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Motivation

Phase field models are a popular

technique to model damage and

cracks

Require refined and/or adaptive

meshes when solved with the

finite element method

Investigate using neural networks

as discretization

Find that a comparatively small
number of degrees of freedom are
required to represent localized
solutions

Figure: Sharp crack represented by

scalar phase field [1]
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Neural Networks and PDE’s

Karniadakis et al [3] introduce

Physics-informed Neural

Networks (PINN’s)

Solution represented with a

feed-forward network

“Trained” by minimizing the

strong form residual at discrete

points

No data!

Figure: A single hidden-layer

feed-forward neural network [2]
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Neural Networks and PDE’s

Various techniques available to

enforce boundary conditions

Inspired many related

investigations

Figure: Incompressible Navier-Stokes

simulation from [3]
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Overview of Methods

Di↵erent methods correspond to di↵erent perspectives on PDE

solution

Can be further categorized by method of BC enforcement

When possible, minimizing the variational energy is appealing
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Why Neural Networks?

Global basis, no mesh

Continuous and di↵erentiable

Easy to implement and prototype

Convenience of automatic

di↵erentiation

Neural networks very expressive

Handle parametric problems easily

Figure: Spectral basis [10]
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The Deep Ritz Method

Principle of Minimum Potential Energy

If ⇧

⇣
u(x)

⌘
is an energy functional and the PDE solution u(x) is

parameterized by ✓, then the Galerkin optimal parameters can be

determined by computing ✓⇤ = argmin

✓
⇧

⇣
u(x ; ✓)

⌘

Weights, biases, and architecture of network define discretization

Solution is a nonlinear function of the parameters

Variants of gradient descent or Newton-type optimization strategies

used for minimization
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Simple Example: 1D Boundary Value Problem

@2u

@x2
+ 1 = 0, u(0) = u(1) = 0

⇧
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u(x)

⌘
=
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◆2

� udx

The solution is discretized with parameters ✓ = [w1, b1,w2]:

u(x) = wT
2 sin(⇡x)�(w1x + b1)

where �(·) is a nonlinear activation function and sin(⇡x) enforces
boundary conditions. The condition for a minimum of the energy is:
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Simple Example: 1D Boundary Value Problem

Compute number of steps to

obtain 1% relative `1 error with

analytical solution

Sequential Quadratic

Programming (SQP) with line

search sensitive to initialization

Stochastic gradient descent slower

to converge, but useful for

complex objectives
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Other Examples
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Energy Formulation of Isotropic Phase Field Fracture

Introduce the phase field � 2 [0, 1]. The elastic potential energy is

modified to account for energy associated with crack formation:

Cracks release strain energy through softening the material, but also take

energy to form. The displacement and phase field are such that the total
energy is minimized.

Conor Rowan EMI 2024 13 / 35



Additional Considerations

Load application is quasi-static process

Cracks cannot “heal” =) �t+1
(x) � �t

(x)

Phase field model needs to be load-stepped, meaning that forces

and/or displacements are applied incrementally

Conor Rowan EMI 2024 14 / 35



Remarks on Implementation

Penalty formulation used for the crack irreversibility condition:

⇧
t
=

Z

⌦

1

2
(�t

� 1)
2✏ti Cij✏

t
j d⌦+

Z

⌦

G

2`

✓
(�t

)
2
+ `2

@�t

@xi

@�t

@xi

◆
d⌦

+ �

Z

⌦
max(0,�t�1

� �t
)d⌦

Separate neural networks are used to discretize two displacement

components and one phase field variable:

ui (x) = D
ui (x) + B

ui (x)wui
2 · �(wui

1
x + bui1 )

�(x) =
1

2

⇣
1 + tanh

⇣
pw�

2 · �(w�
1
x + b�1 )

⌘⌘

�(x) = tanh(x)

Combination of ADAM and SQP with line-search used for optimization
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Previous Work

Lian et al. [11] and Goswami et al. [12, 13, 14] use energy

formulation with hard BC enforcement and history variable

Manav et al. [16] use energy formulation with hard BC enforcement

and penalty

In this work, we follow Manav et al. in using the penalty method and
take steps towards uncertainty quantification
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Code Verification

Verify code against 1D analytical solution for displacement control

Comparison with analytical solution breaks down when damage

localizes along x1 direction
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Code Verification
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Code Verification: Damage-Strain

analytical, l=1

computed, l=1

analytical, l=0.5

computed, l=0.5

analytical, l=0.1

computed, l=0.1

analytical, l=0.05

computed, l=0.05
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Code Verification: Stress-Strain

analytical, l=1

computed, l=1

analytical, l=0.5

computed, l=0.5

analytical, l=0.1

computed, l=0.1

analytical, l=0.05

computed, l=0.05

Verify that 2D code finds 1D stress state and correct damage-strain

relation

Stop generating data when damage localizes

Very good agreement in this regime
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Displacement-driven Notched Plate (Plane Stress)

Pre-Defined Notch
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functional s.t. � = 1 along notch

Displacement applied along top surface

Problem parameters: E = 10, ⌫ = 0.2, G = 1, ` = 0.05, L = 1,

a = 1/2, ⇠ 4000 integration points, 140 total neural network

parameters
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Results: Phase Field

Damage widens slightly when coupled with elasticity problem

Crack follows expected path for notched tension specimen

Fully-fractured at Uedge = 0.65
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Results: Displacement Field

Accurately captures displacement discontinuity across crack surface

Nonlinear activation functions are well-suited for representing this

kind of response
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Results: Loading Curves
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System Stiffness

Crack length can be computed by evaluating crack energy functional

at the converged phase field =)
1
2`

R
⌦ �2

+ `2r� ·r�d⌦

Rate of crack growth increases with the applied displacement; system

exhibits softening behavior after the crack reaches a critical length
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Work in Progress: Uncertainty Quantification
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Discussion

Small networks su�ciently expressive to capture localized solution

Penalty formulation is a simple approach to enforce irreversibility

constraint

Qualitative features of crack problem reliably captured; need to

investigate “speed” of crack growth

Changing optimization algorithm impacts the solution; ADAM widens

damage but grows crack length, SQP sharpens damage profile but

overly sti↵

Extending Deep Ritz Method to uncertainty quantification is

promising
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Future Work

Verify rate of crack growth

Better understand influence of the optimization algorithm

Explore more sophisticated adaptive integration techniques

Work on di↵erent fracture patterns

Extend UQ e↵orts to more realistic problems
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