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1 Introduction

Fracture is a phenomena which can can be very sensitive to uncertainty. This
can be conceptualized as a consequence of the localized and nonlinear nature of
crack formation. For example, one can reasonably imagine that crack formation
does not depend continuously on material parameters. For one setting of the
material parameter, a structure may exhibit stable or negligible crack growth,
whereas the structure may fail catastrophically at another setting. This dra-
matic change in the output may be the consequence of apparently small changes
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in the input material properties. Similarly, because cracks localize to very nar-
row bands, and often initiate around local weaknesses in the material, the nature
of the crack pattern also exhibits strong sensitivity to model input parameters.
These considerations demonstrate that it is both interesting and important to
quantify uncertainty in the field of fracture mechanics. In this report, we use
a popular and relatively recent approach to modeling damage/cracks in elastic
bodies called the “phase field” model of fracture. One of the appealing character-
istics of this model is that the solution for the crack pattern and elastic response
of the body are the minimizers of a “total potential energy” functional, allow-
ing the solution to be found using minimization procedures rather than solving
systems of equations. The existence of this energy functional makes a Ritz
method appealing, whereby the energy is discretized then minimized. This con-
trasts with standard Galerkin methods, for which a condition for the minimum
of the energy functional is derived in a continuous sense, and then discretized.
We will make use of a neural network discretization of the displacement and
phase field in minimizing the energy functional, giving this the name “Deep
Ritz method.” This approach is potentially beneficial because the parameters
of the neural network build both the shape functions and their corresponding
weights, allowing more freedom to represent ac a solution with localized be-
havior whose position is not known a priori. The discretized solution depends
nonlinearly on the parameters of the neural network unlike a traditional spec-
tral method. However, the phase field model is inherently nonlinear, meaning
that both neural network and traditional spectral discretizations require an it-
erative solution procedure. This could be gradient-based energy minimization
or a Newton-Raphson method to solve the nonlinear system corresponding to
the condition for the minimum of the energy. To be sure, the neural network
introduces additional complexity into the “loss landscape” defined by the energy
functional, however it does not change the essential character of the minimiza-
tion problem. The logic of the Deep Ritz method is that additional complexity
in the loss landscape is overshadowed by the convenience of a global discretiza-
tion, and the tremendous flexibility of neural networks to represent complex
and localized solution behavior. Computing the dependence of the solution on
uncertain input parameters can also be accomplished by extending the Deep
Ritz framework to a stochastic setting. Combining the phase field model with
neural network discretizations and the stochastic form of the minimum energy
principle gives rise to a very compact technique for understanding the uncertain
fracture response of a structure.

2 Principle of Minimum Expected Potential En-
ergy

To compute the dependence of the displacement and phase field on uncertain
input parameters, we will make use of the fact that the minimum expectation of
the potential energy associated with a partial differential equation (PDE) cor-
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responds to a solution in the stochastic and physical space. This is a technique
for performing uncertainty quantification on PDE’s with variational principles.
The more common Polynomial Chaos Expansion (PCE) relies on the stochastic
Galerkin method, which computes a Galerkin optimal approximation first in
the stochastic space, and then in the physical space. This is usually accom-
plished with a multiplicative (tensor product) decomposition of the solution’s
dependence on the spatial coordinate(s) and parameter(s). In our case, we will
assume that that the dependence of the solution on the physical coordinates and
parameters is captured with a single set of basis functions. With this setup, we
can show the equivalence of the stochastic Galerkin method with the principle
of minimum expected potential energy for elliptic PDE’s. Consider a simple 1D
boundary value problem (BVP)

κ(x, y)
∂2u

∂x2
+ f(x) = 0, u(0) = u(1) = 0

where u is a displacement-like quantity, x ∈ [0, 1] is the spatial coordinate,
and y ∈ [−∞,∞] is a random parameter that determines the spatially varying
material coefficient κ. Let’s say that the statistics of the random parameter are
described by a known density function ρ(y). For simplicity, we are assuming
that there is only one random parameter and one spatial dimension to ease
the presentation, though the following considerations are general. Because the
coefficient in the BVP depends on the parameter y, the solution u will as well. To
perform uncertainty quantification, we need to understand how the solution u(x)
changes with the parameter y. Once we have a relationship (x, y) → u(x, y),
we can compute statistical quantities of interest such as the mean and variance
of the solution. We can discretize the solution in the “parameter space” of y in
the same way that we discretize it in physical space. This could be done in the
following way:

u(x, y) =
∑
i

ui(x)Ψi(y)

This is a tensor-product type decomposition analogous to how we discretize
space-time PDE’s, where the coefficients control the time dependence of spatial
basis functions. This is how a typical Polynomial Chaos Expansion proceeds.
When using neural networks to discretize a PDE, it is convenient to not distin-
guish between the parameters and spatial coordinates: they both influence the
solution as inputs to the first layer of the network. More closely aligned with
the neural network’s “indifference” to parameters, we discretize the solution in
physical and parameter space with a single set of basis functions:

u(x, y) =
∑
i

uiΨi(x, y)

The solution u(x, y) is simply some surface, and we can build it up in any
way we wish. We take this approach because it is more closely aligned with
how a neural network handles the spatial coordinates and parameters. The
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Galerkin method must account for the fact that y is a random variable. Instead
of simply integrating against each element of the basis for the displacement
approximation, we use the density of y to weight contributions to the weak
form by their corresponding density. This is natural if we think of the density as
“prioritizing” points in parameter space which are more likely to be observed. In
other words, we typically have no notion of importance for points in the spatial
domain, but in the parameter space, there are some regions with zero or almost
zero probability. There is no sense in weighting these equivalently in forming
the residual for the weak form. More concretely, it can be seen that integrating
against the density is equivalent with Galerkin optimality for the expected error
of the approximation. It is hopefully clear that in the presence of randomness,
we would like to minimize the expected error as opposed to an unweighted error,
as the expectation operation will tend to prioritize reducing error in regions
which are frequently observed. The stochastic Galerkin projection for the 1D
boundary value problem yields∫ 1

0

∫ ∞

−∞

(
κ(y)

∂2u

∂x2
+ b

)
Ψjρ(y)dydx = 0

Plugging in the displacement approximation, integrating by parts, and not-
ing that Ψj(0, y) = Ψj(1, y) = 0 for each j, we obtain the discrete standard
weak form for the stochastic PDE:

∑
i

ui

(∫ 1

0

∫ ∞

−∞
κ(y)

∂Ψi

∂x

∂Ψj

∂x
ρ(y)dydx

)
−
∫ 1

0

∫ ∞

−∞
bΨjρ(y)dydx = 0

=⇒
∑
i

ui⟨Kij⟩ − ⟨Fj⟩ = 0

where ⟨·⟩ indicates the expected value taken with respect to the random pa-
rameter y. The notation Kij and Fj is used for the usual definition of the
stiffness matrix and force vector. We know that equations like this come from
the gradients of quadratic energies of the form

Π =
1

2
⟨Kij⟩uiuj − ⟨Fi⟩ui

In this case we have expected value operations on the stiffness matrix and
force vector. It can be seen by “reversing the discretization” that the continuous
form of the energy functional is

Π =

∫ 1

0

∫ ∞

−∞

(
1

2
κ(y)

(
∂u

∂x

)2

ρ(y)− buρ(y)

)
dydx

Thus, the stochastic Galerkin method applied to the strong form of the
governing equations is equivalent to minimizing the expectation of the potential
energy. This is analogous to the equivalence in the deterministic case between
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the condition of minimal energy and the weak form of the governing equations.
Thus, we see that the minimum expectation of the energy is simply a re-casting
of the stochastic Galerkin method which, in our case, is especially convenient for
conducting uncertainty quantification when the PDE is discretized with a neural
network. The same logic can be applied to the more complicated equations for
phase field fracture to show that the stochastic Galerkin method, which we
think of as the “ground truth” for optimal approximations, is equivalent to the
minimum of the expected energy.

3 Phase Field Fracture Model

Figure 1: Two triangular regions with base a and height βa are shielded from
carrying any load by the crack. The height of this region has no obvious a priori
value, and is controlled by the parameter β. This parameter can be estimated
by appealing to other physical considerations, but for our purposes we treat it
as a given.

One might trace the origins of the phase field model of fracture back to the
work of Griffith’s in the early 20th century. Griffith analyzed brittle fracture of
a semi-infinite plate with an existing crack of length a, as shown in Figure 1.
He argued that as the crack grows, a triangular region of material unloads and
becomes stress free. This corresponds to a “liberation” of strain energy from
the structure. However, the crack forms by breaking atomic bonds holding the
material together, and this requires energy. Thus crack formation also acts to
increase the energy of the system. Assuming that the external loads do no work
as the crack grows, and that the stress state outside of the triangular region is
unaffected by crack growth, we can write the change in the structure’s energy
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as a result of crack growth as

∆U = 2γ∆a− 1

2
σϵ∆A = 2γ∆a− σ2

2E

(
(a+∆a)2β − a2β

)
where ∆A is the increase in the area shielded by the crack. The first term is the
work required to form two new surfaces (one on either side of the crack), where
we assume that the energy associated with crack formation is proportional to the
crack length. The parameter γ is material specific and controls the resistance
to crack formation. The second term is the released strain energy as a result of
advancing the crack from length a to a + ∆a, where the strain energy for the
plate is computed using a uniaxial stress assumption, and by multiplying the
energy density by the area. Expanding the above expression and neglecting the
quadratic dependence on the increment in crack growth, we obtain

∆U =
(
2γ − βσ2

E
a
)
∆a

Griffith’s argued that the crack is stable when increasing its length increases
the energy of the system, i.e. ∆U > 0. Alternatively, unstable crack growth
occurs when increasing the crack leads to a loss of energy. The transition point
is when ∆U = 0, which gives a condition for the crack being at a critical point

2γ =
βσ2

E
a

This equation can be used to determine determine the critical stress for a
given crack length, or critical crack length for a given stress. Basically, Griffith’s
analysis states that cracks grow when it is energetically favorable to do so.
The phase field model of fracture takes this insight and translates it into a
computational framework. Inspired by continuum damage models, we introduce
a damage (or phase field) variable ϕ ∈ [0, 1] which continuously interpolates
between a state of undamaged material (ϕ = 0) and fully fractured material
(ϕ = 1). This is a definition. Analogous to Griffith’s approach, we can model
the liberation of strain energy as a result of cracking by computing the stored
strain energy of the structure as

Eu =

∫
Ω

(ϕ− 1)2ΨdΩ

where Ψ = 1
2σijϵij is the usual elastic strain energy density and Ω defines the

volume of the structure. Note that the function g(ϕ) = (ϕ−1)2 satisfies g(1) = 0
and g(0) = 1. This means that undamaged material experiences no reduction
in strain energy, and fully fractured material stores no energy. At intermediate
values, there is a continuous reduction in the storage of strain energy at each
point in the structure. This is analogous to the Griffith’s model. There are
other choices for what we call the “degradation function” g(ϕ), but we will stick
with the form given above. In other words, this quadratic form is more-or-less
arbitrary thought it has certain desirable properties. This expression states that
damage acts to degrade the stored strain energy at each point in the structure.
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Griffith’s wrote the change in energy of the system as a competition between
energy released due to crack formation and energy required to form cracks,
using this to find a condition for crack stability. In the phase field model, we
will write the total energy of the system in terms of an unknown displacement
u(x) and crack pattern ϕ(x). We have already written the total stored strain
energy of the potentially damaged structure. The insight of this model is that
the displacement and phase field should be such that the total energy is at
a minimum. Whereas Griffith’s model assumed a pre-existing crack, simple
geometry, a given direction of crack propagation, and did not model stable crack
growth, the phase field model will apply to arbitrarily complex geometries, and
it will model the formation and growth of cracks. Like the Griffith’s model,
we expect that when the loads are small, it is “energetically favorable” to store
energy in the form of strain. This is because there are serious “overhead” energy
requirements to open up any cracks, controlled by a material parameter like γ.
But at some point, it will be energetically “worth it” to open cracks in order to
release strain energy. The phase field model is essentially a way of quantifying
that energy can be stored either through strain or through cracks, and the state
of the system we actually observe is the one which minimizes the total energy.
Having seen the mechanism of strain energy storage, and having motivated the
intentions of this model, we can now specify the way in which energy is stored
in cracks. This energy is computed using the damage field ϕ(x). This turns out
to be where the real artistry of the model comes into play. The first thing we
do is define a new constitutive parameter G ≥ 2γ which measures the material’s
resistance to fracture accounting not just for the work required to break atomic
bonds, but also localized plastic flow in the vicinity of the crack tip. For a crack
of area Γ, the energy associated with fracture is then GΓ. The point here is that
only accounting for broken atomic bonds underestimates the energy dissipated
in the opening of a crack.

We need a volumetric representation of the presence of cracks, so that we can
monitor the formation of damage at every point in the structure. Analogous to
a strain energy density, we want a “crack density” d such that the total stored
energy associated with crack formation is

Eϕ =

∫
Gd(ϕ)dΩ

This requires that cracks cannot be represented by bands of damage with zero
width, otherwise we are integrating a field of measure zero. When the damage
localizes to zero-width bands, the structure could be fully fractured with no
energy associated with crack formation. Thus, cracks need to be smeared out
over some finite width in order for the crack density approach to work. Why not
simply use γ(ϕ) = 1

2Gϕ2, meaning that the total energy associated with damage
is just the sum of all the local stored energies? This is a reasonable thought,
but nothing prevents this from localizing to zero measure bands which cause the
structure to fail to carry loads without any associated cost of crack growth. We
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need to select a crack density functional which gives rise to localized, but finite
width-cracks. It turns out that the following energy functional accomplishes
this

γ =
1

2ℓ

(
ϕ2 + ℓ2

∂ϕ

∂xi

∂ϕ

∂xi

)

Figure 2: The length scale dictates how localized the crack is. When the length
scale is large, gradients of the damage are penalized more heavily leading to
more diffuse crack patterns. The damage pattern is a smeared out version of
the body force as a result of the gradients in the energy functional. This solution
is obtained using spectral basis functions with zero boundaries.

It is as if we added a penalty on the gradients of the damage ϕ which incur a
cost for localization where gradients are large. Both the formation of the crack
and its “sharpness” incur an energetic cost. This causes the crack to spread out
over a finite width. The parameter ℓ is called the “length scale” and it controls
how much gradients of the damage are penalized. We can think of this as scaling
a diffusion-like term. Given this diffusion behavior, we do not expect the crack
to be more localized than the force that drives its formation. In other words, the
length scale parameter will control how much the driving force is smeared out
in the formation of the crack. See the Appendix for further exploration of this
crack density function. To get a feel for how this functional works in practice,
we can compute its minimum, as we will do as part of solution to the phase field
model. But first, we need to add a volumetric driving force term. For now, we
can think of the elastic deformation of the body driving the formation of cracks
in some unknown way. The energy stored in crack formation is
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Figure 3: Two dimensional crack pattern obtained from minimizing the crack
energy functional. The body force is a narrow Gaussian bump along y = 1/2.
This solution is obtained using spectral basis functions with zero boundaries.

Πϕ =

∫
G

2ℓ

(
ϕ2 + ℓ2

∂ϕ

∂xi

∂ϕ

∂xi

)
− Fϕdx

For our purposes, we treat the volumetric “crack-driving force” F as known.
We are ignoring the part of the phase field model which involves the displacement
in order to explore the behavior of the crack density functional. We want to see
the kind of crack patterns the chosen density functional gives. The minimum of
this functional is given by

δΠϕ =

∫
G

ℓ

(
ϕδϕ+ ℓ2

∂ϕ

∂xi

∂δϕ

∂xi

)
− Fδϕdx

With standard methods, we discretize the displacement in terms of a set of
basis functions fj , meaning that ϕ =

∑
j ϕjfj . The variation δϕ is discretized

with same set of basis functions. Noting that the variation is arbitrary, we
obtain a linear system for the phase field coefficients:(∫

G

ℓ

(
fifj + ℓ2

∂fi
∂xk

∂fj
∂xk

)
dx

)
ϕj =

∫
Ffidx

See Figures 2 and 3 for some example solutions of the crack problem. This
crack density functional leads to localized crack patterns which are zero outside
regions where the driving force is large. The size of the length scale dictates
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how localized the solution is. We see from these results that this choice of crack
density will encourage the formation of narrow bands of damage as we expect
from actual fracture phenomena.

Having justified this choice of crack density, we can now write the total stored
energy of the system as

U =

∫
Ω

(ϕ− 1)2Ψ+
G

2ℓ

(
ϕ2 + ℓ2

∂ϕ

∂xi

∂ϕ

∂xi

)
dΩ

This is quite similar to the Griffith’s model. The first term in the energy
gauges how energy is stored in the form of strain, and released as a result of
crack growth unloading material. The second term quantifies how energy is
absorbed in the formation of cracks. Now, we know that the total potential
energy functional whose minimum solves the elastic problem is the difference
between the stored energy of the system and the work of external forces. This
is the case for the phase field problem as well. Thus, we can finally write the
energy functional which governs the phase field problem as

Π =

∫
Ω

(ϕ− 1)2Ψ+
G

2ℓ

(
ϕ2 + ℓ2

∂ϕ

∂xi

∂ϕ

∂xi

)
− biuidΩ−

∫
∂Ω

tiuidS

where the external work of body forces and tractions have been subtracted
from the stored energy. This is called the isotropic phase field model, because
there is no distinction between what forms of strain energy drive crack growth.
In one dimension, this means that compression and tension contribute equally
to the formation of cracks. In higher dimensions, this means that volumetric
strains drive fracture as much as strains causing distortion. We know this is
not physical–tension should more readily cause fracture than compression, and
we expect that a material will not yield from hydrostatic stress states. Thus,
we can introduce the anisotropic phase field model, which accounts for the
influence of different types of strain energy on crack formation. Conceptually,
the anisotropic phase field model is a simple modification:

Π =

∫
Ω

(ϕ− 1)2Ψ+ +Ψ− +
G

2ℓ

(
ϕ2 + ℓ2

∂ϕ

∂xi

∂ϕ

∂xi

)
− biuidΩ−

∫
∂Ω

tiuidS

The strain energy has been decomposed into a “positive” part, which is
released as damage forms, and a “negative” part, which is not affected by the
formation of damage. This decomposition must respect Ψ = Ψ+ + Ψ−. If one
were to write out the strong form of the governing equations associated with
this energy functional, it would be clear that only the positive energy Ψ+ drives
crack growth. One interpretation of this is that even when the material is fully
fractured, it can carry energy in the form of Ψ−. For example, a fractured
bar can still carry compressive loads. There are various ways to decompose the
energy. In one dimension, it is clear that Ψ+ is tensile strain energy, and Ψ−
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is compressive strain energy. In higher dimensions, there is more freedom in
choosing the form of this decomposition. Different decompositions correspond
to different constitutive assumptions about what causes fracture.

The final aspect of the phase field model we need to consider is history de-
pendence. We imagine the formation of cracks as a process which progresses
with the quasi-static application of external forces. Fracture is an inherently
path-dependent phenomenon. For example, the application of a cyclic load may
not bring the structure back to its initial state if cracks form. But, there is
nothing at this point that prevents cracks from closing (“healing”) when loads
are removed. Enforcing the irreversibility of cracks is the final ingredient of the
phase field model. We thus need to track the state of the structure over the
entire load path in order to understand the damage that results. Even when
the load is not cyclic, we imagine loading as a process which progressively forms
damage. Thus, if a structure is loaded statically by external tractions t(x), the
phase field model treats this loading as incremental with external tractions

(t1)t(x) → (t2)t(x) → · · · → (1)t(x), t1 < t2 < · · · < 1

The displacement and phase field solution under a static load are modeled
as the end result of a process of monotonically increasing loads. The energy at
load step k for an anisotropic phase field model is thus given by

Πk =

∫
Ω

(ϕk − 1)2Ψ+

(
∂uk

∂x

)
+Ψ−

(
∂uk

∂x

)
+

G

2ℓ

(
ϕ2,k + ℓ2

∂ϕk

∂xi

∂ϕk

∂xi

)
dΩ

−
∫
Ω

bki u
k
i dΩ−

∫
∂Ω

tki u
k
i dS

The minimum of Πk is the displacement and phase field solution at load step
k. The crack irreversibility constraint can be written simply as

ϕk ≥ ϕk−1 ∀x ∈ Ω

During the ramping up of the external forces, nowhere in the domain can
the crack heal. In some cases of monotonic load stepping this constraint may
be met without explicit enforcement. This is certainly the case in one spatial
dimension. But for a more complex structure, a crack may form and unload
some previously damaged material surrounding it. This unloading could cause
the unphysical reversal of damage without explicit enforcement of the constraint.

4 Neural Network Discretization and Deep Ritz
Method

A fully-connected neural network is used to discretize the solution of the phase
field fracture model. We will have separate networks for the displacement u and
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Figure 4: The spatial coordinate(s) x and parameter(s) y are inputs to a multi-
layer perceptron neural network which discretizes the PDE solution u(x, y).
The “degrees of freedom” of the discretization are the weights and biases of the
neural network, which are collected into a vector p. For a given set of parameters
y, the discretization describes the spatial distribution of the solution, akin to
the result of a single forward solve. When we fix the spatial position x and vary
the parameters y, the discretization gives us the dependence of the solution on
the parameters.

phase field ϕ. In Figure 4, the neural network discretization of the displacement
is shown. Both the spatial coordinate and uncertain parameters are taken in at
the input layer, and are passed through a series of affine transformations and
nonlinear activation steps, per the architecture of a traditional fully-connected
network. The parameters p build the functional relationship between the spatial
coordinate/uncertain parameter and the solution. Note that unlike a traditional
discretization strategy, the solution is a nonlinear function of the parameters.
Because the neural network is defined globally over physical and parameter
space, it is a kind of spectral discretization. Remember that the phase field is
constrained to ϕ ∈ [0, 1]. This constraint can be enforced quite simply with the
neural network approach. We can simply pass the output of the neural network
discretizing the phase field through a function whose range is in this interval.
One such example of this is

ϕ =
1

2
tanh

(
1 + qϕ̃(x, y; p)

)
where ϕ̃ is a fully-connected neural network for the phase field which does not
necessarily respect the normalization condition. The function ϕ on the other
hand respects the normalization condition by construction. The parameter q
controls the sensitivity of the hyperbolic tangent to the non-normalized network
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ϕ̃. This is a hyperparameter that can be tuned for optimal performance. This
is how the phase field will be discretized. No such operation is necessary for the
displacement.

Using neural network discretizations of the solution, the Deep Ritz method
makes use of the variational form of a partial differential equation to compute
the parameters. When a PDE is variational, there is an associated “energy”
functional whose minimum corresponds to a solution of the strong form of the
governing equation. Not all PDE’s are variational, though many problems of
engineering interest such as heat conduction, linear elasticity, and nonlinear
elasticity, have associated variational principles. As we have seen, this is also
the case for the phase field model of fracture. A generic energy functional
Π depends on the solution to the PDE through the parameters of the neural
network. This can be written as

Π
(
u(x; p)

)
=

∫
Ω

f
(
u(x; p),

∂u

∂x
(x; p)

)
dΩ

where u is the solution, ∂u/∂x is the spatial gradient, Ω is the domain over
which the solution is defined, f is an “energy density,” and p are the neural net-
work parameters. Different energy densities will correspond to different physical
models. Because the solution is discretized, a minimum of the energy can be
computed by taking its gradient with respect to the neural network parameters.
This reads

∂Π

∂pj
=

∫
Ω

∂f

∂u

∂u

∂pj
+

∂f

∂(∂u∂x )

∂2u

∂x∂pj
dΩ = 0

This is a system of nonlinear equations, even when the underlying physical
model is linear. This is because the ∂u/∂pj is the gradient of a neural network
with respect to its parameters, which is a nonlinear function. This contrasts
with traditional spectral or finite element discretizations, which lead to linear
systems for linear PDE’s. When treated as a system of equations, this corre-
sponds to the weak form of the governing equations, where ∂u/∂pj are the test
functions. Due to its nonlinearity, the neural network approximates the solu-
tion on a manifold, and this nonlinear test function is a local tangent. This is
Galerkin orthogonality for a nonlinear solution approximation: the PDE resid-
ual is orthogonal to the local tangent of the approximation space. Instead of
explicitly solving the nonlinear system of equations, we can use the fact the
system expresses a condition for a minimum and use the gradient as a search
direction in an optimization framework. This avoids computing higher deriva-
tives of the system, which would be required to form the Jacobian matrix in a
Newton-Raphson method, for example. Thus, we compute the parameters such
that the energy takes on a minimum, where the gradient is used as a search
direction at each step in the optimization.
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5 Code Verification

It can be shown that strong form of the governing equations for the 1D isotropic
phase field model are

∂

∂x

(
(ϕ− 1)2E

∂u

∂x

)
+ b = 0

G

ℓ

(
ϕ− ℓ2

∂2ϕ

∂x2

)
= (1− ϕ)E

(
∂u

∂x

)2

See the Appendix for the derivation. The first equation is the balance of lin-
ear momentum, and the second equation is the evolution law for crack growth.
These equations are coupled, which prevents us from using a simple applica-
tion of the method of manufactured solutions to verify the implementation of
the Deep Ritz method. It turns out an analytical solution can be derived for
a spatially homogeneous stress/damage response for a displacement-controlled
problem. When the phase field is homogeneous, we have ∂2ϕ/∂x2 = 0. Looking
at the crack evolution equation, this becomes

GE

ℓ
ϕ = (1− ϕ)E2ϵ2

where we have multiplied both sides of the equation by the Young’s Modulus
E. This equation can be rearranged to give a relationship between the phase
field and strain:

ϕ =
1

1 + G
Eℓϵ2

We can prescribe a strain by imposing a linear displacement field with a
given slope. With the given displacement field, we can verify that the Deep
Ritz method returns a spatially homogeneous phase field which matches the
analytical value. See Figures 5-7 for results of the verification. For these three
problems, we use E = 10 and G = 1. Experimenting with these problems in-
dicates that once the phase field begins to take on larger values, the method
exhibits some instability. For example, it is necessary to “load step” the phase
field by initializing it with good guesses of the parameters (previously converged
values for smaller strains) in order to converge to a constant for larger values of
strain. Scaling back (relaxing) the gradients only partially alleviates this issue.
This instability probably arises in part from the neural network struggling to
represent a constant, but it does suggest that the method may be unstable at
larger values of the damage. If we remove all of the degrees of freedom corre-
sponding to the displacement, and force u(x) to be exactly linear (as opposed
to prescribing an end displacement), these issues do not arise, though this is not
a practical remedy for future problems. The good news is that the Deep Ritz
method does accurately reproduce the analytical solution of the phase field.

14



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0.23216

0.23218

0.2322

0.23222

0.23224

0.23226

0.23228

0.2323

0.23232

0.23234

0.23236

P
h
a
s
e
 F

ie
ld

 (
)

Code Verification

computed solution

analytical solution

Figure 5: Displacement control is used to enforce ϵ = 1/2 and the Deep Ritz
method computes the phase field by minimizing the energy. We use a length
scale of ℓ = 0.1, and do not explicitly enforce ∂2ϕ/∂x2 = 0. The analytical solu-
tion is very accurately reproduced by the Deep Ritz method implementation of
the isotropic phase field model. Note that here the neural network representing
the displacement has to learn to represent the linear relation which arises from
the prescribed end displacement.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0.07404

0.07405

0.07406

0.07407

0.07408

0.07409

0.0741

0.07411

P
h
a
s
e
 F

ie
ld

 (
)

Code Verification

computed solution

analytical solution

Figure 6: Displacement control is used to enforce ϵ = 1/5 with ℓ = 0.2. The
computed solution accurately matches the analytical solution even when its
value is small and the length scale is varied.
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Figure 7: Displacement control is used to enforce ϵ = 1.3 with ℓ = 0.2. For
large values of the phase field, the Deep Ritz method is unstable even when
the gradients are aggressively relaxed. An obviously non-physical solution is
obtained unless some kind of load stepping is performed, or the degrees of
freedom corresponding to the displacement neural network are zeroed and a
linear displacement field is enforced explicitly. The linear displacement field
option is taken here. That we obtain agreement with analytical solution suggests
that the phase field model is implemented correctly, but it does raise concerns
about stability for more complex problems.

6 Results

Two separate neural networks are used to discretize the phase field and dis-
placement respectively. Spatial gradients of the solution are required to form
the energy, and parameter gradients are required as search directions in the
optimization. The neural networks and required gradients are computed with
automatic differentiation in MATLAB and written to files. A quasi-Newton op-
timization optimization method is used, whereby the crack irreversibility con-
straint is written in the form

g(θk) = ϕ(θk−1)− ϕ(θk) ≤ 0

and passed into the algorithm, which can handle nonlinear inequality con-
straints. This contrasts with a common approach for crack irreversibility, which
is to use a history variable that prevents the crack-driving force from ever de-
creasing. When an optimization algorithm handles constraints, it is simple to
use the explicit form of irreversibility.

In this report, we only investigate 1D phase field models. Numerical ex-
perimentation with the 1D model indicated that the damage computed from
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monotonic loading is unaffected by the presence of the irreversibility constraint.
In other words, the solution obtained from a series of load steps with the ir-
reversibility constraint enforced does not differ from the solution computed in
a single load step. This obviates the need to repeatedly solve the energy min-
imization problem and frees up more computational resources for additional
uncertain parameters.

For all problems under consideration, we treat the bar as loaded by a de-
terministic distributed force, and the material as uncertain. This set-up corre-
sponds closely to problems of engineering interest–owing to microscale features
or inherent manufacturing variation, a material is often not known determin-
istically, and may vary from one manufactured part to the next. Numerical
experimentation indicated that the response of the phase field model is more
sensitive to the fracture energy G(x) than the Young’s Modulus E(x). Thus,
the fracture energy will be a random process determined by a discrete set of un-
certain input parameters. All uncertain parameters are independent and have
finite support yi ∈ [0, 1]. A “convergence tolerance” is introduced as a cri-
teria for stopping the simulation. When the maximum change in the energy
over the previous 50 optimization steps falls below this tolerance, convergence
is obtained. See Table 1 for a list of parameters that are common to all of the
following simulations. All optimization is performed using MATLAB’s “fmin-
con” without any constraints and the sequential quadratic programming (sqp)
algorithm. This is a quasi-Newton method which performs line searches in the
direction of the gradient supplied by the objective function. In general, this
method is effective when gradients are accurately computed, and might be ex-
pected in these situations to outperform a stochastic gradient method such as
ADAM, which minibatches gradients and performs no line search.

Parameter Notation Value

Modulus E 10
Length Scale ℓ 0.1

Cross-sectional Area A 1
Bar Length L 1

Spatial Integration Points – 100
Stochastic Integration Points – 10-20

Distributed Force b(x) 15 sin(π(x− L/2))
Parameter Marginal Density ρ(y) −6y(y − 1)

Convergence Tolerance – 1e-8

Table 1: Parameters for the phase field model and numerical implementation
common to all simulations. Note that the number of stochastic integration
points corresponds to the number of points per stochastic dimension.
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Figure 8: Distributed force driving the fracture problem of the bar.

Figure 9: Marginal density function for the independent uncertain parameters.
The joint probability density is computed by multiplying marginal densities
as a result of the independence of the parameters. The joint density is used
in computing the expectation of the energy and in Monte Carlo sampling to
compute statistics of the solution.

6.1 1D Isotropic Phase Field Model with Deterministic
Material

The isotropic phase field model in one spatial dimension is the simplest and
will be used as a first test case. There is no distinction between tension and
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compression for causing fracture and there is only one stress/strain component.
Thus, the fracture strain energy is the total strain energy, i.e. Ψ+ = Ψ =
1
2E
(
∂u
∂x

)2
, implying that Ψ− = 0. The deterministic potential energy is

Π = A

∫ L

0

1

2
(ϕ− 1)2E

(
∂u

∂x

)2

− budx− Fu(L) +A

∫ L

0

G

2ℓ

(
ϕ2 + ℓ2

(
∂ϕ

∂x

)2
)
dx

The bar has length L, length scale ℓ, Young’s modulus E, cross-sectional
area A, end force F , and fracture energy G. The problem is driven only by
a distributed force, thus F = 0. See Figure 8 for a plot of the loading. The
boundary conditions are

u(0) = u(1) = 0,
∂ϕ

∂x
(0) =

∂ϕ

∂x
(1) = 0

where the Dirichlet boundary conditions on displacement are enforced strongly
in the solution approximation, and the zero Neumann boundary conditions on
the phase field are enforced weakly via the energy formulation. Using the pa-
rameters of Table 1, the energy we minimize is then

Π =

∫ 1

0

10

2
(ϕ− 1)2

(
∂u

∂x

)2

− b(x)u(x) +
G

2ℓ

(
ϕ2 + ℓ2

(
∂ϕ

∂x

)2
)
dx

For the deterministic material, we will take G = 1. Solving the problem with
the Deep Ritz method, we discretize the displacement and phase field in terms
of a set of neural network parameters θ = [p

u
, p

ϕ
]T where p

u
are the parameters

of the displacement neural network, and p
ϕ
are the parameters of the phase field

neural network. The gradient of the energy with respect to the parameters is

∂Π

∂θj
=

∫ 1

0

10(ϕ− 1)
∂ϕ

∂θj

(
∂u

∂x

)2

+ 10(ϕ− 1)2
∂u

∂x

∂2u

∂x∂θj
− b(x)

∂u

∂θj

+
1

ℓ
ϕ
∂ϕ

∂θj
+ ℓ

∂ϕ

∂x

∂2ϕ

∂x∂θj
dx

Note that because u only depends on p
u
and ϕ only depends on p

ϕ
, the

gradients with respect to the combined set of parameters θ contain many zeros.
Spatial integration is done on a uniform grid. See Figure 10 for results of the
simulation, and Figure 11 for a plot of the stress in the bar.

6.2 1D Isotropic Phase Field Model with One Uncertain
Parameter

We can now begin to explore the uncertainty quantification capabilities of the
proposed approach. Let’s assume that the fracture energy G(x, y) is random
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Figure 10: Converged displacement and phase field solution for the deterministic
material. The shape of the displacement mirrors the distributed force, and the
phase field is largest where the displacement gradients are largest. The damage
takes on small values for the given body force and constant fracture energy. Note
that it respects the normalization conditionϕ ∈ [0, 1] by construction. With a
deterministic material, simulations take a few hundred steps to converge.

process and depending on a single parameter y ∈ [0, 1] with probability density
ρ(y). The displacement and phase field pick up dependence on this parameter
through the fracture energy. The expectation of the total potential energy is

⟨Π(u, ϕ)⟩ =
∫ 1

0

∫ 1

0

[
10

2
(ϕ− 1)2

(
∂u

∂x

)2

− b(x)u

]
ρ(y)dxdy

+

∫ 1

0

∫ 1

0

G(y)

2ℓ

(
ϕ2 + ℓ2

(
∂ϕ

∂x

)2
)
ρ(y)dxdy

For the stochastic Deep Ritz method, we parameterize the solution fields
with neural networks that take in the spatial coordinate and uncertain input,
then minimize the energy in terms of their parameters. To perform the mini-
mization, we need the gradient of the energy. The gradient of the expectation
of the energy is given by
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Figure 11: By comparing to the phase field solution, we see that the absolute
value of the stress correlates strongly with the damage. Because we use the
isotropic phase field model, there is no difference in the fracture behavior for
tension and compression.
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∂2u

∂x∂θj
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−
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∫ 1

0

G(y)
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(
ϕ
∂ϕ

∂θj
+ ℓ2
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∂2ϕ
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)
ρ(y)dxdy

We fully integrate in the stochastic dimension to form the expected en-
ergy. This is necessary using a quasi-Newton optimization algorithm with line
search. If we were to use Monte Carlo integration by sampling from ρ(y) for the
stochastic dimension, the line search would fail to converge because the search
direction was not accurately computed. Like the spatial integration, stochastic
integration is done on a uniform grid. The form of the random fracture energy
is

G(x, y) = 1− 0.7e−200(x−y)2

See Figure 12 to visualize the dependence of the fracture energy on the ran-
dom parameter. A smaller fracture energy corresponds to a smaller energetic
“cost” in opening a crack, meaning that a material will more readily fracture in
regions of small G. This form of fracture energy is meant to approximate a local
weakness in the material whose position is random. Figure 13 shows the results
of the simulation for two different settings of the random parameter controlling
the fracture energy. Figure 15 shows the convergence profile for the optimiza-
tion. We can use the trained neural network in order to compute statistics of the
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Figure 12: The fracture energy material parameter is a random process depen-
dent on one uncertain parameter, which controls the position of the weakness
along the length of the bar.

solution. We are more interested in the damage than the displacement, so this
is where we focus our uncertainty quantification efforts. We can compute the
pointwise mean and standard deviation of the damage by Monte Carlo sampling
the trained neural network, however we first need a method to sample the distri-
bution of the random parameter. Because the given density ρ(y) = −6y(y − 1)
is not a standard probability distribution, we implement the inversion method
to sample from this distribution. The cumulative distribution function (CDF)
is

F (y) =

∫ y

0

−6ξ(ξ − 1)dξ = −2y3 + 3y2

When we uniformly sample the CDF, the corresponding y is distributed
as ρ(y). We can obtain the sample of y by finding the roots of the nonlinear
function

f(y) = −2y3 + 3y2 − U

where U ∼ U [0, 1] and y ∈ [0, 1]. The ± 1 standard deviation (σ) bounds on
the damage are shown in Figure 14 using N = 1000 Monte Carlo samples.

6.3 1D Isotropic Phase Field with Two Uncertain Param-
eters

When there are two independent uncertain parameters, the expectation of the
energy and its gradient are
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Figure 13: Results of minimizing the expectation of the total potential energy in
terms of the neural network parameters. The network for both the displacement
and phase field has a single hidden layer. We found that it was sufficient to
have only 6 hidden units in the displacement network, and 15 in the phase field
network. The displacement field is relatively insensitive to the input uncertainty,
but the damage is significantly larger where the fracture energy is small. With
one uncertain parameter, simulations tend to take around 1000 optimization
steps to converge.
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Figure 14: Pointwise mean with ±1σ bounds. As expected, the uncertain dam-
age is symmetric about x = 1/2, and exhibits the largest variation at the center
and endpoints, where the stress is highest.
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Figure 15: Convergence profile for the one parameter random fracture energy.
It is not possible to use a semilog plot because the energy takes on negative
values. The objective appears to be stationary after a very small number of
steps, but within this region the form of the phase field is fit. It is interesting
and surprising to see how insensitive the energy objective is to the phase field.
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The form of the uncertain fracture energy is now taken to be

G(x, y1, y2) = 1− 0.7y2e
−200(x−y1)

2

This models a weakness of varying severity and spatial position inside the
bar. The additional random parameter y2 controls the severity of the weakness.
The previous example was an extreme case of this one, where the weakness was
always at the maximum severity. This form of uncertainty leads us to expect
less variation in the solution arising from the two parameter fracture energy.
See Figure 16 and 17 for results.

6.4 1D Isotropic Phase Field with Three Uncertain Pa-
rameters

The final case we will investigate makes use of three uncertain parameters. Al-
ready, we are reaching the limit of what we can run on a standard desktop
machine in approximately an hour with the given integration grid and imple-
mentation of the phase field model. Each new stochastic dimension increases
the dimension of the integration needed to form the energy and its gradient. We
can not “short cut” accurately computing these quantities with mini-batching
or sparse Monte Carlo integration because the line search in the optimization
algorithm will not converge. Another issue is that the size of the neural network
and the number of steps in the optimization required to find a minimum also
increase with the number of stochastic dimensions. We will consider a material
where the size, severity, and position of the weakness are all uncertain. The
fracture energy is then given by three independent random parameters drawn
from the same distribution:

G(x, y1, y2, y3) = 1− 0.7y2e
−(20+180y3)(x−y1)

2

We will not write out the energy and its gradient again. It suffices to say
that we pick up an additional integral for the new uncertain parameter y3, and
the joint density of the three random parameters is ρ(y1)ρ(y2)ρ(y3).
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Figure 16: Converged displacement and phase field solutions at various settings
of the random fracture energy. A single hidden layer network is used for both
the displacement and phase field, with 6 and 18 hidden units respectively. We
see that the damage is inversely proportional to the fracture energy, as expected.
With two uncertain parameters, simulations tend to take approximately 2000
optimization steps to converge. This takes 10 minutes to run on a desktop
machine.

7 Conclusion

We introduced uncertain parameters as additional inputs at the first layer of
a neural network discretization of the displacement and phase field for a 1D
fracture model. The traditional Deep Ritz method was combined with the
principle of minimum expected potential energy to devise a variational method
of carrying out uncertainty quantification. This method proved to be a relatively
simple and elegant way to handle input uncertainties. There are a number of
remaining questions/concerns at the intersection of the Deep Ritz method, phase
field models, and the principle of minimum expected potential energy. These
are summarized below:

• Code verification: we do not have access to a more complex analytical so-
lution than the constant phase field case used in the “Code Verification”
section. The method of manufactured solutions is not feasible for the
history-dependent two field problem. Though we have observed that the
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Figure 17: Uncertainty bounds on the damage for the two parameter uncertain
material. The variation around the mean is smaller than in the one parameter
case because the severity of the weakness, which drives variation in the value of
the damage, is much smaller on average.

computed solutions reflect our intuition about what should occur, we have
no more explicit guarantee than this that code is accurately solving the
phase field fracture problem. For example, it was observed numerically
that the bar quickly transitioned from small damage values throughout
the bar (ϕ ≤ 0.1) to full fracture (ϕ = 1). It is not clear whether this is a
physically meaningful prediction of the phase field, or a numerical “insta-
bility” of the Deep Ritz method. Experimentation with the homogeneous
analytical solution suggests this sudden divergence could be a numerical
instability rather than a physically meaningful prediction. This explains
why this report focused on load cases for which the damage stayed rel-
atively small. It is not clear at this point how to deal with potential
instabilities apart from aggressively relaxing the gradients supplied to the
optimization algorithm.

• Non-deterministic solutions: the parameters of the displacement and phase
field neural networks are randomly initialized every run. Even for linear
physics, using a neural network discretization ensures that the energy is
non-convex in the parameters. The phase field model is nonlinear and
couples two different solution fields, thus we expect a complex and highly
non-convex energy landscape. Experience with the MATLAB implementa-
tion demonstrated that the Deep Ritz method sometimes fails to converge
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Figure 18: Displacement and phase field for a variety of settings of the fracture
energy with 3 uncertain parameters. Along with its location and severity, the
width of the weakness is now varied with one of the random parameters, which
leads to larger values of the damage. A single hidden layer network was used
for the displacement and phase field, with 6 and 18 hidden units respectively.
The total run time was around 1.5 hours.

for certain initializations. Other times, we see some differences in the so-
lutions that it converges to. These are problems if our goal is to devise
a reliable numerical method for performing uncertainty quantification on
the phase field model. Perhaps a better-tuned optimization algorithm can
mitigate some of these issues, but this seems to be an inevitable feature
of nonlinear discretizations for nonlinear problems.

• Small networks: the MATLAB implementation of the neural networks in
its current form is not scaleable to large problems. We write out the neural
networks for the displacement and phase field as symbolic expressions,
which allows us to easily compute the spatial derivatives required for the
energy objective. This method is extremely flexible and easy to implement,
but is not computationally efficient. For example, when the neural network
is called in the forward mode, the parameter vector which determines the
weights and biases is completely “unpacked.” In other words, there is not
vectorized dependence of the network on the parameters, which reduces
numerical efficiency. The small networks used in this report are sufficiently
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Figure 19: Uncertainty bounds on the damage for the three parameter uncertain
material. We do not see the fact that much larger damage values are observed
as a result of modulating the size of weakened region reflected in looking at the
one standard deviation confidence interval for the damage.

expressive for the 1D problem, but this will almost certainly not be the
case for higher dimensions. One upshot of the small network approach is
that it suggests very deep networks are not needed, as many reports in the
literature suggest. The successful application of small- to medium-sized
networks could help the Deep Ritz method be competitive with traditional
finite element techniques.

• Optimization algorithm: we used a quasi-Newton optimization algorithm
with line search to minimize the expectation of the potential energy. Ini-
tially, this was motivated both by convenience, and a need for explicitly
enforcing the irreversibility constraint between load steps. That being
said, we later observed that the irreversibility constraint could be lifted in
the case of 1D monotonic loading. Quasi-Newton algorithms seem to be
becoming more popular in the machine learning literature, and the built-
in line search is advantageous for preventing the divergence of objectives
with complex loss landscapes. But the line search imposes an implicit
constraint that gradients are computed accurately. This means that we
could not minibatch gradients at each optimization step, and integration
over the stochastic space needed to be reasonably accurate. With this
constraint, the stochastic Deep Ritz method suffers from the curse of di-
mensionality, as every new stochastic dimension exponentially increases
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Figure 20: Largest and smallest values of the damage at each spatial point
among the Monte Carlo sample from the neural network trained on the three
parameter random fracture energy. It is not clear why symmetry is broken here,
but the extreme cases of the parameters which give rise to larger damage values
are observed with low probability and are thus not highly weighted in the energy
objective.

the number of function evaluations used in computing integrals. An al-
ternative is to use a stochastic gradient method such as ADAM, but we
then lack the ability to easily tack on the irreversibility constraint to the
objective. Furthermore, it is not a given that ADAM with Monte Carlo
integration over the stochastic dimensions at each optimization steps out-
performs the quasi-Newton method, as we expect the cost associated with
allowing for inaccurate gradients is that the number of steps required for
convergence is much larger.

• Load stepping/constraint: though we outlined a viable technique for load
stepping and enforcing the irreversibility constraint, we did not make use
of these for uncertainty quantification. If we have the ability to do con-
strained optimization, irreversibility presents no issues so long as it doesn’t
introduce convergence difficulties. But if we change optimization algo-
rithms, it may be advantageous to reconsider the proposed technique for
constraint enforcement, opting instead for something like a penalty to the
energy.

• Slow convergence of the damage: in all of the cases studied in this report,
it was observed that the displacement converged very early in the opti-
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mization while the phase field required a much larger number of steps to
find an optimal solution. A few examples indicated that the magnitude
of the gradient with respect to parameter for the damage ϕ was much
smaller than that of the displacement. This effect could be mitigated as
a result of rescaling the material parameters E and G such that displace-
ment and phase field contribute more equitably to the gradient. At this
time, it is not clear what other techniques might be useful for expediting
the convergence of the phase field.

A Crack Density Function

Figure 21: Sharp crack geometry, and the diffuse representation of the crack
with length scale ℓ. This figure is borrowed from this paper.

We have claimed that the energy associated with the opening of cracks in a
homogeneous material (constant fracture energy G) is

Eϕ =
G

2ℓ

∫
ϕ2 + ℓ2

∂ϕ

∂xi

∂ϕ

∂xi
dΩ

The material parameter G measures the energy required to open a unit sur-
face area of crack, meaning that it has units J/m2. The total energy expended
in opening cracks is then GΓ where Γ is the total area of cracks formed. This
implies that for a given phase field ϕ, the crack area is

Γ =
1

2ℓ

∫
ϕ2 + ℓ2

∂ϕ

∂xi

∂ϕ

∂xi
dΩ

It is not at all clear why this should be the case. It makes sense that the total
crack area could be computed by integration the damage over the domain, but
why the “density” of crack area takes this form is not obvious. We can begin
to familiarize ourselves with this construction of the crack area by considering
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a simple example. A sharp crack in an infinite 1D bar with cross-section A will
be spread out over a finite width, as shown in Figure 21. The sharp crack is

ϕ(x) =

{
1 x = 0

0 otherwise

whereas the “smeared” crack is represented by

ϕ(x) = e−|x|/ℓ

The length scale ℓ controls how narrow the crack is. Smaller length scales
lead to sharper crack geometries. This crack shape is not based on any physics, it
is simply a reasonable seeming approach to spread the crack over a finite width.
Now, observe that this function satisfies the following differential equation:

ϕ(x)− ℓ2
∂2ϕ

∂x2
= 0, ϕ(0) = 1,

∂ϕ

∂x
(−∞) =

∂ϕ

∂x
(∞) = 0

This is a bit of strange differential equation given that it has no forcing
term and is driven by a prescribed value, which would need to be enforced as a
constraint. The calculus of variations can be used to verify that this differential
equation arises from a variational principle stated as

I(ϕ) =
A

2

∫ ∞

−∞
ϕ2 + ℓ2

(
∂ϕ

∂x

)2

dx

The cross-sectional area appears because we integrate over the volume of the
bar, but make use of fact that the phase field only depends on the axial coordi-
nate x. The differential equation expresses the condition for a minimum of this
energy-like functional. The smeared approximation of the sharp crack we have
given can be conceptualized as the minimum to this energy-like functional given
the constraint that ϕ(0) = 1 and the two zero Neumann boundary conditions at
±∞. Seeing how the minima of this energy functional interpolates between the
two boundary conditions and a prescribed value of the damage gives a sense of
its behavior. In this case, it seems to prefer sharp gradients which quickly drive
the solution down to zero. The length scale ℓ controls how localized the solution
is. Note that governing equation ϕ = ℓ2ϕ′′ states that the solution equals its
curvature at each point. This means that if the solution is nonzero, it must be
changing rapidly in a convex manner. This helps us understand its tendency to
localize.

If we take the diffuse crack ϕ = e−|x|/ℓ and plug it into the functional I(ϕ),
one can easily show that

I(e−|x|/ℓ) = Aℓ

Remember that we have used this diffuse crack approximation to model
complete fracture of the bar. This means that, by construction, we expect
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the area exposed from cracking to be the cross-sectional area A, thus the total
energy expended in fracture is GA. We do not want the crack area to depend
on how we smooth out the sharp crack geometry with the length scale ℓ. Thus,
we can see that the value of the minimum of the new functional Γ(ϕ) = I(ϕ)/ℓ
is simply the cross-sectional area A. From this particular example, we are led
to the conclusion we hoped for, namely that the crack area is given by

Γ =
1

2ℓ

∫
Ω

ϕ2 + ℓ2
(
∂ϕ

∂x

)2

dΩ

where
∫
(·)dΩ = A

∫
(·)dx. Now the fracture area for the fully formed crack is

independent of the length scale, as desired. This is a bit of an unsatisfying ar-
gument, though. To summarize: a particular form of diffuse crack was assumed
which seemed to arise as the minimum of an energy functional. This energy
functional was modified slightly such that its value when evaluated at the crack
was the cross-sectional area, which in this particular case was also the crack
area. Is this grounds to claim that in all cases, the functional Γ takes in the
phase field and approximates the crack area? It does not seem that the 1D ex-
ample can be pushed any further to help answer this question. Nor does it seem
like an analogous analytical example is available in 2D. Thus, we can turn to
a computational example. Consider the following problem, depicted schemati-
cally in Figure 22. We have a square plate with a notch of length a. We imagine
this notch as fully fractured material and that the notch is at x2 = L/2, thus
we have ϕ(s, L/2) = 1 for 0 < s < a. We then use the energy functional Γ to
interpolate the damage prescribed at the notch into the entire domain of the
plate. In 2D, the crack area functional is

Figure 22: A square plate with side length L and a notch of length a, along
which ϕ = 1. The boundary conditions are ∂ϕ

∂xi
ni = 0 where n is the local

outward facing normal along the four edges.
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Γ =
1

2ℓ

∫
ϕ2 + ℓ2

∂ϕ

∂xi

∂ϕ

∂xi
dA

Note that the zero Neumann boundary conditions are enforced weakly by this
energy functional. We need find a phase field which minimizes this functional
subject to the constraint that ϕ = 1 along the notch. Call this solution ϕ̃. We
want to verify with a computational example that Γ(ϕ̃) ≈ a. In other words,
we know that the crack length should be approximately the length of the notch
(because we prescribed it), and we want to verify that the functional Γ really
does approximate the crack length. We can discretize the phase field ϕ with a
neural network, and define an objective

Π =
1

2ℓ

∫
ϕ2 + ℓ2

∂ϕ

∂xi

∂ϕ

∂xi
dA+

λ

2

∫ a

0

(
ϕ(s, L/2)− 1

)2
ds

where λ is a penalty parameter used to enforce the constraint the crack is fully
formed along the notch. We can compute the gradient of this with respect
to the neural network parameters defining the phase field, and plug this in to
an unconstrained optimization algorithm to determine the minimizer ϕ̃. Once
we have the solution for a given notch length a from solving the optimization
problem, we can compute Γ(ϕ̃) and compare it to the notch length. See Figures
23-25 for results. Like the 1D example, these results suggest that the crack area
functional leads to localized solutions, and its value corresponds to the total
crack area for a given phase field.

B Strong Form of the Phase Field Model

For completeness, we will derive the strong form of the governing equations for
the total potential energy of the phase field model. Even if these equations
are not used in a numerical implementation, they do provide some additional
insight into the mechanics of the model. The total potential for the anisotropic
phase field model is

Π =

∫
Ω

(ϕ− 1)2Ψ+

(
∂u

∂x

)
+Ψ−

(
∂u

∂x

)
+

G

2ℓ

(
ϕ2 + ℓ2

∂ϕ

∂xi

∂ϕ

∂xi

)
dΩ

−
∫
Ω

biuidΩ−
∫
∂Ω

tiuidS

We ignore load stepping here for simplicity, though it is simple to factor in if
one wishes to make use of the strong form. We also assume going forward that
the dependence of the strain energies on the displacement gradient is implicit.
The strong form of the governing equations is derived by computing the condi-
tion for a minimum of the total potential with the calculus of variations. This
reads
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Figure 23: Surface plot of phase field and crack density in a plate with side
length L = 1, a notch of length a = 1/2, and length scale of ℓ = 0.1. The phase
field interpolates the damage in the notched plate by minimizing the functional
Γ. We can see that outside the crack, the phase field quickly drops to zero. The
crack length is computed by evaluating Γ at the solution. For the plate with
side length L = 1, we compute the crack length as Γ = 0.7. It makes sense that
the crack length from the phase field is larger than the notch given it is smeared
out over a larger region as a result of the interpolation.

δΠ = 0 =

∫
2(ϕ− 1)Ψ+δϕ+ (ϕ− 1)2

∂Ψ+

∂
(

∂ui

∂xj

) ∂δui

∂xj
+

∂Ψ−

∂
(

∂ui

∂xj

) ∂δui

∂xj

+
G

ℓ
ϕδϕ+Gℓ

∂ϕ

∂xi

∂δϕ

∂xi
− biδuidΩ−

∫
∂Ω

tiδuidS

Note that the two variations δui and δϕ are independent. The sets of terms
they multiply must be zero independently. Grouping terms and integrating by
parts the spatial gradients off the test functions, we obtain two separate integral
equations

∫  ∂

∂xj

(ϕ− 1)2
∂Ψ+

∂
(

∂ui

∂xj

) +
∂Ψ−

∂
(

∂ui

∂xj

)
+ bi

δuidΩ = 0

∫ (
2(ϕ− 1)Ψ+ +

G

ℓ
ϕ−Gℓ

∂2ϕ

∂xi∂xi

)
δϕdΩ = 0

As is standard in the calculus of variations, we argue that because the test
functions (or variations) are arbitrary, what they multiply under the integral
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Figure 24: Heat map of the phase field computed by minimizing Γ for a notch
of length 1/2 and length scale ℓ = 0.1. The crack area functional behaves in 2D
as we expect–its minimum corresponds to sharp crack geometries, and its value
corresponds to the total area of cracks formed.

Figure 25: Phase field computed by minimizing the crack area functional for
a notch of length a = 1/4 and length scale of ℓ = 0.05. Evaluating Γ at
this solution gives a crack area of 0.4, which again is slightly more than the
notch length. This seems reasonable in light of the fact that the continuous
interpolation spreads the crack over a larger region than the notch.

must be zero pointwise. This leads to the strong form of the governing equations
for the anisotropic phase field problem:
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∂

∂xj

(ϕ− 1)2
∂Ψ+

∂
(

∂ui

∂xj

) +
∂Ψ−

∂
(

∂ui

∂xj

)
+ bi = 0

G

ℓ

(
ϕ− ℓ2

∂2ϕ

∂xi∂xi

)
= 2(1− ϕ)Ψ+

Remembering that derivatives of the strain energy density with respect to
the displacement gradient (strain) give stresses, the first equation, which is the
balance of linear momentum, says that the stress degrades with the damage, but
only for the part of the strain energy associated with fracture. In other words,
larger strains generate smaller stresses as the damage increases. Intuitively,
this makes sense. The second equation shows that that the damage is driven
by the strain energy associated with fracture, and the driving force decreases
with increasing damage. It seems that the Laplacian of the damage acts as a
sort of diffusive regularization to prevent the formation of zero width bands of
damage. For the isotropic 1D phase field model we consider in this report, these
equations read

∂

∂x

(
(ϕ− 1)2E

∂u

∂x

)
+ b = 0

G

ℓ

(
ϕ− ℓ2

∂2ϕ

∂x2

)
= (1− ϕ)E

(
∂u

∂x

)2
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