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1 Introduction

The equilibrium configuration of a linearly elastic body is found by computing
the displacement field which minimizes the “total potential energy” Π. This
energy functional is defined as

Π
(
u(x)

)
= U −W =

∫
V

ΨdV −
∫
v

biuidV −
∫
S

tiuidS

The functional U is the internal strain energy of the system, and W is the
work done by external body forces and tractions. The total strain energy of the
system is computed by integrating the strain energy density Ψ over the volume
of the body. In linearly elasticity, we know that

Ψ =
1

2
σijϵij =

1

2
Cijkℓϵijϵkℓ

This also demonstrates that the stress and strain tensors are related through
the strain energy density with

σij =
∂Ψ

∂ϵij

It is often said that the stress is “conjugate” to the strain when they are
related through gradients of the strain energy. There are a number of concepts
at play here which are relatively simple to understand in the case of linear
(small strain) problems, but become less clear in non-linear elasticity. The first
set of questions relate to the energy formulation: why does the equilibrium
configuration of a body correspond to minimizing an energy functional? Why is
this energy functional the difference between internal energy and external work?
The second set of questions relates to the conjugate relationship of stress and
strain: what does it mean for stress and strain measures to be conjugate to
one another? How does the same strain energy density spit out different stress
measures when differentiated with respect to various strains? Where does this
strain energy density come from?
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One answer to concerns around the energy formulation of linear elasticity is
that one can easily verify that the Euler-Lagrange equations corresponding to
the energy functional lead to the strong form of the governing equations of elas-
ticity, which are derived based on force balances alone. Thus, equilibrium and
energy minimization simply say that the displacement field satisfies Newton’s
second law at every point in the body. This suggests that the energy is appro-
priately defined, but does not justify it is a fundamental principle. Regarding
the conjugate relationship between stress and strain, it is simple to see by dif-
ferentiation that the above relationship holds, but once again, verifying that it
is correct does not explain what it means.

I believe that answering these questions involves deeply understanding ther-
modynamics. In non-linear elasticity, thermodynamic principles are more freely
evoked, though derivations of finite strain models do not tend to carefully ex-
plain their foundation in thermodynamics. One example of this is the constant
invocation of the “free energy” as the appropriate analogue of the strain energy
density in linear elasticity. This is a fundamentally thermodynamic quantity,
especially because it involves temperature and entropy (as we will see). In my
experience, the meaning and role of the free energy in finite strain elasticity is
totally perplexing. In this short report, I will attempt to explore how concepts
like equilibrium, energy minimization, and free energy are fundamentally tied
to thermodynamics. Namely, I will demonstrate from a statistical thermody-
namic perspective how the equilibrium configuration of a box of gas is obtained
by minimizing the Helmholtz free energy. Just as principles of elasticity ap-
pear impossible to fully grasp without appeal to thermodynamics, it seems that
classical thermodynamics is impossible to understand without appeal to the
underlying atomic and statistical nature of matter. This is the domain of sta-
tistical thermodynamics. I have not yet fully charted the connection between
statistical thermodynamics, classical thermodynamics, and continuum mechan-
ics. For example, I am not sure how to derive the total potential energy for an
elastic system starting from a statistical thermodynamic perspective. But, in
showing that the equilibrium state of a box of gas corresponds to the minimum
of a free energy function, I feel that I have gotten a little bit closer.

2 Micro- and Macro-states

Imagine a collection of N fair coins. When we flip every single one of them, each
coin is in either a state of heads or tails with equal probability. By definition,
the “microstate” of the system is the state of all the coins. This could be stored
as a vector

s = [h, t, t, . . . ]T

where h and t represent “heads” and “tails” respectively. Note that we can dis-
tinguish between coins, meaning that each coin is thought of as being labeled so
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that we know which slot in the microstate vector it occupies. This demonstrates
that the order of the entries in the microstate vector matter:

[h, t, . . . ] ̸= [t, h, . . . ]

Conversely, the “macrostate” of the system is the total numbers of heads
and/or tails contained in the microstate vector. Of course, the order of heads
and tails in the microstate vector does not matter when we compute a total
number of heads or tails. The macrostate is a “coarse-grained” representation
of the microstate. If we choose the macrostate to be the number of tails in
the microstate, the coarse-graining operation replaces an N -dimensional vector
with a scalar.

The coin flip system is just an example–we are ultimately interested in phys-
ical systems. For a gas, the microstate is the position and momentum of every
particle making up the gas. In three dimensions, there are six coordinates cor-
responding to every gas particle, thus the microstate vector has dimension 6N
whereN is the number of particles. This requires justification, but it makes intu-
itive sense that the macroscopic state of a collection of gas particles might involve
variables such as temperature and pressure. Though we know that thermody-
namic phenomena are the result of the evolution of microstates of material sys-
tems (after all, apparently fundamental thermodynamic concepts like heat and
temperature are really emergent properties of these discrete systems), we would
like to neglect the tremendously high-dimensional microstate of the thermody-
namic system to whatever extent is possible. The coarse-graining operations
which relate position/momentum microstates to temperature/pressure/entropy
macrostates are an attempt to ignore this complex microscopic behavior with
minimal loss of information. Statistical mechanics should justify how macro-
scopic variables like these accurately characterize the relevant properties of the
system.

It is not necessarily clear that coarse-grained variables should be able to pre-
cisely characterize the states of large statistical systems. Of course, we know
that the coarse-grained approach will not allow us to make claims about what
individual components of the system are doing. We are interested in summary
quantities of the microscopic system, such as the total number of tails (coin flip),
or the total kinetic energy of the system of particles (gas). We envision both
of these systems as statistical, even though it may seem odd to treat a classical
physical system like a collection of particles as random. Of course, these parti-
cles evolve according to the laws of mechanics. But, because we do not know
the state of all of the particles in a gas (and we don’t want to know it!), we
model microstates as occurring randomly. All microstates are equally probable,
so there is some high-dimensional uniform distribution over possible microstates
of the gas system. Note that admissible microstates can be constrained to have
a specific total energy (this is what we observe, after all). This is not important
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right now–the point is that we think of microstates as occurring randomly, even
in a gas.

Because the underlying microscopic systems are statistical, repeating an ex-
periment will yield different measurements of the microstate. We need to demon-
strate that a coarse-grained variable is an accurate characterization of the system
even when the microstates vary randomly from experiment to experiment. In
the coin flip example, does the average number of heads accurately represent the
macrostates we might encounter by repeating the flipping experiment multiple
times? Say that we have N coins. There are 2N microstates available to the
system when we can distinguish between coins. To explore whether the aver-
age is a useful method of coarse-graining the system, we need to more precisely
describe the statistics of the system. The first question we ask is: how many dif-
ferent microstates are there corresponding to the macrostate of m observations
of heads? Call this Ω(m). We can explore this by looking at a few examples. If
N=3, we have

Ω(0) = 1, Ω(1) = 3, Ω(2) = (3 ∗ 2)/2, Ω(3) = 1

Using a general form of this counting variable Ω for a system of N coins,
a probability distribution is obtained by normalizing by the total number of
states:

p(m) =
1

2N
Ω(m;N) =

1

2N
N !

m!(N −m)!

It can be shown that the mean of this distribution is N/2, and its standard
deviation is

√
N/2. Thus, the ratio of the standard deviation to the mean is

σ

µ
=

1√
N

This means that relative fluctuations from the mean become arbitrarily small
as the number of “particles” in the system becomes large. It can be shown with
the central limit theorem that this is a very general result. In other words,
when we sum up many probability distributions, the resulting distribution will
become normal, and the standard deviation becomes very small compared to
the mean as the size of the system grows. This means that when measuring the
state of a system of independently distributed particles whose sum constitute
the measurement, it is very unlikely to take a measurement which differs sig-
nificantly from the mean. This justifies the use of coarse-grained macroscopic
variables like an average for large systems of independently distributed parti-
cles. Note that an important assumption is that each particle contributes to the
coarse-grained variable additively, and that there are no correlations between
microstates. This limits the kinds of systems which the central limit theorem
applies to. If the gas particles interacted strongly with one another, their states
would be correlated, thus the probabilities of finding them in certain states
would not be independent. Similarly, if we were interested in a macroscopic
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variable other than energy, it may not be clear that each particle contributes
additively to this macrostate.

3 Energy and Counting Microstates

Unlike the coin flip example, it is not possible to directly count the number of
microstates a gas can take on because the position and momentum vary con-
tinuously. However, what we can do is say that the number of microstates
available to a gas is proportional to the volume in a state space defining posi-
tion/momenta for all of the particles. If there are no constraints imposed on the
gas, meaning that it could have any energy, volume, etc., there are an infinite
number of microstates available to the system. This is because we integrate over
the entirety of state space. However, if we impose a constraint, such as that the
total kinetic energy of the collection of particles is equal to some constant E,
we constrain ourselves to a subset of state space with finite volume. We know
that the energy of a single particle is p2/2m. This means that a collection of N
particle has a given energy when

N∑
i=1

3∑
j=1

1

2m
p2ij = E

This equation defines a hyperpshere in state space. The number of mi-
crostates available to a system with given energy is thus proportional to the
measure of this hypersphere, whose radius is

√
E. Using the notation Ω(E) to

mean “the number of states with total energy E,” we can write that

Ω(E) ∝ E3(N−1)/2

Thus, we see that increasing the total energy of the system increases the
number of microstates which are consistent with that energy. Similarly, increas-
ing the number of particles increases the number of available microstates.

4 Maxwell-Boltzmann Distribution

We now want to explore how a system of particles with position and momenta
interacts with its environment. Figure 1 shows the “system,” which we will
denote as A, embedded in an environment, which we denote as B. The total
system of A+B is isolated in the sense that its energy and volume are conserved.
Denoting the total system as T , we can write basic relations such as

ET = EA + EB , VT = VA + VB

Both the system and its environment are conceptualized as gases with cor-
responding micro- and macrostates. If we assume that the system and its sur-
roundings only exchange energy but not volume, the number of states will only
depend on the energy. Thus, the number of states available to the system of
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Figure 1: A thermodynamic system interacts with its surroundings, which are
considered to be large. The sum of the two can be treated as an isolated system,
which does not interact with any environment and thus conserves energy and
other quantities such as volume.

interest is ΩA(EA), and the number of states available to the environment is
ΩB(EB). The previous section demonstrated how the number of states is a
function of the energy. Now, we make the additional assumption that

ΩT = ΩAΩB

which says that the microstates of the two systems are independent from one
another. System A being in a particular state does not influence the microstates
available to system B except through the energy relation EB = ET −EA. Now
we make a somewhat strange assumption that will prove to be useful. We argue
that because the environment is large compared to the system of interest, its
energy EB does not change appreciably as the two systems interact. In other
words, the relative changes in the energy of system A will be much larger than
those of system B. We can then take the log of the unknown functional relation
Ω and expand it as a Taylor series:

log(ΩB(EB)) ≈ α+ βEB

=⇒ ΩB(EB) = eα+βEB

It is not obvious why this is useful, and we do not know the coefficients α and
β at this point. The question we will ask is: what is the probability that system
A is in a particular microstate s = [x1

1, x
1
2, x

1
3, p

1
1, p

1
2, p

1
3, . . . , x

N
1 , xN

2 , xN
3 , pN1 , pN2 , pN3 ]

with a given energy EA?

The number of microstates of the total system for which A is in a particular
microstate is simply ΩB ∗ 1. This is because system A and B are independent
from one another except through energy exchange. So when the energy EA goes
down, there are less microstates available to A, thus the chance of finding it in
a particular one increase. This is the same as saying that as EA gets small, the
energy EB increases, which increases ΩB . Thus, we can write

6



p(s|EA) ∝ ΩB(EB) = ΩB(ET − EA) = eαeβET e−βEA ∝ e−βEA

This means that the probability of finding system A in a particular mi-
crostate s with energy EA is proportional to e−βEA . To make this a true proba-
bility, we need a normalization constant. This normalization constant is supplied
by the “partition function” Z. It is not exactly clear what we sum over in order
to find this normalization constant. One thought is that the probability that
the system is in some state at some energy is unity. This reads∑

E

∑
s|E

=
1

Z
e−βEA = 1 =⇒ Z =

∑
E

ΩA(E)e−βE

This is strange because the energy states E are not discrete, and it doesn’t
seem intuitive that system should be able to take on all energy states with equal
probability. At the end of the day, the partition function Z is just some number
and often turns out to not be important. We can now write

p(s, EA) =
e−βEA

Z

This is the probability that A is in a specific microstate with energy EA.
What about the probability that A is in any microstate with energy EA? This
is equivalent to asking what is the probability that system A has some energy,
regardless of what microscopic configuration gives rise to that. This can be
written by a simple counting argument as

p(EA) = ΩA(EA)
e−βEA

Z

If we define a new quantity S = κ log(ΩA), we can write this probability as

p(EA) =
1

Z
e−(βEA−S/κ)

Now we need to relate the unknown parameters β and κ to properties of the
system of particles that are measurable.

5 Determining Parameters

We will ultimately relate the parameter β to the macroscopic quantity of tem-
perature, and choose a convenient value of κ once β is determined. Before we
do this, we need to establish a certain result: that the temperature is related
to the average kinetic energy of a particle. We will do this for the simplified
model of an ideal gas, though this should be a general result. The pressure in a
gas is related to the momentum transfer from particles colliding with the walls
of the container. The pressure the i component of velocity of a given particle
exerts on the wall is proportional to m∆vi = 2mvi because the collision reverses
the sign of the velocity component. We do not know the time over which this
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reversal takes place, but we can get around this. For particles only moving in
the x direction and colliding elastically with a wall in the y − z plane, the net
force they exert on the wall is

F = pA =

∫
A

2(mv̄x)(v̄x)
N

V
dydz

where V is the volume of the container and N is the number of particles. This
expression says that an average collision imparts momentum 2mv̄x to the wall,
and this happens at a rate proportional to the average speed, and the density
of particles. This allows us to define the pressure as

p =
N

V
mv̄22

It is not clear where the factor of 2 goes. For general three-dimensional
velocities, we define the mean square speed v̄2 such that v̄2x = v̄2y = v̄2z = 1

3 v̄
2.

This allows us to write the pressure as

p =
N

V

1

3
mv̄2

Now we can recognize the average kinetic energy of the particle as e = 1
2mv̄2.

Rearranging and substituting this, we obtain

PV =
2

3
Ne

But the ideal gas law states that PV = NkT where k is the Boltzmann
constant. Thus, we have found that

e =
3

2
kT

The average kinetic energy of a particle with a three-dimensional velocity
vector in the gas is related to the temperature. The energy is shared equally
between the velocity components, so that the energy associated with one of
these components is kT/2. We will use this result shortly.

We will now ask the same question of our statistical mechanical model of the
gas: what is the average kinetic energy associated with one velocity degree of
freedom in the gas? Note that for the gas, the total energy is

E = C

N∑
i=1

3∑
j=1

v2ij

where C = m/2 and i indexes the particle number while j indexes the velocity
component. We want the average energy associated with a single degree of
freedom vij . We can write the total energy as

E = E1 + E2 = Cv21 + E2
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where this notation is meant to suggest that Cv21 is the energy associated with
the degree of freedom we are interested in, and E2 is the remaining energy from
all other velocity degrees of freedom. This expression parameterizes the previ-
ously derived probability distribution for the state and energy of the system.
We can then say

p(s, E(v1, . . . )) =
1

Z
e−β(Cv2

1+E2)

Using this distribution, we now compute the expected the value of E1:

< E1 >=
1

Z

∫
s

∫
v1

∫
E2

(Cv21)e
−βCv2

1e−βE2dE2dv1ds

This notation is fairly unclear. We have to integrate over all of the degrees of
freedom defining the energy, and all of the states at a given energy. The integral
over E2 is meant to represent integration over all velocity degrees of freedom
besides v1. The integral over states s is interpreted as adding up all of the states
associated with a given energy level. Abstractly, we think of the integral over the
states as depending on the energy only through the limits of integration. The
integrand is a uniform probability distribution by the assumption of all states
being equally probable. The partition function when written with integrals
takes a similar form:

Z =

∫
s

∫
v1

∫
E2

e−βCv2
1e−βE2dE2dv1ds

We need to argue that the three integrals factorize. If somehow
∫
s
ds = Ω,

i.e. the number of states is independent of the energy level, we obtain the result
that

< E1 >=
Ω
(∫

E2
e−βE2dE2

) ∫
v1

Cv21e
−βCv2

1dv1

Ω
(∫

E2
e−βE2dE2

) ∫
v1

e−βCv2
1dv1

=

∫
v1

Cv21e
−βCv2

1dv1∫
v1

e−βCv2
1dv1

It is not clear how exactly this result is obtained given that the number of
states should depend on the energies E1 and E2. This would mean that the
integral over states does not neatly divide out. But this is the expression we are
supposed to obtain. Note that this can be written compactly as

< E1 >= − ∂

∂β

(
log

(∫
v1

e−βCv2
1dv1

))
A simple change of variables integration (y =

√
Bv1) allows this expression

to be dramatically simplified:

= − ∂

∂β

(
log

(
β−1/2

∫
y

e−Cy2

dy

))
= − ∂

∂β

(
log

(
β−1/2

)
+ log

(∫
y

e−Cy2

dy

))
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=
1

2β

But we know from the ideal gas law that the average kinetic energy in a
degree of freedom of a particle is also equal to kT/2. Thus we find that

β =
1

kT

6 Free Energy

Previously, we derived that the probability of finding system A in a macrostate
with energy EA is

p(EA) =
1

Z
e−(βEA−S/κ)

with S := κ log(ΩA(EA)). We have now determined the parameter β in terms
of two familiar quantities: the Boltzmann constant k (empirically determined)
and the temperature T (measurable macroscopic variable). This allows us to
rewrite this probability as

p(EA) =
1

Z
e−(EA−SkT/κ)/kT

Because S is a definition, we have the freedom to choose the constant κ.
This expression makes clear that κ = k is a convenient choice. It turns out S
is the entropy, and it is conventional to choose the constant in the definition
as the Boltzmann constant. With this choice, the probability of finding the
thermodynamic system in a macrostate with given energy is

p(EA) =
1

Z
e−(EA−TS)/kT

Note that because the parameter β was defined in terms of the environment
(system B), the temperature T corresponds to the temperature of the environ-
ment (i.e. T = TB). However, the entropy S is defined with respect to the
number of microstates of system A, thus S = SA. Invariably, it is confusing to
keep track of the systems that the various quantities of interest correspond to.
The temperature of the environment is fixed because it is large compared to the
system of interest. Similarly, Z involves integration over all states and energies,
and functions simply as a normalization constant. If we assume that the system
has a specified energy EA, it is natural to assume that the state we observe is the
one which maximizes the probability p(EA). This is quite an interesting idea:
that the observed states of thermodynamic systems are the most probable ones.
These maximally probable states define equilibrium configurations. Because the
temperature of the environment is fixed, maximizing the probability amounts
to minimizing the term in parentheses within the argument of the exponent.
Thus, the “equilibrium” configuration of the system is the minimum of
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Φ = EA − TS

This is a “thermodynamic potential” called the Helmholtz free energy. Mini-
mizing it involves a competition between the energy EA and the entropy. When
the energy EA is small, the number of available states for the environment ΩB

is large, and that means there are many opportunities for A to take on a certain
microstate. But because we are looking at macrostates, this effect is countered
by the entropy, which tells us that there are fewer ways for A to have a given
energy as that energy decreases. The contribution TS to the Helmholtz free
energy corrects for the observation of macro-, as opposed to micro-states. To
see that minimizing the free energy corresponds to equilibrium, observe that

∂Φ

∂Ea
= 1− TB

∂SA

∂EA
= 1− TB

∂

∂EA
k log(ΩA(EA)) = 1− TB

TA

where we are now using a general result that ∂Si/∂Ei = 1/Ti. Entropy and
temperature are said to be thermodynamically conjugate variables. Equilib-
rium, interpreted as the maximum probability state of the system, is thus given
by

TA = TB

7 Conclusion

We have seen that minimizing an energy to find the equilibrium configuration
of a system is equivalent to maximizing the probability of observing a certain
macrostate. This quite a profound result! By starting from high-dimensional
random microscopic states, we have obtained macroscopic principles which gov-
ern the kinds of behavior we will observe thermodynamic systems exhibit. In
order to extend this analysis to elasticity, we need to change our conceptions
about the energy associated with the underlying material system. Solids are
not collections of freely moving particles, rather these particles are bonded to-
gether. Thus, it may be necessary to include potential energy of bond stretching
in addition to kinetic energy. Furthermore, solids deform and thus “exchange
volume” with their surroundings. It can be seen that the “Gibbs free energy”
characterizes a gaseous system which can vary in volume. In this case, work
done on the system takes the form W =

∫
pdV . Internal energy of the system

simply has to do with the temperature of the gas. In solids, however, we need
energy storage in the form of elastic deformation. This means that the internal
energy should include strain energy

∫
ΨdV , which will likely be related to the

potential energy of the bonded atoms. External work done on the system should
take the form W =

∫
V
biuidV +

∫
S
tiuidS. I suspect that a Gibbs free energy

type thermodynamic potential should govern the equilibrium of an elastic body
when a) we account for the fact that particles in a solid have kinetic and po-
tential energy, b) we correctly prescribe energy storage in the form of strain
energy in addition to temperature, and c) the form of external work is adjusted
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to align with that of an elastic body. I see it as very profound that minimizing
energy to find equilibrium is equivalent to, and maybe even derived from, the
extremization of a high-dimensional probability distribution.
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