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Background

• Data emerging as new paradigm in computational science
• Lots of hype and buzzwords ("machine learning," "data-driven," 

"AI," etc.)
• Less explored than traditional computational methods, so there 

are more opportunities to make contributions
• Hype tends to divide people into skeptics and optimists
• Data has revolutionized some fields, and not others
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Motivation

• Explore the different ways in which data is used throughout 
the physical sciences

• Discuss some examples of machine learning and other data-
driven methods

• Better understand what goes into successful applications of data-
driven modeling

• Persuade machine learning optimists to be more skeptical, 
and machine learning skeptics to be more optimistic

3



Model-free use of data
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Qualitative conclusions

• Experimental work used to explore qualitative hypotheses
• No mathematical "post-processing" done on data obtained from 

experiments
• Conducted when underlying physical principles are not known, or 

partially known
• Characteristic of exploratory early scientific work, not common 

these days
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Da Vinci wire experiments

• Early experiments in engineering mechanics 
and fracture

• Pulls thin wires until they break
• Notices longer wires tend to fail at lower loads
• Concludes that impurities in material 

contribute to failure and are more common in 
larger specimens

• Does not build quantitative model, data is 
used to derive qualitative conclusion
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Oxygen theory of combustion

• Phlogiston theory stated that a fire-like 
element was contained in materials and 
released during combustion

• Antoine Lavoisier shows that metals 
increase weight undergoing combustion 
or reaction with the environment

• Noticed that there were "different types" 
of air

• Leads to the discovery of oxygen 
and ushers in chemical revolution
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Statistics
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Classical statistics

• Statistical models mathematically operate on experimental data 
to draw quantitative conclusions

• Descriptive statistics summarizes aspects of sample, inferential 
statistics makes claim about the population from which data is 
assumed to be sampled

• Statistical techniques often involve assuming an unknown 
model which explains the data, then tuning the model so that 
it agrees with the data

• The model can then be used to answer further questions
• Minimal or no prior knowledge built into these analyses
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Regression

• Statistical technique used to approximate functional relationship 
between measured input and output variables

• Typically no physical laws are known, but assumptions need to be 
made about the mathematical form of the relationship

• Find parameters in the regression model such that error with data 
is minimized

• Once model is tuned, it acts both as a "compressed" 
representation of the data and a predictor

• Need to assess the "goodness of fit"
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Data to be fit with 
regression model

Assumed relationship,
with error term

Use measurement data 
to write linear system 
that model should obey

"Train" model by finding 
parameters that minimize 
magnitude of error
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Maximum Likelihood Estimation

• Want to estimate the population distribution which gave rise to a 
set of observations

• Find parameters of assumed population distribution
• Once a distribution is fit, it can be used to explore and/or 

characterize the random phenomenon
• Prior knowledge enters when we assume the form of the 

distribution (normal, exponential, uniform, etc.)
• Assuming samples are independent, find parameters such that 

the "likelihood" is maximized
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Set of observations to fit with 
parametric distribution Assume form of population distribution 

Construct likelihood, take its logarithm 
(for convenience), and optimize
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Dimensionality Reduction

• High-dimensional data sets can lie in low-dimensional subspaces 
(exactly or approximately)

• Principal component analysis is common approach to find a basis 
for the low-dimensional subspace

• These efficient representations can be used to gain insight, for 
data storage, denoising, etc.

• Find directions of maximum variance in the data to compute 
"principal components"
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Data matrix with N 
observations

Coordinates in basis 
defined by first principal 
component

Direction of first 
principal component 
found by maximizing 
variance

Data with low-dimensional 
representation
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Hypothesis Testing

• Common statistical method used to determine the probability 
that observed data came from a given distribution

• Can also test whether different data sets came from the same 
distribution

• Used frequently in medicine and psychology to see if a treatment 
had an effect which was unlikely to be from chance (statistically 
significant)

• Fits distribution to data and then uses that fit to draw conclusions
• Consider t-test: we want to find probability that the mean of an 

observed sample came from a population with given mean and 
variance
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Does this data come from a distribution 
with mean μ?

Null and alternative 
hypotheses

Test statistic discounting 
difference between sample 
mean and population mean 
with variance

Null hypothesis 
rejected when test 
statistic exceeds 
threshold
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Physics
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Classical physics

• Algebraic and differential equations relate quantities of interest
• Data is used indirectly to construct the general form of these 

equations
• Empirical parameters always show up, and are fit to experimental 

data directly
• Have to ask the question: if the model were correct, what would 

the empirical parameter be?
• We "train" the model by calibrating empirical parameters to data, 

then "test" it by seeing how well it generalizes
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Newtonian Gravity

• Gravitational attraction is 
proportional to square of 
distance and the two 
masses of bodies, but 
scaled by an empirical factor

• This factor needs to be 
determined by data through 
experiments

• Calibrate on dynamics of 
one configuration of masses, 
test in novel application and 
ensure model is predictive
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Constitutive Models in Continuum Mechanics

• Relationships between stress and strain measures "close" system 
of equations which describe mechanical equilibrium in solids and 
fluids

• Represent properties of material which cannot be determined 
from theoretical considerations alone

• Need to experimentally determine constitutive relations
• Have to make assumptions about the form of the material 

response (linear, non-linear, viscoelastic, plastic, etc.)
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b(x)

x

Finding constant stiffness of elastic bar

Governing equation 
with unknown stiffness

Measured 
displacement data 
at given position

Solution to 
governing equation

Loss function
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Stiffness now varies in 
space and is parameterized

Displacement data 
at given position

Finding spatially varying stiffness of elastic bar

Governing equation 
with unknown stiffness

Loss function

Solution to 
governing equation
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Data-driven modeling
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Modern data-driven modeling
• Collection of diverse techniques asking the question "how do we 

build/inform physical models with data?"
• Anywhere from using data to discovering physical laws, to 

streamlining numerical solutions, to fully replacing numerical 
solutions

• Not all machine learning—machine learning typically refers to the 
explicit use of neural networks, not simply making use of data

• Exciting and productive area of research because data is more 
available, hardware and software infrastructure is relatively new, 
and traditional modeling and solution techniques have been 
heavily researched for decades

• Data-driven models make prediction possible even when 
underlying laws are not known
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Surrogate Models

• What people typically think of when hearing "machine learning"
• Black-box model with large number of parameters trained on big 

data set to find input-output relationships
• Neural networks are very general non-linear function 

approximators
• Python libraries make building and training these models easy
• No prior knowledge or constraints applied to model other than 

trying to fit training data set
• Can think of these models as good at "interpolating" but not 

necessarily reliable when "extrapolating"
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Interpolation vs. Extrapolation

Want to ensure that model is used to 
interpolate, otherwise there is no 
guarantee the fit is trustworthy. But, it 
may be difficult to precisely distinguish 
between interpolation and extrapolation.
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Multilayer perceptron neural network
Output "O" computed with series of 
linear transformations on input "I," with 
non-linear "activations" applied at each 
hidden layer

Parameters of network (weights and 
biases) are determined by minimizing 
the difference between the data and the 
predictions of the network
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Example: Effective Material Properties

Train surrogate model to map relation 
from material microstructure to 
effective (homogenized) material 
properties 29



Parameter estimation

• Neural networks are used to parameterize and fit functions in 
physical models

• Neural networks simply act as flexible ways to represent diverse 
functional behavior; not a novel idea

• Could be learning aspects of model which are empirical anyway 
(constitutive relations)

• The point is to learn some aspect of a physical model, not replace 
the model

• Applications include: hyperelasticity, viscoelasticity, damage 
models, climate models
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Computational modeling of climate 
influenced by sub-grid features like 
clouds

Add unknown forcing term to incompressible 
Navier-Stokes equations to account for sub-
grid features

Determine forcing term by fitting to climate 
data set..."S" is short-hand for solution to 
Navier-Stokes
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Equation Discovery

• Use data from a dynamical system to learn a governing partial 
differential equation

• Typically assume the order of time derivative and that there are no 
mixed space/time derivatives

• Represent the spatial "forcing" part of the equation as a neural 
network and use measurement data to estimate it

• It is convenient to introduce an intermediate step of fitting another 
neural network to the data itself, which makes differentiation easy
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Want to discover differential 
equation that describes observed 
space/time dynamics (Burger's 
equation)

Represent RHS of PDE with neural network, and 
fit another neural network to the data itself

Simultaneously minimize loss between the data 
and its fit and the time derivative of the fit with 
RHS network
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Data Assimilation
• Data assimilation is a term for integrating measurement data with 

governing equations of a system
• Originally comes from weather models, where sparsely measured 

initial conditions often lead to unstable solutions
• Physics-informed neural networks (PINN's) are one technique for 

incorporating knowledge of the underlying physics into a data-driven 
model

• This is useful when data is sparse—a surrogate model with many 
parameters will overfit small training data, but including physical 
constraints helps regularize the optimization problem

• Network should match training data AND satisfy governing 
equations at select "collocation" points
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The total loss penalizes 
discrepancies with a sparse 
training data set, and failures of 
the network to satisfy 
boundary/initial conditions and 
the governing equations.
Parameters of the network are 
computed by minimizing this 
loss function.
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Model Reduction

• Model reduction uses data to reduce the computational cost of 
numerical simulations of PDE's

• Principal Orthogonal Decomposition (POD) is a common 
technique which computes a set of global spatial shape functions 
from measurement data on a dynamical system

• For some systems, it is possible to find a small number of shape 
functions which accurately capture the dynamics

• Using a small set of global shape functions as a discretization can 
greatly speed up simulations

• We still solve the same governing equations!
• Have to assume that basis computed from one set of boundary 

data and forcing is still a good choice in different contexts
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Looks very similar to PCA dimensionality 
reduction problem!

...want to find spatial vector(s) which 
explain the most variance in data 
matrix...

Data matrix contains "snapshots" 
of solution in space in each row

Solution then discretized with 
"principal components"
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Comparison of flow solution to reduced model
True solution Solution reconstructed with linear 

combination of 3 POD modes
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Singular values ordered least to 
greatest, fast decay indicates 
low-dimensional strucutre

First two POD spatial modes



Categorizing Applications 
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Assessing the Model

• Less prior knowledge -> less structure -> more free parameters -
>  more data required to train -> more concern about generalization

• Different application areas have different quantities of available 
data, prior knowledge, and expectations for model performance

• Some applications have zero tolerance for error, while others are more 
lenient

• The possibility and appropriateness of a model (i.e. machine learning, 
traditional physics, or some combination) is highly context-dependent

• Useful to have some way of categorizing the context in which a model is 
used
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Data Availability

Prior Knowledge

Risk

Large Language Models

Autonomous vehicles

Structural analysis

Graphics

Turbulence

Categorizing common models

Climate models
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• Could additional dimension of "speed requirements" to 
categorization (online vs. offline use)

• Physical models excel at any risk level, high prior knowledge, and 
low data availability

• Data-driven techniques tend to excel with low risk, low prior 
knowledge, and high data availability

• When data is abundant, surrogate models can perform well with no 
prior knowledge input

• ML still not being used in situations with high-risk
• Tricky application when there is some prior knowledge and some 

data available
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Not always clear what 
lives here, hard to 
continuously interpolate 
between two extremes!

Physics and 
traditional numer-
ical methods

Sparse data, highly 
structured models, small 
number of empirical 
parameters, lots of prior 
knowledge

Model Type

Large data sets, 
flexible models, 
large number of 
empirical 
parameters, no 
prior knowledge

Some data, but 
models need to be 
supplemented and 
constrained by 
prior knowledge

Data-physics spectrum

Black-box data-
driven surrogate 
models

Features
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Data Availability

Prior Knowledge

Risk

Large Language Models

Autonomous vehicles

Structural analysis

Graphics

Turbulence modeling

???

Interesting and difficult applications 
of scientific machine learning

Where are opportunities?
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Ideas for incorporating ML and physics

• Data-driven accelerator: initializing design in topology 
optimization, newton solve initialization, hyperparameter 
optimization

• Prediction of surrogate model always corrected by physics, but 
still speeds up iterative solution process

• Constitutive modeling: replace empirical aspects of models with 
flexible function approximators and learn them from data

• PINN's with relaxed constraints: how to enforce governing 
equations whose form you don't precisely know?
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Takeaways
• Data very frequently used to tune parameters in a model by solving an 

optimization problem
• Physics models and machine learning differ in how much prior knowledge 

and structure go into the model; both are "trained" and "tested" on data
• In general, we might think that linear models with fewer parameters lead 

simultaneously to less data requirement and more reliable generalization
• Lots of machine learning work does not seem to consider "risk" as influential 

in whether the model will be used
• Important to understand the nature of the application area and choose an 

approach accordingly
• Whether a certain model type is possible and/or useful is very situational
• Not a bright line between data-driven and physics-based models!
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