of thermodynamics states that this flow of energy causes changes in the stored
energy of the material region. The stored energy was split into a part involving
macroscopic motion (kinetic energy) and an internal energy component. Inter-
nal energy measures microscopic motion (temperature), and stored energy in
deformation (strain). We were not sure at this point how to think about the
internal energy, though. Making use of the second law showed that the internal
energy is naturally defined in terms of the strain and the entropy. As a bonus,
we could demonstrate that heat flowed against temperature gradients. It makes
sense that the internal energy should depend on both the deformation and the
thermal response of the material, but we do not have unique choice of which
mechanical and thermal variables to use in describing this stored energy. For
example, it is valid to formulate a purely elastic problem (no thermal effects)
purely in terms of the stress as opposed to strain and displacement. This is
not common, but it is possible and there is nothing saying that it is an ille-
gitimate approach. Similarly, the thermal variable could be either entropy or
temperature. Wanting to preserve intuition about causal variables, we used
the Legendre transform to define a new quantity, the Helmholtz energy, which
depended on the temperature and strain, as opposed to the internal energy’s
dependence on entropy and strain. We saw that the stress and entropy were
then “response” variables, computed by taking strain and temperature deriva-
tives of the Helmholtz energy function. Note also that by definition, the strain
derivative of the Helmholtz energy gives the stress at constant temperature, i.e.
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(
∂(ρΨ)

∂ϵij

)
θ

= σij

where the subscript indicates the temperature is fixed. This is another nice
property of the Helmholtz energy. For example, if we are concerned that our
material model respects these thermodynamic principles, but ultimately want
to solve an elastic problem with no temperature effects, this property is an asset.
This contrasts with the internal energy, interpreted as the constitutive relation
of the material, whose strain derivative gives stress at constant entropy rather
than temperature. What does constant entropy mean physically? To me, this
is much less clear than keeping the temperature fixed. Thus, the Helmholtz
energy is a useful quantity even when thermal effects are ultimately ignored.
The energy function, whether the internal energy, Helmholtz, or otherwise, is the
constitutive relation for the material. It measures how energy storage is shared
between deformation and temperature. It is quite a complex thing which we take
as a given. To do otherwise is to take a deep-dive into hardcore constitutive
modeling!

14 Solving Problems

What I have found is that textbooks lack a demonstration of how continuum
thermodynamics principles are used in practice. I think they also are not clear
enough that the internal energy is way more complex than it seems like it
should be, and that constructing these potentials is essentially a work of art.
For example, an apparently simple-minded idea is that the internal energy of a
linearly elastic solid is

e =
1

2
Cijkℓϵijϵkℓ + cT

where c is some constant of proportionality relating the temperature to internal
thermal energy. It is difficult to appreciate all of the ways in which this errs, but
the bottom line is that its just wrong. For one, it is not a function of entropy. It
is certainly not clear where or why one should insert entropy. We have to be a
lot more careful than this. So that is what we’ll do! Using the machinery we’ve
developed, it is now possible to write the governing equations in the current
configuration as

Dvi
Dt

=
∂

∂xj

(
∂(ρΨ)

∂ϵij

)
+ fi

ρė =
D

Dt
(ρΨ+ρsθ) =

(
∂(ρΨ)

∂ϵij
ϵ̇ij +

∂(ρΨ)

∂θ
θ̇ + ρsθ̇ + ρṡθ

)
=

(
σij ϵ̇ij −

D

Dt

(
∂(ρΨ)

∂θ

)
θ

)

=

(
σij ϵ̇ij −

∂2(ρΨ)

∂θ2
θθ̇ − ∂2(ρΨ)

∂θ∂ϵij
θϵ̇ij

)
= σij ϵ̇ij −

∂qi
∂xi

+ r
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The former equation is balance of momentum and the latter equation is
the first law of thermodynamics. Please be cautious of where I have put the
density; we are being a little loose with this. This is a minor detail in the grand
scheme of things. We have used the definition of the entropy in terms of the
Helmholtz energy and the chain rule to arrive at the left-hand side of the first
law. What we see is that the stress power term cancels out. This seems to
be a result of having a non-dissipative stress-strain relation, where the stress is
derived from the potential function. Using Fourier’s law of heat conduction, the
energy balance equation thus reduces to

−∂2(ρΨ)

∂θ2
θθ̇ =

∂2(ρΨ)

∂θ∂ϵij
θϵ̇ij + κ

∂2θ

∂xi∂xi
+ r

This is a bizarre looking problem. The typical heat equation is derived from
a principle of energy balance, and we would expect to see something similar to
this show up from our first principles thermodynamic analysis. Of course, the
heat equation doesn’t consider the effect of coupling with mechanical work. So
what we really expect to see is that if the strain is zero, we recover the heat
equation. The right-hand side of this equation looks promising: we have the
usual second derivative of the temperature, and a volumetric heat source. The
coupling term involving the Helmholtz energy drops out when the strain rate is
zero. But the left hand side looks like trouble! We have a non-linearity which is
at least quadratic in the temperature. We can pull a very neat trick. Remember
the definition of heat capacity, in particular heat capacity at constant volume.
This is rate of change of the internal energy with temperature at a fixed volume.
The analogue of volumes changes from classical thermodynamics in continuum
thermodynamics is strain. So when the deformation is zero, the constant volume
heat capacity is the dependence of the internal energy on temperature for fixed
strains. This is computed as

cv(θ) :=
∂(ρe)

∂θ
=

∂(ρe)

∂s

∂s

∂θ
= −θ

∂

∂θ

(
∂(ρΨ)

∂θ

)
= −θ

∂2(ρΨ)

∂θ2

We see that the heat capacity is a function of temperature explicitly, and
implicitly through the Helmholtz energy. But it is often a good approximation
to neglect this temperature dependence. Even if it is not a good assumption,
which the linear dependence suggests it is not, it is what people do. Substituting
this into the energy balance equation with no strains, we recover the usual heat
equation

ρcv θ̇ = κ
∂θ2

∂xi∂xi
+ r

Finally, a familiar equation–truly a sight for sore eyes. It is exciting to see
this pop out of all the abstract thermodynamic nonsense. With the assumed
constant heat capacity, we can lift the assumption that the strain rate is zero
and see that there is coupling between the elastic and thermal problems even
when the constitutive relation is not dissipative:
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ρcv θ̇ =
∂σij

∂θ
θϵ̇ij + κ

∂θ2

∂xi∂xi
+ r

Dvi
Dt

=
∂σij

∂xj
+ b

The elastic response of the body contributes to the time derivative of temper-
ature, and the temperature influences the balance of momentum with thermal
stresses/strains. What about the simple thermoelastic analysis, where the tem-
perature field is computed independent of the deformation, but temperature
contributes to thermal strains? The assumption here seems to be that the first
term in the energy balance equation is very small compared to the explicit heat
sources. This is an apparently reasonable assumption in many situations.

15 An Example

When a thermodynamic potential is specified, we can use all of the results we
have developed above to solve the governing equations. The art of constitutive
modeling is to formulate these potentials, so it should not be clear at face value
where they come from. We will use the Helmholtz free energy to write out
the governing equations for a 1D linear thermoelastic bar. The thermodynamic
potential for this problem is

Ψ =
1

2
Eϵ2 − kα0(θ − θ0)ϵ−

c0v
2θ0

(θ − θ0)
2 − s0θ

Let’s not worry too much about the exact meaning of the material constants,
other than noting that they include the modulus, thermal expansion coefficient,
a reference value of the specific heat at constant volume, and a reference value
of entropy. There is some subtlety in making sense of what variables are held
fixed in these quantities. We can take derivatives of the Helmholtz energy to
obtain the thermodynamic properties of stress and entropy:

σ =
∂Ψ

∂ϵ
= Eϵ− kα0(θ − θ0)

s = −∂Ψ

∂θ
= kα0ϵ+

c0v
θ0

(θ − θ0) + s0

Note that the specific heat is a function of temperature as was shown above.
It is computed as the rate of change of internal energy with temperature at a
fixed deformation. This reads

∂e

∂θ
= −θ

∂2Ψ

∂θ2
= θ

c0v
θ0

For this form of the Helmholtz energy, the specific heat is linear in the tem-
perature, which means that the heat equation is technically nonlinear. We often
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approximate this as constant in practice, but we will keep the dependence be-
cause it makes for a more interesting problem. The balance of linear momentum
with this constitutive relation is

ρü = E
∂2u

∂x2
− kα0

∂θ

∂x

where we have assumed there is no distributed force on the bar. The balance of
energy can be written as

ρc0v
θ0

θθ̇ = −kθ0θ
∂2u

∂x∂t
+ κ

∂2θ

∂x2

Let’s assume that all the constants are unity because they are cumbersome.
The two governing equations in this case are

ü =
∂2u

∂x2
− ∂θ

∂x

θ̇ =
∂2u

∂x∂t
+

1

θ

∂2θ

∂x2

We can now give a sense of how coupled equations of this sort could be
solved numerically. Discretize both the displacement and temperature with the
same set of shape functions:

u(x, t) =
∑
i

ui(t)Ni(x), θ(x, t) =
∑
j

θj(t)Nj(x)

The governing equations are weakened by integrating against test functions
coming from the same space as the solution approximations:∫

üNkdx =

∫ (
∂2u

∂x2
− ∂θ

∂x

)
Nkdx∫

θ̇Nkdx =

∫ (
∂2u

∂x∂t
+

1

θ

∂2θ

∂x2

)
Nkdx

Plugging in this discretization of the displacement and temperature, and
integrating by parts the momentum equation to expose a traction boundary
condition (assuming this drives the problem), we obtain

∑
i

üi

(∫
NiNkdx

)
+
∑
i

ui

(∫
∂Ni

∂x

∂Nk

∂x
dx

)
+
∑
i

θi

(∫
∂Ni

∂x
Nkdx

)
= F (t)Nk(L)

∑
i

θ̇i

(∫
NiNkdx

)
=

∑
i

u̇i

(∫
∂Ni

∂x
Nkdx

)
+Qk(θ)

The notation Q for the nonlinear conduction term is used for simplicity
because it cannot be written in matrix-vector form. Switching to index notation,
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and with matrices defined by the above relation, this can be written much more
compactly as

Mij üj +Kijuj + Tijθj = Fj(t)

Mij θ̇j = Tij u̇j +Qj(θ)

Note that the matrix T defines the coupling between the thermal and elastic
problems in both equations. The heat equation involves nonlinear heat conduc-
tion because we did not assume the specific heat is independent of temperature.
A common solution approach is a staggered method, where at each time step,
the deformation is first computed using the momentum equation at fixed tem-
perature, and then temperature is computed using the energy equation at fixed
deformation. This fits in nicely with the Helmholtz energy as the constitutive
relation for the material. Remember that by definition, it furnishes the stress
as a function of strain at fixed temperature, and the entropy at a fixed value
of strain.1 Both the stress and and entropy are used in formulating these gov-
erning equations, and when we carry out this staggered scheme, it respects the
assumptions of holding variables fixed. When we solve the heat equation, it is
done without varying the strain. This is in line with the entropy computed from
the Helmholtz energy. Similarly, when we compute the displacement with the
momentum equation, the temperature is fixed, thus respecting the fixed tem-
perature assumption in computing the stress from the Helmholtz energy. Thus,
the staggered scheme fits nicely into the thermodynamic framework.

Alternatively, a monolithic time integration method could be used, where we
solve for the temperature and displacement degrees of freedom simultaneously.
We will briefly lay out an implicit time integration method, which is more stable
than explicit time integration. For an implicit method, a system of equations
will need to be solved at each time step. This contrasts with explicit formulae
for updates we obtain from explicit methods. Because the heat conduction term
is nonlinear, the system of equations will also be nonlinear. An implicit time
integration scheme starts with writing

Mijfj(u
n+1) +Kiju

n+1
j + Tijθ

n+1
j = Fj(t

n+1)

Mijgj(θ
n+1) = Tijgj(u

n+1) +Qj(θ
n+1)

The functions f and g are shorthand for a generic finite difference scheme
(discrete approximations of the second and first time derivatives respectively)
that depend on the unknown values of the degree of freedom at the next time

1Thermodynamic processes are more complicated because there is more than one state
variable for the system. For example, when defining the stress in terms of the strain, we
need to fix temperature. The temperature does influence the stress though, because the
“sensitivity” of stress to strain is dependent on temperature. This constants with traditional
elasticity, where the stress is a function of the strain alone.
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step (as well as known values at past time steps). The residual equations at
time tn are

Ru
i := Mijfj(u

n+1) +Kiju
n+1
j + Tijθ

n+1
j − Fj(t

n+1) = 0

Rθ
i := Mijgj(θ

n+1)− Tijgj(u
n+1)−Qj(θ

n+1) = 0

A Newton-Raphson method can be used to solve the residual equations in
terms of future displacement and temperature degrees of freedom. A lineariza-
tion of these equations looks like[

Ru

Rθ

]
≈

[
∂Ru/∂u ∂Ru/∂θ

∂Rθ/∂u ∂Rθ/∂θ

] [
un+1

θn+1

]
= 0

This is solved iteratively with Newton’s method. This is called a mono-
lithic scheme because both the temperature and displacement are solved for
simultaneously.

16 Energy Formulation

Transient heat transfer is not governed by a total potential energy functional.
This owes to the first time derivative in the governing equations. This contrasts
with elasticity, and steady state heat conduction, for which energy functionals
whose minimum govern the response exist and are convenient starting points
for numerical methods. If we want to formulate the thermoelastic problem ener-
getically, we cannot model transient heat conduction. We illustrate a potential
formulation of a steady-state thermoelastic problem. The relationship of this
formulation to the first principle thermodynamics derivations shown above is
not entirely clear. It would be nice to sort this out, but this may have to wait
for the future. As will be shown, the governing equations appear to differ in
some fundamental ways from the transient ones. But, this approach is taken in
the literature, for example in this paper. First, note that strains in the presence
temperature change can be written as

ϵ̃ij = ϵij + αδijθ

where θ is interpreted as the change in temperature from that of the reference
configuration. We work in the small strain regime and with isotropic material
behavior for simplicity. The total potential energy for a thermoelastic body
with traction and heat flux boundary conditions is

Π(u, θ) =
1

2

∫ (
Cijkℓϵ̃ij ϵ̃kℓ + aij

∂θ

∂xi

∂θ

∂xj

)
dΩ−

∫
(tiui + qiniθ)dS

We assume that the traction and heat flux are applied over the same region
of the body’s boundary to ease notation. This assumption is easily relaxed.
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To motivate this formulation, note that this is simply the sum of the usual
variational energies from elasticity and heat conduction added up, with coupling
introduced through the temperature dependence of the strain. The solution to
this problem is governed by a minimum of the total potential energy in terms
of both the displacement and temperature. Taking the variation with respect
to the displacement first, we obtain

δuΠ =

∫
Cijklϵ̃ij

∂δuk

∂xℓ
dΩ−

∫
tiδuidS = 0

The subscript u in the variation of the energy is meant to indicate the varia-
tion with respect to the displacement. This is the weak form of the displacement
equation. We can integrate by parts the spatial derivative off the test function
to obtain the strong form of the governing equation:

∂

∂xℓ

(
Cijkℓ(ϵij + αδijθ)

)
= Cijkℓ

∂2ui

∂xj∂xℓ
+ αCiikℓ

∂θ

∂xℓ
= 0

Note that for isotropic linear elasticity, the material tensor is2

Cijkℓ = λδijδkℓ + µ(δikδjℓ + δiℓδjk) =⇒ Ciikℓ = (3λ+ 2µ)δkℓ = 3Kδkℓ

where we have extracted the bulk modulus from contracting two indices on
the material tensor. It is logical that the bulk modulus would show up in
computing thermal stresses, as thermal strains act entirely to change volumes
with no distortion. The governing equation can be simplified to

Cijkℓ
∂2ui

∂xj∂xℓ
+ 3αK

∂θ

∂xj
= 0

This is the Navier equation with thermal stresses. We can now turn to the
variations of the total potential with respect to temperature. This reads

δθΠ =

∫ (
Cijkℓϵ̃ij

∂ϵ̃kℓ
∂θ

δθ + aij
∂θ

∂xi

∂δθ

∂xj

)
dΩ−

∫
qiniδθdS

This is the weak form of the governing equations of the thermal problem.
This formulation shows that the deformation influences the thermal problem,
unlike the simplest thermoelasticity where the temperature is computed inde-
pendent of the displacement. The tilde indicates strains in the presence of
thermal expansion. We can integrate by parts and use that δθ is arbitrary to
obtain the strong form of the governing equations:

aij
∂2θ

∂xi∂xj
− Cijkℓ(ϵij + αθδij)αδkℓ = 0

This can be simplified by using the delta function to contract on the last
two indices of the material tensor, which yields

2This is a nice reference on tensor forms of elastic constitutive models.
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aij
∂2θ

∂xi∂xj
− 3αKδij(ϵij + αθδij) = 0

=⇒ aij
∂2θ

∂xi∂xj
− 3αK(ϵii + 3αθ) = 0

The terms in parentheses involve local changes of volume. The trace of the
strain tensor is the same as the divergence of the displacement, which measures
volumetric compression and expansion of the material. Similarly, through the
thermal strains, the temperature causes volume changes. As might be expected
from classical thermodynamics involving compression and expansion of gases,
the coupling with the strain in the thermal problem is due to volumetric effects.

17 Dissipative Materials and Internal Variables

Coming soon.
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