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ABSTRACT

Recently, the explicit constraint force method (ECFM) was introduced as a principled approach to

solution reconstruction in the presence of missing physics. In solution reconstruction, parameters of a

physical model are estimated from sparse measurement data as a means to obtain the full solution

field. In contrast, inverse problems target the missing parameters and estimate the solution along the

way. Noting the similarity of the mathematical formulations of these two tasks, we investigate the use

of ECFM to solve inverse problems. First, we compare the ECFM formulation of the inverse problem

to a standard approach using two numerical examples. The first example provides an extension of

ECFM to dynamic problems, and the second offers a novel approach to treat noisy measurement

data. Next, we introduce a method to solve inverse problems for which the parameterized model

has stochastic components. This approach is based on constraint forces and the polynomial chaos

expansion, and is illustrated with another numerical example. Finally, we discuss extensions of ECFM

to recover missing boundary conditions and domain geometries from measurement data, which are

shown to be special cases of problems treated previously in the literature. The purpose of this work is

to extend the mathematical framework of ECFM to novel applications and to gauge the method’s

viability as an alternative strategy for inverse analysis.
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1 Introduction

Philosopher and physicist Mario Bunge defines the task of an inverse problem as identifying the “hidden causes

of observable effects” and gives some examples of inverse problems familiar from daily life: planning, diagnosis,

invention, and design [3]. According to Bunge, these kinds of problems are ubiquitous and generally harder than

the corresponding forward problem. Within scientific computing, inverse problems are frequently used to estimate

parameters describing phenomena in physical systems governed by ordinary or partial differential equations (PDEs). For

example, an inverse problem can be solved to estimate the material properties of a linearly elastic solid using a discrete

set of strain measurements [12]. Another common inverse problem from geophysics is full-wave inversion, in which

the material properties of a medium are inferred from data on wave propagation [23]. Recovering a missing source term

from measurement data is a related inverse problem with applications in seismology and heat transfer, but is challenging

due to its ill-posedness [14, 30]. Because all physical models depend on empirical parameters that are calibrated from

measurement data, inverse problems are a mainstay of scientific computing. This realization challenges the bright line

often drawn between “physics-based” and “data-driven” models in the scientific machine learning community [17].

From Newton’s law of gravitation to the Navier-Stokes and Maxwell equations, all scientific models are data-driven

in some sense, though these models typically have fewer parameters and the “training” process is an inverse problem

rather than the machine learning approaches of modern data-driven models [20, 22].

At the highest level, mathematical formulations of inverse problems split into two broad categories: Bayesian and

deterministic. A typical Bayesian inverse problem uses a parameterized model, a known distribution of measurement

noise, a prior distribution on the unknown parameters, and Bayes’ rule to construct the posterior distribution on

the parameters of interest [7]. The Bayesian approach to inverse problems has been studied extensively in the

scientific community, for example in biomechanics [9], fracture mechanics [19], and full-wave inversion [35]. It is

desirable because uncertainty in the parameter estimate is naturally quantified, which can be an asset for downstream

uncertainty quantification tasks. The presence of a prior distribution on the parameters also allows for the seamless

incorporation of prior knowledge, which may be essential in obtaining parameter estimates if measurement data

is scarce. Furthermore, Bayesian methods are convenient for treating ill-posed problems, as multi-modal posterior

distributions avoid overconfident point estimates which are non-unique [32]. One drawback of the Bayesian approach is

that the posterior distribution does not provide insight into whether the parameterized model is “consistent” with the

measurement data. By consistent, we mean that there is some parameter setting of the model which recovers the data

up to random measurement noise. Post-processing steps involving the posterior predictive distribution are required

to do this work of “model checking” [10]. Though the posterior distribution avoids overconfident point estimates of

the parameters, it does not necessarily guard against overconfidence about the form of the model itself. One standard

approach is to introduce an additive discrepancy such as a Gaussian process to account for the model misspecification

[18, 37]. A more radical alternative is to use a Gibbs posterior distribution, which does not require knowledge of the

data generation process (in other words, the likelihood) and is thus more robust to misspecified models [15].
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While we maintain our interest in misspecified/inconsistent models, we will not pursue the Bayesian approach

to inverse problems any further, as the remainder of this paper is focused on deterministic formulations. In place

of using Bayes’ rule, deterministic inverse problems find a point estimate of the parameters by choosing them such

that the predictions of the model agree as closely as possible with the measurement data [33]. Deterministic inverse

problems have been particularly popular in the physics-informed machine learning literature in recent years, owing to

their convenient incorporation into the standard pipeline of physics-informed neural network training. The original

physics-informed neural networks (PINNs) paper recovered the missing viscosity from the Navier-Stokes equations

using flow data [24]. This was followed up by extensions to conjugate heat transfer [4], contact mechanics [29], and

beam bending [36]. It is typically assumed when formulating a deterministic inverse problem that the parameterized

model is consistent with the measurement data, such that the mismatch between the predictions of the calibrated

model and the measurement data resembles random noise. One exception to this in the PINNs literature is [37], which

introduces an additive correction to account for the discrepancy between the solution of the calibrated PDE and the

measurement data.

Whereas an inverse problem fits the solution of a PDE in the process of estimating the missing model parameters, a

related problem called solution reconstruction does the opposite. With solution reconstruction, the goal is to obtain a

full-field estimate of the state from sparse measurement data, which is often accomplished by estimating the model

parameters. In other words, inverse problems seek the missing parameters and use the solution field en route, whereas

solution reconstruction uses the parameters to predict the solution. Solution reconstruction has also been a topic of

interest in the PINNs community. In [25], the velocity and pressure fields are interpolated with a neural network

and estimated from image data. In [34], neural networks are used to infer the full-field state of the hydraulic head

of groundwater flow by estimating a spatially varying constitutive parameter. Similarly, [8] estimates coefficients

in the governing equation as a step in reconstructing the full-field state of the velocity field of shallow water waves.

Deterministic inverse problems and solution reconstruction are equivalent when the parameterized model is consistent

with the measurement data. However, when the parameterized model is inconsistent with the measurement data,

the recovered parameters may cease to be meaningful and are treated only as a means to reconstruct the state field.

Recently, the explicit constraint force method (ECFM) was introduced as a principled approach to performing solution

reconstruction in the presence of misspecified models [27]. ECFM introduces additional source terms into the system

which enforce that the predictions of the parameterized model agree with the measurement data. The model parameters

are then chosen such that the magnitude of the constraint force is minimal, and the value of the constraint force at the

minimum provides a measure of consistency between the parameterized system and the data. It was also shown that

this formulation of the solution reconstruction problem allowed for the use of the variational energy objective, unlike

traditional approaches.
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While ECFM was first introduced for solution reconstruction, the close resemblance of solution reconstruction to

deterministic inverse problems raises questions regarding the method’s utility in this unexplored context. As such, the

purpose of this paper is two-fold:

1. We introduce ECFM as a novel formulation of deterministic inverse problems and compare its performance to

traditional methods relying on the mismatch between the model predictions and the data;

2. We discuss extensions of ECFM to dynamic problems, stochastic models, missing boundary conditions and

domain geometries, as well as introduce a new approach to handling noisy measurement data.

In [27], only the recovery of parameterized differential operators and source terms in the static setting was considered,

thus these extensions represent an expansion of the scope of problems that ECFM can treat. The rest of this paper

is organized as follows. In Section 2, we introduce an abstract formulation of the standard PDE-constrained inverse

problem, as well as sketch our approach based on constraint forces. In Section 3, we provide three numerical examples

of inverse problems based on ECFM. In the first two, we compare our proposed method against a standard formulation

based on the squared error between the model predictions with the data. In the third example, we illustrate the use of

ECFM in the case that the parameterized model has stochastic components. Each numerical example represents an

extension of ECFM to a new class of problems. Then, in Section 4, we discuss how recovering boundary conditions and

domain geometry from measurement data reduces to the previously-treated cases of parametric differential operators

and/or source terms. In Section 5, we summarize our findings and provide directions for future work.

2 Two approaches to the inverse problem

In this section, we introduce a standard approach to deterministic inverse problems, as well as the proposed ECFM

formulation. This is done abstractly, as we rely on the subsequent numerical examples to make the discussion concrete.

Our purposes here are to illustrate the differences between the two methods and introduce notation that is used

throughout the paper. To this end, we take the system of interest to obey the following initial and/or boundary value

problem:

N (u)(y) = 0, y ∈ Ω,

B(u)(y) = 0, y ∈ ∂Ω,
(1)

where u is the system state, y are coordinates that may involve space and/or time, Ω is the domain on which the state

is defined, N (·) is a differential operator, and B(·) is a boundary operator which may involve initial and/or boundary

conditions. We are deliberately vague about whether the system is static or dynamic, as subsequent numerical examples

involve both sorts of problems. Eq. (1) is the governing equation for the system from which the measurement data used

in the inverse problem is taken. Now, we measure the system state u(y) at C distinct points, which is given by
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V = {vi}Ci=1 =
{
u(yi) + ξi

}C

i=1
= M(u(y)) +Ξ, (2)

where {yi}Ci=1 are the positions of measurements, M is a measurement functional, and Ξ = {ξi}Ci=1 is the additive

measurement noise. The noise is taken to be zero-mean Gaussian with no correlations between measurement points or

components of the state, i.e., ξi
i.i.d.∼ N(0, σ2I) where σ2 is the variance.

In order to set up the inverse problem, we introduce an initial and/or boundary value problem parameterized by ϵ,

where these are the parameters to be recovered. This reads

G(w; ϵ)(y) = 0, y ∈ Ω(ϵ),

Q(w; ϵ)(y) = 0, y ∈ ∂Ω(ϵ),
(3)

where w is the state, G(·; ϵ) is the parameterized differential operator, Q(·; ϵ) is the parameterized boundary operator,

and Ω(ϵ) is the parameterized domain. We call ϵ the “model parameters” going forward. Using Eqs. (2) and (3), the

standard formulation of the deterministic inverse problem [33] is given by

argmin
ϵ,w(y)

1

2
∥V −M(w(y))∥2

s.t. G(w; ϵ)(y) = 0, y ∈ Ω(ϵ),

Q(w; ϵ)(y) = 0, y ∈ ∂Ω(ϵ),

(4)

where ∥·∥ is the Frobenius norm in the case of a vector-valued state w. This PDE-constrained optimization problem is

interpreted as follows: find the model parameters ϵ such that when the governing equation of Eq. (3) is solved, the

measured state agrees as closely as possible with the data V. An advantage of this approach is its robustness to noise in

the case that the parameterized model is consistent with the data. When there is measurement noise, the objective in

Eq. (4) is not driven down to zero because the parameterized model is not capable of exactly reproducing the noisy

measurement data. This is no cause for concern, however, as the discrepancy between the model and the data is zero

mean in expectation at the solution of Eq. (4). Thus, assuming consistency of the parameterized model and a sufficiently

rich set of measurements, we expect to recover the true parameters both in the noisy and noise-free cases. We remark

that there is no reason to expect accurate recovery of model parameters when the model is misspecified.

Like the case of solution reconstruction, the formulation of the inverse problem based on constraint forces is more

sensitive to noise [27], and thus the noisy and noise-free cases require separate treatment. For the sake of exposition, we

present the noise-free case here, and defer a discussion of noisy measurement data to a numerical example in Section 3.

We remark that one approach to handling noisy data is introduced in [27]. This approach is rather complex from both

a theoretical and implementation standpoint, as it involves implementing a custom solution procedure analogous to
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inequality-constrained optimization with Lagrange multipliers. Owing to its complexity, this is not pursued further in

the current work, as we propose a more straightforward alternative in the following section. For now, the noise variance

is taken to be zero (σ2 = 0). Following [27], ECFM modifies the governing equation of Eq. (3) to read

G(w; ϵ)(y) +

C∑
i=1

λiΓ(y − yi) = 0, y ∈ Ω(ϵ),

Q(w; ϵ)(y) = 0, y ∈ ∂Ω(ϵ),

(5)

where Γ(y − yi) are “constraint forces” centered on the measurement locations and λi are the constraint force magni-

tudes. As an analogy to the method of Lagrange multipliers—which, when solving inverse or solution reconstruction

problems, also introduces source terms that are scaled to enforce data constraints—the constraint force magnitudes are

chosen such that the system state w agrees with the measurement data at any setting of the model parameters ϵ. In

contrast with the “soft constraint” on the measurement data given in Eq. (4), ECFM takes the measurement data as the

ground truth, but does not assume that there is any setting of the model parameters that is capable of reproducing it.

The optimal setting of the model parameters is then taken to be the one which minimizes the total constraint force:

argmin
ϵ,λ,w(y)

1

2
∥λ∥2

s.t. G(w; ϵ)(y) +

C∑
i=1

λiΓ(y − yi) = 0, y ∈ Ω(ϵ),

Q(w; ϵ)(y) = 0, y ∈ ∂Ω(ϵ),

M(w(y))−V = 0.

(6)

Though initially explored as a technique for solution reconstruction, Eq. (6) is equally valid as a formulation for the

inverse problem. In words, this optimization problem states: find the model parameters ϵ which minimize the magnitude

of the source terms required to make the solution field w coincide with the measurement data V. To use the language of

solid mechanics, whereas the standard inverse problem of Eq. (4) minimizes the discrepancy with the data in the sense

of “displacement,” the constraint force formulation of Eq. (6) finds the model parameters that minimize the discrepancy

with the data in the sense of “force.” In the opinion of the author, the overarching philosophy of inverse problems is

tuning parameters to minimize a model’s discrepancy with measurement data. When viewed in this light, there are

many ways to define discrepancy. For example, small displacement discrepancies may require large constraint forces to

correct. Similarly, depending on the system of interest and the position of measurements, large discrepancies in the

displacement may require small constraint forces to correct. Is it clear that there is a singular correct definition of the

discrepancy of the parameterized system with the measurement data? Certainly, the ECFM approach has yet to be

explored in the context of inverse problems. The following section represents an initial exploration of inverse problems

with constraint forces, and introduces three extensions of ECFM along the way.
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3 Numerical examples

3.1 Dynamics

The first numerical example is that of a classical time-dependent PDE. The measurement data in the inverse problem

arises from a scalar velocity field u(x, t), which is taken to obey Burgers’ equation with homogeneous Dirichlet

boundaries:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ s(x, t), u(0, t) = u(1, t) = 0, u(x, 0) = u0(x), (7)

where [0, 1] is the spatial domain, ν is the viscosity, s(x, t) is a source term, and u0(x) is the initial velocity field. The

velocity is observed without noise at spatial points {xi}Ci=1 and continuously in time. The measurement data is thus

vi(t) = u(xi, t). The goal of the inverse problem is to estimate the viscosity and the scaling of the source term from

sparse measurements. The system is parameterized with

∂w

∂t
+ w

∂w

∂x
= 10−ϵ1

∂2w

∂x2
+ ϵ2s(x, t), w(0, t) = w(1, t) = 0, w(x, 0) = u0(x), (8)

where w(x, t) is the velocity field used in recovering the parameters, and prior knowledge that the viscosity is small

informs our choice to estimate its logarithm. The velocity field is discretized with

ŵ(x;θ(t)) =

N∑
i=1

θi(t)fi(x),

where the hat notation indicates an approximation, N is the number of degrees of freedom in the discretization, and

{fi(x)}Ni=1 are basis functions satisfying fi(0) = fi(1) = 0. The discretization allows measurements to be taken as

a linear transformation of the degrees of freedom, which is given by vi(t) = Mijθj(t), where Mij = fj(xi) is the

discretized measurement operator. To obtain a numerical solution, we compute the Galerkin weak form of Eq. (8) in

space and plug in the discretization to obtain a system of ordinary differential equations. This reads:

N∑
j=1

θ̇j

∫ 1

0

fjfidx+

N∑
j=1

N∑
k=1

θjθk

∫ 1

0

fj
∂fk
∂x

fidx+ 10−ϵ1

N∑
j=1

θj

∫ 1

0

∂fj
∂x

∂fi
∂x

dx = ϵ2

∫ 1

0

s(x, t)fidx,

where we have used integration by parts to transfer derivatives from the discretized velocity to the test function in

the diffusion term. Pre-computing and storing all matrix quantities defined by integrals of the basis functions, this

expression is re-written as

Mij θ̇j +Aijkθjθk + 10−ϵ1Kijθj = ϵ2Fi(t).
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This is a system of ordinary differential equations whose solution can be approximated with time integration. Using the

backward Euler method, the nonlinear system of equations governing the solution at the next time step is

R(θt+1;θt, ϵ1, ϵ2) =

(
M

∆t
+ 10−ϵ1K

)
θt+1 +A : (θt+1 ⊗ θt+1)−

M

∆t
θt − ϵ2Ft+1 = 0, (9)

where ∆t is a fixed time step and—by starting with the initial condition θ0,i =
∫ 1

0
u0(x)fi(x)dx and marching forward

in time—the solution at the previous time step θt is known. As a shorthand, we denote the tensor quantity Aijkθjθk

with A : (θt+1 ⊗ θt+1). The total simulation time is T and the number of time steps is P , such that ∆t = T/P . This

system of equations is solved with Newton’s method, given by

θk+1
t+1 = θk

t+1 −
(
∂R

∂θ
(θk

t+1)

)−1

R(θk
t+1),

which continues until ∥R(θk
t+1)∥ < T , where T is a user-defined convergence criterion. Even when the dependence of

the residual on the solution at the previous time step and the model parameters ϵ is omitted, it is understood to depend

on these quantities.

We first present the standard formulation of the inverse problem before proceeding to modify the governing equation

to accommodate constraint forces. With the standard approach, the inverse problem is solved by minimizing the

discretized time integral of the squared error of the solution with the data at the measurement positions:

argmin
ϵ,θ1,θ2,...

∆t

2

P∑
i=1

∥Mθi − vi∥2

s.t. R(θt+1;θt, ϵ) = 0 t = 0, 1, 2, . . . ,P − 1,

(10)

where vi = v(i∆t) is the measurement data evaluated on the time integration grid. We call the above objective function

zINV. We choose to treat the solution parameters as an explicit function of the model parameters through the constraint

equation with sensitivity analysis. First, we assume that θ(t) = θ(t; ϵ), meaning that the solution parameters are always

computed through Eq. (9). Second, noting this dependence, we write the gradient of the objective as

∂

∂ϵ
zINV(ϵ) =

∂

∂ϵ

∆t

2

P∑
i=1

∥Mθi − vi∥2 = ∆t

P∑
i=1

(Mθi − vi) · M
∂θi

∂ϵ
. (11)

To compute the sensitivity derivative ∂θt/∂ϵ, we differentiate the discretized governing equation in continuous time

with respect to the two model parameters:
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Mij
∂

∂t

(
∂θj
∂ϵ1

)
+Aijk

∂θj
∂ϵ1

θk +Aijkθj
∂θk
∂ϵ1

− ln(10)10−ϵ1Kijθj + 10−ϵ1Kij
∂θj
∂ϵ1

= 0,

Mij
∂

∂t

(
∂θj
∂ϵ2

)
+Aijk

∂θj
∂ϵ2

θk +Aijkθj
∂θk
∂ϵ2

− Fi(t) = 0.

A solution to these two systems of equations is approximated with backward Euler time integration on the same

integration grid as the forward solution. As such, the governing system of equations for the sensitivity derivatives is

M
∆t

∂θt+1

∂ϵ1
− M

∆t
∂θt

∂ϵ1
+A : ∂θt+1

∂ϵ1
⊗ θt+1 +A : θt+1 ⊗ ∂θt+1

∂ϵ1
− ln(10)10−ϵ1Kθt+1 + 10−ϵ1K∂θt+1

∂ϵ1

M
∆t

∂θt+1

∂ϵ2
− M

∆t
∂θt

∂ϵ2
+A : ∂θt+1

∂ϵ2
⊗ θt+1 +A : θt+1 ⊗ ∂θt+1

∂ϵ2
− Ft+1

 = 0. (12)

Note that the initial conditions on the sensitivity derivatives is zero because the initial condition of the solution

parameters does not change with the model parameters. This system is also solved at each time step with Newton’s

method. Thus, the gradient of the objective—which is now unconstrained—is computed with Eqs. (11) and (12) and

supplied to the optimizer in search of a minimum error setting of the model parameters. This is the approach we take to

find a solution to the standard formulation of the dynamic inverse problem given by Eq. (10).

To construct the ECFM approach to the inverse problem, we first introduce time-dependent constraint forces to the

governing equation of Eq. (8):

∂w

∂t
+ w

∂w

∂x
= 10−ϵ1

∂2w

∂x2
+ ϵ2s(x, t) +

C∑
i=1

λi(t)Γ(x− xi), (13)

where the boundary and initial conditions remain unchanged and Γ(x − xi) are constraint forces centered on the

measurement locations. The spatial form of the constraint forces is chosen by the analyst. The constraint force

magnitudes λi(t) are additional unknowns used to enforce that the system agrees with the time-dependent measurement

data. Computing the weak form of Eq. (13), we obtain

Mij θ̇j +Aijkθjθk + 10−ϵ1Kijθj = ϵ2Fi(t) + Γijλj ,

where Γij =
∫ 1

0
Γ(x− xj)fidx is the force vector corresponding to the constraint forces. Again, using backward Euler

time integration, the solution at the next time step is governed by

(
M

∆t
+ 10−ϵ1K

)
θt+1 +A : θt+1 ⊗ θt+1 −

M

∆t
θt − ϵ2Ft+1 − Γλt+1 = 0. (14)

Recalling that the constraint forces enforce the data constraint, we solve an expanded system of equations to jointly

determine the solution parameters and constraint force magnitudes:
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R̃(θt+1,λt+1;θt, ϵ1, ϵ2) =

(M∆t + 10−ϵ1K
)
θt+1 +A : θt+1 ⊗ θt+1 − M

∆tθt − ϵ2Ft+1 − Γλt+1

Mθt+1 − vt+1

 =

R̃1

R̃2

 = 0.

(15)

In analogy to Eq. (6), the ECFM formulation of the time-dependent inverse problem is

argmin
ϵ,θ1,λ1,θ2,λ2,...

∆t

2

P∑
i=1

∥λi∥2

s.t. R̃(θt+1,λt+1;θt, ϵ) = 0 t = 0, 1, 2, . . . ,P − 1.

(16)

We call the objective function measuring the constraint force magnitude zECFM. We use sensitivity analysis to rid the

optimization problem of the constraint, though this is more delicate in the case of ECFM. We treat the constraint forces

as explicit functions of the model parameters ϵ, and eliminate the dependence of the optimization problem on the

solution parameters θ. To accomplish this, we first solve for the constraint forces as a function of the model parameters

using Newton’s method at each time step:

θt+1

λt+1

k+1

=

θt+1

λt+1

k

−

∂R̃1/∂θ ∂R̃1/∂λ

∂R̃2/∂θ ∂R̃2/∂λ

−1 R̃1(θ
k
t ,λ

k
t )

R̃2(θ
k
t ,λ

k
t )

 , (17)

which continues until ∥R̃(θt,λt)∥ < T , where T is a user-defined convergence criterion. Though we do not write it

explicitly, it is understood that the residual system depends on the model parameters ϵ and that the Jacobian matrix

is evaluated at the current Newton iterate of the solution parameters and constraint forces. Eq. (17) enforces that the

constraint forces are explicit functions of the model parameters. Noting this dependence, we write the gradient of the

objective in Eq. (16) as

∂

∂ϵ
zECFM(ϵ) =

∂

∂ϵ

∆t

2

P∑
i=1

∥λi∥2 = ∆t

P∑
i=1

λi ·
∂λi

∂ϵ
. (18)

In order to compute the sensitivity of the constraint force, we differentiate the discretized governing equation in

continuous time:

Mij
∂

∂t

(
∂θj
∂ϵ1

)
+Aijk

∂θj
∂ϵ1

θk +Aijkθj
∂θk
∂ϵ1

− ln(10)10−ϵ1Kijθj + 10−ϵ1Kij
∂θj
∂ϵ1

− Γij
∂λj

∂ϵ1
= 0,

Mij
∂

∂t

(
∂θj
∂ϵ2

)
+Aijk

∂θj
∂ϵ2

θk +Aijkθj
∂θk
∂ϵ2

− Fi(t)− Γij
∂λj

∂ϵ2
= 0.

(19)

Now, we must also differentiate the continuous time constraint equation. This introduces two additional contributions to

the system of equations governing the sensitivity of the solution parameters and constraint forces:
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M ∂θ

∂ϵ1
= M ∂θ

∂ϵ2
= 0.

Using the results of the forward solve of Eq. (17), approximating the time derivatives in Eq. (19) with the backward

Euler method, and augmenting the resulting system with the constraint equations, we obtain a scheme to solve for the

constraint force sensitivities at each time step. This is given by


M
∆t

∂θt+1

∂ϵ1
− M

∆t
∂θt

∂ϵ1
+A : ∂θt+1

∂ϵ1
⊗ θt+1 +A : θt+1 ⊗ ∂θt+1

∂ϵ1
− ln(10)10−ϵ1Kθt+1 + 10−ϵ1K∂θt+1

∂ϵ1
− Γ∂λt+1

∂ϵ1

M∂θt+1

∂ϵ1

M
∆t

∂θt+1

∂ϵ2
− M

∆t
∂θt

∂ϵ2
+A : ∂θt+1

∂ϵ2
⊗ θt+1 +A : θt+1 ⊗ ∂θt+1

∂ϵ2
− Ft+1 − Γ∂λt+1

∂ϵ2

M∂θt+1

∂ϵ2

 = 0

(20)

Note that the initial conditions on both the sensitivity derivatives of the solution parameters and the constraint forces are

zero because the initial velocity does not change with the model parameters, and thus no constraint force is required to

enforce agreement with the initial measurements. When the constraint force objective is computed at a given ϵ through

Eq. (17), and its gradient is computed with Eqs. (18) and (20), the minimization of the constraint force magnitude is

without constraints. We now compare the performance of the constraint force formulation of the inverse problem to the

standard approach.

Figure 1: Problem setup for extracting the viscosity and source term magnitude from flow data generated by solving
Burgers’ equation.

In this example, we choose to work with zero measurement noise and an inverse problem in which the parameterized

model is consistent with the measurement data. Thus, we expect a successful method to exactly recover the parameters

of the true model if sufficient data is provided. We take the initial condition to be u0(x) = sin(2πx), which gives rise to

the well-known shock pattern when ν = 0. The solution is discretized with basis functions given by fi(x) = sin(iπx)
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for i = 1, . . . , N , which ensures that the homogeneous Dirichlet boundary conditions are satisfied automatically. We

take N = 50 shape functions in the discretization, C = 4 evenly spaced measurement points, simulate the problem

over a time interval T = 2, using P = 100 time integration points. Eqs. (7) and (8) show that the true magnitude of the

source term is ϵ2 = 1. We take the space-time form of the source term to be s(x, t) = sin(2πx) sin(2πt). The true

viscosity is ν = 1.78× 10−2, which corresponds to a viscosity model parameter of ϵ1 = 1.75. The constraint forces

are one-dimensional finite element hat functions centered on the measurement positions. See Figure 1 to visualize the

initial condition, the measurement/time integration grid, the constraint forces, and the source term. Figure 2 shows the

true velocity field and the noiseless measurement data taken from it. The convergence criterion for the Newton solve in

both the standard inverse problem and the constraint force formulation is T = 10−6. For both the standard inverse

problem and the ECFM formulation, we use ADAM optimization with a learning rate of 10−2 to find a minimum of

the unconstrained objective with gradients manually computed using sensitivity analysis. For both problems, ADAM

optimization is run for 250 epochs.

Figure 2: True solution and the time series of the C = 4 measurements taken, which are used in the inverse problem to
recover the viscosity and source term magnitude.

Figure 3 shows the results of the standard inverse problem as well as the corresponding loss surface. After the allotted

250 epochs, the recovered parameters are ϵINV
1 = 1.750 and ϵINV

2 = 1.000, exactly matching the true values to three

decimal places. The loss surface is convex in the vicinity of the solution, indicating a well-posed inverse problem.

Compare this to Figure 4, where the convergence of the constraint force objective and the corresponding loss surface

are shown. The recovered parameters with ECFM are also ϵECFM
1 = 1.750 and ϵECFM

2 = 1.000. We remark that the loss

surface arising from ECFM is better-conditioned than that of the standard inverse problem. Computing the Hessian

matrix of the objective with finite differences around the solution, we obtain a condition number of 8.11 for the standard

inverse problem, and 3.46 for the ECFM formulation. While this is interesting to note, we offer no opinion as to whether

ECFM inverse problems are better-conditioned in general. We expect the standard and ECFM approaches to provide

equivalent estimates of the model parameters when the parameterized model is consistent with the data. This is because

a zero error solution in the sense of displacement/velocity is also a zero solution in the sense of constraint forces.
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Figure 3: The standard inverse problem converges to a zero-error solution because the parameterized model is consistent
with the measurement data (left). The loss surface is convex in the vicinity of the true solution, indicating an identifiable
inverse problem (right).

Figure 4: The constraint force formulation of the inverse problem converges to model parameters with zero associated
constraint force because the parameterized model is consistent with the measurement data (left). The loss surface
representing the constraint force magnitude is also convex in the vicinity of the true solution, indicating an identifiable
inverse problem (right).

3.2 Noisy measurements

With this example, we introduce a new approach to handling measurement noise with ECFM. In [27], noisy

measurements are treated with inequality constraints whose range represents a confidence interval based on the known

distribution of the noise. This method for enforcing inequality constraints draws inspiration from the slack variable

approach familiar from Lagrange multipliers [28]. But, because the form of the constraint forces is controlled by

the analyst, the governing system of equations no longer follows from stationarity of a Lagrange function. Thus,

with this approach, a standard inequality-constrained optimizer cannot be recycled to treat inequality constraints with
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ECFM. Instead, the analyst must develop the routine to handle slack variables and the analogue of the “dual feasibility”

requirement on the constraint forces from scratch [27]. We take this to be a prohibitively complex and/or intrusive

strategy to deal with measurement noise. Yet, when using constraint forces in the presence of measurement noise, it

is important to handle the noise in a principled way. Unlike the squared error objective of Eq. (4), which is robust

to measurement noise, the constraint force objective of Eq. (6) should not be used with noise, given that equality

constraints on the measurement data are enforced. Depending on the measurement positions, very small deviations

of the solution from the measurement data may require large constraint forces to correct. For example, if a noisy

measurement is taken near a Dirichlet boundary of the system, large constraint forces are required in order for the

solution to track the measurement noise, as the system is stiff near the boundary. Given that the magnitude of the

constraint force provides insight into the consistency of the parameterized model with the measurement data, such a

situation would give a false impression of inconsistency, whereas in reality, the constraint forces would be small or zero

if noise was accounted for. Thus, we must devise a new approach to handling noise which is more tractable than that of

[27].

Before we begin the discussion of measurement noise, we first introduce the physics of the test problem. We work with

a scalar-valued nonlinear static PDE called the Fisher-Kolmogorov-Petrovsky-Psikunov (Fisher-KPP) equation, which

is a nonlinear reaction-diffusion PDE used to model population growth and traveling wave fronts [26]. Steady-states of

the Fisher-KPP equation are governed by

µ∇2u(x) + ru(x)(1− u(x)) + s(x) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(21)

where µ is the diffusion rate and r is the reaction rate. We assume homogeneous Dirichlet boundaries, and we set

µ = 1/2 and r = 1 going forward. The nature of the measurements of the true system will be discussed shortly. The

parameterized boundary value problem used in the inverse problem is

1

2
∇2w(x) + w(x)(1− w(x)) + b(x; ϵ) = 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω.

(22)

We do not assume that there is a parameter setting such that b(x; ϵ) = s(x). In other words, we allow that the

parameterized model is inconsistent with the true model, and thus, potentially inconsistent with the measurement

data. The solution is discretized with ŵ(x;θ) =
∑N

i=1 θifi(x), and the source term is discretized with the same basis

functions as b(x; ϵ) =
∑M

α=1 ϵαfα(x) where N ̸= M in general. For clarity, we use Greek indices to distinguish

model parameters from the solution parameters with Latin indices. Like the previous example, we assume that the basis

functions respect the homogeneous Dirichlet boundaries by construction.
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First, we formulate the standard inverse problem, which requires no modifications to be used in the setting of

noisy measurements. We then proceed to introduce a novel technique for handling noise with ECFM. Plugging in the

discretization of the solution and the source term and computing the Galerkin weak form of Eq. (22), we obtain

1

2

(∫
Ω

∇fi · ∇fjdΩ

)
θj −

(∫
Ω

fifjdΩ

)
θj +

(∫
Ω

fifjfkdΩ

)
θjθk −

(∫
Ω

fifαdΩ

)
ϵα = 0.

Computing all integrals of the basis functions, this expression can be written in symbolic form as

R(θ; ϵ) = (K−M)θ +A : θ ⊗ θ − Fϵ = 0,

where the notation A : θ ⊗ θ denotes contraction on the last two indices, i.e., Aijkθjθk. With the discretized

measurement operator M and measurement data v, the standard formulation of the inverse problem is

argmin
ϵ,θ

1

2
∥Mθ − v∥2

s.t. R(θ; ϵ) = 0.

(23)

Eq. (23) is the standard formulation of the static inverse problem. Now, ECFM requires the introduction of constraint

forces into the governing equation of Eq. (22). The constraint force source term corresponding to C measurements is∑C
i=1 λiΓ(x− xi). Introducing the constraint forces, plugging in the discretization of the state, and computing the

weak form, the discretized ECFM system is

R̃(λ,θ; ϵ) = (K−M)θ +A : θ ⊗ θ − Fϵ− Γλ = 0,

where the columns of Γ are the force vectors corresponding to the constraint forces at each of the measurement

positions. In this example, we take the constraint forces to be radial basis functions centered at measurement points,

i.e., Γ(x− xi) =
ω
π exp

(
−ω∥x− xi∥2

)
, where ω controls the width of the radial basis function. The constraint force

vector is thus given by

Γij =

∫
Ω

fi(x)Γ(x− xj)dΩ.

Referring to the terminology of [27], the question we face is: how do we define the analogue of the “inner loop” problem,

which determines the constraint forces as a function of the model parameters ϵ? As discussed above, if the constraint

forces are determined by the equality constraint Mθ − v = 0, spuriously large constraint forces may be required

for the system to track the measurement noise. We propose the following strategy to avoid this: find the minimum

constraint force such that the sample mean and variance of the discrepancy Mθ − v fall within a (1− α)% confidence

interval around their true values. This ensures that the discrepancy replicates the known statistical properties of the

15



measurement operation. The constraint forces thus correct model misspecification—as the statistics of the discrepancy

of a misspecified model will not resemble noise in general—but they do not needlessly force the system to follow the

noisy data. Enforcing that the sample mean and variance of the discrepancy fall within a confidence interval gives rise

to an inequality-constrained optimization problem:

argmin
ϵ,λ,θ

1

2
∥λ∥2

s.t. R̃(λ,θ; ϵ) = 0,

ℓ1 ≤ 1

C

C∑
i=1

(Mijθj − vi) ≤ ℓ2,

p1 ≤ 1

C − 1

(Mijθj − vi)(Mikθk − vi)−
1

C

(
C∑
i=1

Mijθj − vi

)2
 ≤ p2,

where ℓ1, ℓ2, p1, and p2 are bounds based on the sampling distribution of the mean and variance which we discuss

shortly. The equality constraint enforces that the system is in equilibrium, the first inequality constraint enforces that

the sample mean of the discrepancy is in a given range, and the second inequality constraint enforces that the sample

variance is in a given range. We write explicit summations when indices are not repeated, but rely on the summation

convention for repeated indices. Calling the discrepancy ei = Mijθj − vi, this equation can be written in a standard

form as:

argmin
ϵ,λ,θ

1

2
∥λ∥2

s.t. R̃(λ,θ; ϵ) = 0,

1

C

C∑
i=1

ei − ℓ1 ≥ 0,

ℓ2 −
1

C

C∑
i=1

ei ≥ 0,

1

C − 1

 C∑
i=1

e2i −
1

C

(
C∑
i=1

ei

)2
− p1 ≥ 0,

p2 −
1

C − 1

 C∑
i=1

e2i −
1

C

(
C∑
i=1

ei

)2
 ≥ 0.

(24)

We remark that Eq. (24) breaks the structure of an “inner” and “outer” loop problem with which ECFM was originally

presented. This hierarchical structure was the consequence of viewing the solution parameters and constraint forces

as explicit functions of the model parameters, but this was also the cause of the customized procedure for inequality
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constraints. If we forego the inner-outer loop structure, we are free to use a standard inequality-constrained optimizer

to solve Eq. (24). To expedite the optimization process, gradients of the objective and constraints are computed

analytically. Because the three sets of parameters have no explicit dependence on each other, it is not necessary to

perform sensitivity analysis when computing gradients.

We now discuss the determination of the bounds for the inequality constraints on the sample mean and variance. Per

Section 2, we assume that the noise is normally distributed with zero mean and known variance σ2. A result from

elementary statistics [5] states that the “sampling distribution” of the sample mean is given by

1

C

C∑
i=1

ei ∼ N

(
0,

σ2

C

)
,

which corresponds to a standard deviation of σ/
√
C. We thus determine a (1− α)% confidence interval by finding the

limits ℓ1 and ℓ2 such that P
(
ℓ1 < 1

C

∑C
i=1 ei < ℓ2

)
= 1− α. For normal distributions, this is accomplished with the

help of the standard deviation and the z-score. This gives rise to:

ℓ1 = zα/2
σ√
C
, ℓ2 = −ℓ1,

where the z-score is defined implicitly through α/2 =
∫ zα/2

−∞ exp
(
−x2/2

)
/
√
2πdx. The case of the sampling distribu-

tion of the sample variance is a bit more complicated. Another result from elementary statistics states that

1

C − 1

 C∑
i=1

e2i −
1

C

(
C∑
i=1

ei

)2
 ∼ σ2

C − 1
χ2(C − 1),

where χ2(C − 1) is a chi-squared distribution with C − 1 degrees of freedom. We use the analogue of z-scores for

chi-squared distribution, which are given by χα/2,C−1 and χ1−α/2,C−1 respectively. These quantities are inverses

of the cumulative distribution of the chi-squared random variable evaluated at α/2 and 1 − α/2. The limits of the

confidence interval for the sample variance are thus

p1 = χα/2,C−1
σ2

C − 1
, p2 = χ1−α/2,C−1

σ2

C − 1
.

To clarify, the sampling distributions of the sample mean and sample variance of the discrepancy only follow these

relations when they arise purely from measurement noise, and not model misspecification. Hence, the constraints in Eq.

(24) are used to enforce the validity of the assumptions used in constructing these confidence intervals.

We now perform a comparison of the standard inverse problem and the ECFM formulation on the Fisher-KPP

equation. We take the domain to be the unit square Ω = [0, 1]2 and the basis functions to be N = 100 tensor products of

univariate sines sin(iπx1) and sin(jπx2). The source term is discretized with M = 16 basis functions of the same form.
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We take C = 225 uniformly spaced measurements on the interior of the unit square domain and α = 0.05, giving rise to

a 95% confidence interval on the sample mean and variance. This corresponds to z0.025 = −1.96, χ0.025,224 = 184.44,

and χ0.975,224 = 267.35. The true source term is given by

s(x) =

100, 0.25 ≤ x1, x2 ≤ 0.75,

0, otherwise.

Figure 5: The parameterized model is inconsistent with the measurement data because the true source term cannot be
recovered by a finite sine series (left). The true solution is generated by approximating a solution to Eq. (21) with the
discontinuous source term (right). Measurement data is taken at C = 225 locations with normally distributed noise of a
given mean and variance.

The parameterized model of Eq. (22) is thus misspecified, as a finite combination of sines cannot exactly represent

the discontinuous source term. The standard deviation of the measurement noise is given by σ = 5 × 10−2. The

measurement data is generated by approximating a solution to Eq. (21) with the same discretization and the true source

term. See Figure 5 for the source term, the corresponding solution field, and the measurement grid. For both objectives,

we use the scipy “minimize” optimizer with sequential least squares quadratic programming (SLSQP) to solve the

constrained optimization problem. SLSQP iteratively approaches a stationary point of the Lagrange function using a

quadratic approximation of the objective with the BFGS Hessian, a linear approximation of the constraints, and line

search. We provide analytical gradients of both the objective and the constraints. Figure 6 shows the results of the

standard inverse problem. The relative error between the true and recovered solution is

E INV =

∫
Ω
|u(x)− wINV(x)|dΩ∫

Ω
|u(x)|dΩ

= 3.2× 10−2.
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Figure 6: The recovered solution obtains a small relative error with the true solution (left) despite the recovery of the
source term being inaccurate (center). Though the relative error of the solution is small, the empirical distribution of the
error does not reflect the known distribution of measurement noise (right).

The recovered solution obtains low relative error despite the source term being inaccurately recovered. This is a

consequence of the Laplacian operator damping the high-frequency basis functions which contribute to sharpening the

boundaries of the square region of the source term. However, the statistical characteristics of the errors e = Mθ − v

do not match the known distribution of noise. At a 95% confidence level, the null hypothesis that the errors were drawn

from a distribution with variance σ2 is rejected. This disparity between the statistics of the error and the statistics of the

noise is a consequence of model misspecification.

Using the bounds ℓ1, ℓ2, p1, and p2 obtained from the sampling distributions of the sample mean and variance, we use

the ECFM formulation of the inverse problem to recover the model parameters. The results of solving the optimization

problem of Eq. (24) are shown in Figure 7. By construction, the first two moments of the discrepancy fall within their

95% confidence intervals. The relative error of the recovered solution with the true solution is given by

EECFM =

∫
Ω
|u(x)− wECFM(x)|dΩ∫

Ω
|u(x)|dΩ

= 1.1× 10−2.

It is not surprising that the relative error is smaller given that the constraint forces activate to correct model misspecifi-

cation. Qualitatively, the recovered source term is equivalent to that of the standard inverse problem. The lack of sharp

boundaries is an inevitable consequence of the low-frequency discretization. The relative difference between the two

sets of recovered parameters is given by

∥ϵECFM − ϵINV∥
∥ϵINV∥

= 3.2× 10−2,
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indicating only subtle differences in the recovered source term. However, an interesting feature of ECFM is that the

constraint forces provide insight into the missing physics. Figure 8 shows the sum of the constraint force distribution

and the recovered source term. In this case, we have that

s(x) ≈ b(x; ϵ) +

C∑
i=1

λiΓ(x− xi),

when ϵ and λ are determined through a solution to Eq. (24). The constraint force distribution acts as a discretization of

the missing physics, as it can be interpreted directly as a PDE residual. As shown in [27], the clear-cut physical meaning

of the constraint force distribution facilitates post-processing to recover physics absent from the original parameterized

model.

Figure 7: The ECFM approach to inverse problems with known measurement noise. Constraint forces are introduced
into the system to enforce that the discrepancy matches the statistical properties of the noise. The constraint forces are
non-zero and exhibit clear structure, indicating missing physics in the parameterized model.

3.3 Stochastic model

We now discuss the case where the measurements are noiseless, but a component of the parameterized model is

itself random. Situations of this sort arise when there are variables in an experiment which cannot be controlled, for

example the case where multiple parts with different material properties are required to recover parameters of interest.
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Figure 8: The sum of the recovered source term and the constraint forces accurately approximates the source term that
generated the data.

To illustrate this, we consider the case of an axially-loaded Euler-Bernoulli beam with random material properties. As

discussed in [1], the governing equation for the axially-loaded beam is

∂2

∂x2

(
H(x;ω)

∂2u

∂x2

)
+ β

∂2u

∂x2
= p(x), x ∈ [0, 1], (25)

where H(x;ω) is the random bending stiffness, β is the axial load, and p(x) is a distributed bending load. We take the

beam to be simply supported on the left with zero rotation and shear load on the right:

u(0) =
∂2u

∂x2
(0) =

∂u

∂x
(1) =

∂

∂x

(
H(1, ω)

∂2u

∂x2
(1)

)
= 0.

The parameterized system obeys the same governing equation and the same boundary conditions, but with the axial

load β parameterized by ϵ, which is to be determined from the inverse problem. We compute the weak form of the

parameterized system to obtain a numerical solution. To facilitate dealing with boundary terms from integration by

parts, we do this before discretizing the trial and test space. Integrating the parameterized governing equation against an

arbitrary test function δw, we obtain

∫ 1

0

(
∂2

∂x2

(
H(x;ω)

∂2w

∂x2

)
δw + ϵ

∂2w

∂x2
δw − p(x)δw

)
dx = 0.

Note that the test function satisfies δw(0) = 0 and the solution satisfies wxx(0) = 0. Integrating by parts the two terms

involving spatial derivatives one time, we obtain
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∫ 1

0

(
∂

∂x

(
H(x;ω)

∂2w

∂x2

)
∂δw

∂x
+ ϵ

∂w

∂x

∂δw

∂x
+ p(x)δw

)
dx−

(
∂

∂x

(
H(x;ω)

∂2w

∂x2

)
δw + ϵ

∂w

∂x
δw

)∣∣∣∣∣
1

0

= 0.

Both boundary terms from integration by parts disappear as a consequence of the boundary conditions. Canceling the

boundary terms and integrating by parts the first term a second time, the weak form of the parameterized system is

∫ 1

0

(
H(x;ω)

∂2w

∂x2

∂2δw

∂x2
− ϵ

∂w

∂x

∂δw

∂x
− p(x)δw

)
dx−H(1;ω)

∂2w(1)

∂x2

∂δw(1)

∂x
= 0.

For simplicity, we assume that the bending stiffness at the right end is not random, i.e., H(1, ω) = H0. Furthermore,

we assume that the spatial basis functions satisfy all four boundary conditions by construction. We note that the

remaining boundary term is a consequence of the non-zero bending moment on the right end of the beam. Plugging

in the discretization ŵ(x;θ) =
∑N

i=1 θifi(x) and discretizing the test function with the same basis, we obtain the

discretized weak form of the system. In this example, we do not perform a comparison of ECFM with the standard

approach to the inverse problem. Our goal is primarily to illustrate an extension of ECFM to inverse problems with

stochastic models. Thus, per the ECFM approach, we add constraint forces centered on the measurement positions. The

discretized governing equation is thus

(KB(ω)− ϵKG −KBC)θ − F− Γλ = 0, (26)

where KB is the bending stiffness matrix, KG is the “geometric” stiffness matrix corresponding to the axial load, and

KBC is the contribution to the stiffness matrix from the bending moment on the right end. We remark that when the

axial load is sufficiently large, the effective stiffness becomes singular and the beam buckles. We ensure that the true

axial load β is such that this does not occur.

Now, we assume that, unlike past numerical experiments, a series of measurements are taken at each point in space,

corresponding to multiple realizations of the random variable ω. We seek a formulation of the inverse problem that

respects the stochastic nature of the parameterized model, which requires propagating uncertainty in the bending

stiffness through the governing equation of Eq. (26). To accomplish this, we discretize the dependence of the solution

parameters θ on the random variable ω with a polynomial chaos expansion (PCE) [11]. Defining stochastic shape

functions {Ψi(ω)}Mi=1, we discretize the solution parameters in the stochastic space with

θi(ω) = ΘijΨj(ω), j = 1, 2, . . . ,M,

where M is the number of stochastic shape functions in the discretization and Θij is the set of unknown coefficients

governing the system’s response in both the physical and stochastic space. Taking the random variable governing the
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bending stiffness to be uniformly distributed ω ∼ U(0, 1) and plugging in the discretization, the stochastic Galerkin

projection of Eq. (26) is obtained by multiplying by Ψℓ(ω) and computing an expectation:

Θjk

∫ 1

0

(KB
ij(ω)− ϵKG

ij −KBC
ij )Ψk(ω)Ψℓ(ω)dω −

∫ 1

0

(Fi − Γijλj)Ψℓ(ω)dω = 0. (27)

With the coefficients Θ determined through Eq. (27), we use the PCE to compute statistics of the model predictions.

The mean and variance of the model predictions are given by

µi = E(vi(ω)) = MijΘjk

∫ 1

0

Ψk(ω)dω, σ2
i = E(v2i (ω))− µ2

i = MijΘjkMipΘpq

∫ 1

0

Ψk(ω)Ψq(ω)dω − µ2
i ,

(28)

where there is no summation on the i index in the expression for the variance. We decide to treat the solution parameters

as an explicit function of the model parameter ϵ and the constraint forces λ. In other words, Θ = Θ(ϵ,λ) through Eq.

(27).

At this point, we have shown how to perform a forward solve and how to use the PCE coefficients to compute the

first two moments of the model prediction at the measurement points. Now, we need to compare the model predictions

to the measurement data in some way, and devise a notion of optimality for the model parameter ϵ based on constraint

forces. We cannot form confidence intervals on the model predictions as we did in the previous section, because their

distribution is not known in advance. One strategy is to use the density of the model predictions to carry out maximum

likelihood estimation (MLE) for the model parameter. Analogous to enforcing equality constraints on deterministic

data, the constraint forces would then be used to enforce that the data maximizes the likelihood. This was not possible

in the previous section, as only one measurement was taken at each point. In the case of a single measurement with

Gaussian noise, the MLE-maximizing constraint forces would amount to an equality constraint on the data. The

case of multiple measurements at each point makes likelihood maximization a possibility. However, we do not have

an analytic expression for the density, as it is only defined implicitly through the measured PCE solution, given by

MijΘjk(ϵ,λ)Ψk(ω). In fact, the density of the measurements is not even well-defined, as it is obtained through a

transformation R1 → RC , meaning that the pushforward measure is singular in RC and no density exists in the usual

sense. Workarounds exist, for example building the likelihood function as a product of the marginal densities of each

component of the measurement vector [21]. Though feasible in principle, this requires pushing the probability density

through the PCE expansion using the change of variables formula. When doing MLE, we then require gradients not

just of the parameters of the density but of the density function itself. Obtaining the density and its gradient through

the PCE expansion is intractably complex. To avoid this issue, we instead maximize a so-called “pseudo-likelihood,”

which is a product of surrogate models for the unknown marginal density functions [2]. In particular, we perform MLE

with independent univariate normal distributions at each measurement point. The mean and variance of each normal

distribution are given by the outputs of the PCE model through Eq. (28). Though an obvious approximation of the true
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density, this approach is principled, as a Gaussian is known to be the entropy-maximizing distribution with given first

and second moments [6]. We define the pseudo-likelihood function as

L =

C∏
i=1

D∏
j=1

p(vij |µi, σ
2
i ),

where D is the number of samples at each measurement point, vij is the j-th replicate of the measurement at the i-th

point, and p(v|µ, σ2) is the density of a univariate normal distribution with the given mean and variance. The negative

logarithm of this pseudo-likelihood function is

Λ = − logL =

C∑
i=1

D∑
j=1

1

2
log 2πσ2

i +
1

2σ2
i

(vij − µi)
2.

With this pseudo-likelihood function in hand, we are now ready to introduce our approach to solving the inverse problem

with the stochastic model. The constraint forces are used to maximize the pseudo-likelihood of the data, but this can be

accomplished for any model parameter ϵ. The solution of the inverse problem is given by the model parameter such that

the likelihood-maximizing constraint forces are minimal. This optimization problem reads

argmin
ϵ,λ

1

2
∥λ∥2

s.t.
∂Λ

∂λ
= 0.

(29)

Note that the pseudo-likelihood depends on the model parameter through the solution parameters, which determine the

mean and variance of the predictions at measurement points. To clarify this point, we write

Λ(ϵ,λ) =

C∑
i=1

D∑
j=1

1

2
log 2πσ2

i (ϵ,λ) +
1

2σ2
i (ϵ,λ)

(vij − µi(ϵ,λ))
2. (30)

The gradient of the negative log pseudo-likelihood with respect to the constraint forces is required for the optimization

problem of Eq. (29):

∂Λ

∂λ
=

C∑
i=1

D∑
j=1

1

2σ2
i

∂σ2
i

∂λ
− (vij − µi)

2 1

2σ4
i

∂σ2
i

∂λ
− 1

σ2
i

(vij − µi)
∂µi

∂λ
. (31)

The gradients of the mean and variance are given through the PCE expansion as

∂µi

∂λℓ
= Mij

∂Θjk

∂λℓ

∫ 1

0

Ψkdω,

∂σ2
i

∂λℓ
= 2MijΘjkMip

∂Θpq

∂λℓ

∫ 1

0

ΨkΨqdω − 2µi
∂µi

∂λℓ
,

(32)
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where there is again no sum over the i index in the expression for the gradient of the variance. Remember that we treat

the solution parameters as an explicit function of the constraint force and model parameter. Thus, the gradient of the

solution parameters with respect to the constraint forces is obtained by differentiating the governing equation of Eq.

(27). The sensitivity derivative solves the following linear system:

∂Θjk

∂λq

∫ 1

0

(KB
ij(ω)− ϵKG

ij −KBC
ij )Ψk(ω)Ψℓ(ω)dω −

∫ 1

0

ΓiqΨℓ(ω)dω = 0. (33)

The optimization problem of Eq. (29), as well as the gradients defined in Eqs. (31), (32), and (33), represent our

proposed method for solving the inverse problem with constraint forces when the model is stochastic.

We now set up a numerical experiment to test the proposed method. We take the random bending stiffness of the

beam to be

H(x, ω) = H0(2ω|x− 1/2| − ω), ω ∼ U(0, 1).

Figure 9: The spatial basis functions satisfy all boundary conditions by construction (left). The basis functions for
the stochastic space are orthogonal polynomials with respect to the uniform density (center). The bending stiffness
distribution is an idealization of a random defect in the center of the beam, which decreases its stiffness (right).

This ensures that the bending stiffness at the right endpoint is deterministic, and corresponds to a worst-case buckling

load (ω = 1) of βcrit = 2.24. Thus, to avoid buckling, we set the true load at β = 1, and take the distributed bending

load to be p(x) = 100. The spatial shape functions are given by fi(x) = sin((2i− 1)πx/2), which ensure that the

bending displacement satisfies all four boundary conditions by construction. The stochastic basis functions are standard

Legendre polynomials shifted to the interval ω = [0, 1], which we denote as Pn(ω). See Figure 9 for the two sets

of basis functions and the form of the random bending stiffness. There are C = 5 measurement points and each

measurement point comprises D = 25 replicates. Before proceeding, we verify our implementation of the PCE forward
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solve of Eq. (27) and calibrate the size of the basis expansions in the physical and stochastic spaces. With zero constraint

force, we solve the governing equation at discrete settings of the random variable ω. In other words, we compute

θi = (KB(ωi)− βKG −KBC)−1F

for ωi = 0, 1/2, 1. We then compare these predictions of the spatial form of the bending displacement to predictions

obtained from the PCE solve. The reference solutions at discrete settings of the bending stiffness are computed with

15 basis functions, and the PCE expansion uses N = M = 6 spatial and stochastic basis functions. We remark that

low-frequency solutions are expected for bending problems, given the quartic damping on high-frequency Fourier bases

that arises from the fourth-order Euler-Bernoulli bending operator. We also use the PCE solution to generate data for

the inverse problem. With ϵ = β = 1 and λ = 0, the measurements are governed by

vi(ω) = MijΘjk(ϵ = 1,λ = 0)Ψk(ω).

We generate the data vij by taking D random samples from ω ∼ U(0, 1). The results of the comparison and the

generation of measurement data are shown in Figure 10. The PCE solution agrees satisfactorily with the reference

solutions generated by the higher-fidelity discretization. The empirical distribution of the measurement data suggests

that the Gaussian surrogate used in the likelihood maximization is incorrect, as the data is skewed toward lower values

of the displacement. We flag this as one potential source of error in the recovery of the model parameter.

Figure 10: Verifying that the PCE expansion agrees with comparatively high-fidelity solutions for the displacement at
three given settings of the bending stiffness (left). The measurement data is taken at C = 5 spatial points with D = 25
replicates per point (right).

Having established the form of the discretization and generated the data, we are prepared to solve the inverse problem

with the stochastic model. Given the complexity of the equality constraint on the stationarity of the pseudo-likelihood
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in Eq. (29), we choose to approximate a solution to this constrained optimization problem with a penalty approach. The

problem is written in an unconstrained form as

argmin
ϵ,λ

log

(
1

2
∥λ∥2

)
+ αΛ(ϵ,λ),

where α is a penalty parameter and we take the logarithm of the constraint force in order to better balance the two

terms in the loss. Using the scipy SLSQP optimizer with a penalty parameter of α = 100, we recover an axial load of

ϵ = 0.987. The expected error with the true solution is given by

E =

∫ 1

0

∫ 1

0
|u(x, ω)− ŵ(x, ω)|dxdω∫ 1

0

∫ 1

0
|u(x, ω)|dxdω

= 7× 10−3.

As expected for a problem where the parameterized model is consistent with the measurement data, the constraint

force magnitude is approximately zero at the optimal setting of the model parameter. This example represents a proof

of concept for extending ECFM to inverse and solution reconstruction problems in which the parameterized model

contains stochastic components.

4 The cases of parametric boundary conditions and domain geometry

In this section, we show that it is straightforward to extend ECFM to inverse or solution reconstruction problems for

which the boundary conditions and/or the domain geometry are parameterized. For both these cases, we show that when

the problem is discretized, the model parameters ϵ appear in the discretized differential operator and/or the force vector,

meaning that these cases require no method development beyond that of the original ECFM paper [27]. Accordingly,

we derive the corresponding ECFM optimization problems but do not present numerical examples, as, at the highest

level, the cases of parametric boundary conditions and geometry amount to problems that have been studied previously.

To make the following exposition more concrete, we consider the case of steady-state heat conduction. First, we

discuss parametric boundary conditions. Solving inverse problems for unknown or partially known boundary conditions

is of interest in power electronics, where invasive measurements would be required to obtain full knowledge of thermal

boundary conditions [4]. In the case of parametric boundaries, the governing equation is

∇2w + s(x) = 0, x ∈ Ω,

w(x) = g(x; ϵ), x ∈ ∂ΩD,

∇w · n = h(x; ϵ), x ∈ ∂ΩN ,

27



where superscripts D and N denote Dirichlet and Neumann boundaries respectively. First, as is standard in the

finite element and PINNs communities [13, 31], we build the inhomogeneous Dirichlet boundary condition into the

discretization:

ŵ(x;θ, ϵ) =

N∑
i=1

θifi(x) + g(x; ϵ),

where the basis functions fi(x) are zero along the Dirichlet portion of the boundaries. With slight abuse of notation, we

now take g(x; ϵ) as a function which satisfies the inhomogeneous Dirichlet on the relevant portion of the boundary, but

is also defined over the entire domain. Now, compute the Galerkin weak form of the governing equation and plug in the

discretization:

∫
Ω

∇2

(
N∑
i=1

θifi(x) + g(x; ϵ)

)
fj + sfjdΩ = 0.

Integrating by parts, we obtain

∫
Ω

∇

(
N∑
i=1

θifi(x) + g(x; ϵ)

)
· ∇fj − sfjdΩ−

∫
∂ΩN

∇

(
N∑
i=1

θifi(x) + g(x; ϵ)

)
· nfjdS = 0.

Recognizing the boundary integral term as the Neumann boundary condition and re-arranging, we obtain a linear system

for the solution parameters θ:

(∫
Ω

∇fi · ∇fjdΩ

)
θi =

∫
sfjdΩ+

∫
∂ΩN

h(x; ϵ)fjdS −
∫
Ω

∇g(x; ϵ) · ∇fjdΩ.

In symbolic notation, this expression is written as Kθ − F(ϵ) = 0. The ECFM problem to estimate the model

parameters is

argmin
ϵ,λ,θ

1

2
∥λ∥2

s.t. Kθ − F(ϵ)− Γλ = 0, Mθ − v = 0.

The case of the parameterized source term in the discretized governing equation has been treated in [27]. Thus, we

claim that handling parameterized boundary conditions using ECFM for either solution reconstruction or an inverse

problem does not require any new method development.

Parametric domain geometries arise when measurements of a system’s response are used to estimate the position of

the boundary. A famous example of this is the question: “can you hear the shape of a drum?”, which inquires whether

the shape of a drum head uniquely determines the natural frequencies of vibration [16]. When the domain geometry is

parameterized, we write the governing equation for steady-state heat conduction as
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∇2w + s(x) = 0, x ∈ Ω(ϵ),

w(x) = 0, x ∈ ∂Ω(ϵ),

The assumption of homogeneous Dirichlet boundaries is made for simplicity, but places no meaningful restrictions on

our conclusions. We discretize the solution with ŵ(x;θ; ϵ) =
∑N

i=1 θifi(x; ϵ), where the basis functions are taken

to depend on the geometry parameters by virtue of satisfying the homogeneous Dirichlet boundary conditions by

construction. For example, with a finite element basis, this dependence on the model parameters is through the nodes

in the mesh defining the computational domain. Computing the Galerkin weak form of the governing equation and

plugging in the discretization, we obtain

(∫
Ω(ϵ)

∇fi · ∇fjdΩ

)
θi −

∫
Ω(ϵ)

sfjdΩ = 0.

Both the basis functions and the integration domain depend on the model parameters. However, this equation can be

written simply as K(ϵ)θ − F(ϵ) = 0. The corresponding ECFM problem is

argmin
ϵ,λ,θ

1

2
∥λ∥2

s.t. K(ϵ)θ − F(ϵ)− Γλ = 0, Mθ − v = 0.

Here, both the force vector and the stiffness matrix depend on the model parameters. This is the same kind of problem

that is obtained when both the source term and differential operator are parameterized. Parameterized sources and

differential operators have been treated separately in [27], but we argue that no new developments are required to treat

the case where both are parameterized simultaneously. This establishes that ECFM can treat parameterized domain

geometries without any fundamental modifications.

Though the above discussion was carried out in the context of steady-state heat conduction, we claim that the

conclusions generalize to nonlinear and/or vector-valued PDEs. Whether in the setting of an inverse problem or solution

reconstruction, parameters of the boundary conditions appear exclusively in the force vector when the problem is

discretized. Similarly, when the domain geometry is to be recovered from measurements, the model parameters show

up in both the discretized differential operator and the force vector. Although this type of parametric dependence is

more familiar from volumetric source terms or material coefficients, from the perspective of the discretized governing

equation, estimating boundary conditions or domain geometry is an equivalent problem.

5 Conclusion

The purpose of this work was two-fold: to demonstrate the use of ECFM for inverse problems, and to discuss

extensions of the method to novel problem types. In particular, we discussed extensions to dynamic problems, stochastic
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models, parametric boundary conditions and domain geometries, and also introduced a streamlined approach to

handle noisy measurements. The cases of parametric boundary conditions and domain geometries were the most

straightforward, as they were shown to follow from existing test cases of ECFM. In treating the dynamic problem,

we introduced time-dependent constraint forces at measurement points, and performed sensitivity analyses to remove

constraints from the optimization problem. In this noiseless setting, both the standard formulation of the inverse problem

and ECFM recovered the exact solution within the allotted 250 optimization steps. Then, noting the prohibitively

intrusive implementation of the approach for handling noisy measurement data introduced in a previous work, we

devised a new method for measurements with a known noise distribution. This formulation relied on choosing the

model parameter such that the magnitude of the constraint force that enforced agreement between statistics of the

discrepancy and the measurement noise was minimal. Though this disrupted the inner-outer loop structure that has

characterized past treatments of the ECFM problem, we wrote down an inequality-constrained optimization problem

which could be solved with standard optimizers. Lastly, we devised a method based on a polynomial chaos expansion

and maximum likelihood estimation to solve inverse problems with constraint forces when the parameterized governing

equation was stochastic.

We reiterate a point made previously—whereas a standard inverse problem minimizes the model’s discrepancy

with the data in the sense of “displacement,” the constraint force formulation does so in the sense of “force.” This

terminology takes inspiration from solid mechanics. More generally, a standard inverse problem operates on the system

state whereas the ECFM works with the source terms. We believe the fact that the ECFM objective more heavily weights

errors in stiffer parts of the domain to be philosophically interesting. Is it clear that the standard inverse problem’s

equal treatment of all errors is justified? Should errors which require larger forces to correct not be prioritized? We

have no interest in arguing that one or another method is “better.” This work is simply an exploration of an alternative

formulation of deterministic inverse problems. In the case that the parameterized model is consistent with the data,

the zero constraint force and zero error solution agree on the recovered model parameters. In the case where the

parameterized model is inconsistent—which is really the more interesting case—it is not clear how to compare the

performance of the two methods. In general, we do not expect to recover the true model parameters with either method,

nor the exact solution field. As our second numerical example shows, one unique feature of ECFM is that it provides a

discretization of the missing physics.

At this point, the constraint force method has been studied in the context of solution reconstruction and/or inverse

problems for 1) parameterized differential operators, 2) parameterized source terms, 3) noisy measurements (two

strategies), 4) dynamic problems, and 5) stochastic models. We have shown that parametric boundary conditions and

domain geometries are special cases of the first two problem types once the PDE is discretized. Many more example

problems will need to be tried to establish the efficacy of this method compared to the standard approach to deterministic

inverse problems. Our purposes here are to lay the groundwork for such studies. Future work will focus on exploring

the explicit constraint force method in another novel context: optimal experimental design.
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