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The equations for beam bending are fourth-order and are thus quite different
from the usual applications of homogenization techniques on second-order equa-
tions. It is interesting to investigate what applying the perturbation method
yields on this model. The governing equation for bending of an Euler-Bernoulli

beam is
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where z is the axial coordinate, F(z) is the Young’s Modulus, I(z) is the mo-
ment of inertia of the cross-section, u(z) is the bending displacement, and p(x)
is the distributed bending force. We will carry out the usual homogenization
approach: the material has multiscale behavior which depends on the fine scale
coordinate y = £ where 7 is the width of the periodically repeating microstruc-
ture, the displacement is expanded into a coarse and fine scale contribution
u’(z) = u¥(x) + ul(x,y), and derivatives have a coarse and fine scale compo-
nent d/dz" := 0/0zx + (1/1)0/0y. We assume that the cross-sectional moment
of inertia is the constant 1 for simplicity, as the geometry of the cross-section
will not play a fundamental role in the homogenized response. Plugging the
multiscale expansions into the governing equation, we have
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where we have switched to subscript notation for derivatives. Without further
expanding this expression, it can be seen that there will only be one term at the
lowest order of 1. Thus, the microscale equation will have no forcing, which is
not what we expect from usual homogenization problems. Perhaps the error is
in assuming that the first order displacement term u° is independent of the mi-
croscale coordinate y. Technically, this is something which needs to be proved,
though it is often treated almost like a modeling choice. Removing this assump-
tion would make the resulting expressions even more tedious. Thus, we will take



a different route to explore homogenized beam bending equations. The central
insight of homogenization is that to a good approximation differential equations
with high frequency periodic variations in the material tend behave like as if
the material were some (unknown) constant. The homogenization procedure
provides a way of approximating this constant as a function of the periodic
variations. For this reason, we refer to the homogenized response as an “effec-
tive” material property. See this plot for an example. In lieu of deriving an
explicit homogenization framework that provides a means to approximate the
effect properties, we can conduct a kind of “data-driven” homogenization. This
is a simple process—first, we parameterize the spatial variation of the multiscale
material. This is done in the following way:

2 3
E(z; Ey,a,b,¢c,n) = Ey + asin<m> + bsin(m) + csin(m)
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This is just one simple model of a multiscale material. There are five pa-
rameters: the “mean” Fjy, the scale size 1, and three weights on sine functions
of different frequency. We see that the material only depends on the fine scale
coordinate y = x/7n. Note that the coefficients must be chosen such that the
stiffness does not become negative. The next step is solve this equation exactly,
which can be done by writing
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and integrating numerically. When no constants of integration are included in
the solution, we have that

u(0) = u/'(0) =" (0) = u"(0) =0

which is fine for our purposes, though this is not a typical set of boundary
conditions. Ignoring the constants of integration simplifies the analysis, but
does not fundamentally change the problem. With an exact solution in hand,
we can now ask: is this function well-approzimated by the solution to a bending
problem with the same force but a constant stiffness? If so, we can compute this
stiffness and treat it as the effective material property. In calibrating single scale
solutions from the multiscale solution, let’s use p(z) = 1 for simplicity. With
constant forcing, the single scale solution with constant but unknown stiffness
can be written analytically as
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which comes from repeated integration and ignoring constants of integration.
We can fit the homogenization parameter C' with a least-squares procedure as
follows:


https://www.desmos.com/calculator/2uglpouxks
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We are assuming that like typical homogenization problems, the exact solu-
tion of the multiscale Euler beam will be very well approximated by an effective
stiffness. For a given set of parameters determining the material, we can deter-
mine the effective stiffness by minimizing the error:
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This is a way of computing the effective properties for a given set of parame-
ters from the analytical solution. Repeating this process can be used to generate
a data set relating the microstructure parameters to the homogenized stiffness,
and this data could be fit with a neural network to act as a homogenization sur-
rogate model. The surrogate model could be queried for new combinations of
parameters within the training data set to compute the homogenized stiffness.
Note that one test of whether the beam model can actually be “homogenized”
is whether the effective properties computed from one force generalize to a dif-
ferent one. I find that the homogenized properties computed for the constant
bending force work very well for different loads. This suggests that there should
be a way to analytically homogenize the Euler beam bending equations. It is
quite surprising the extent to which the effect of high-frequency periodic fluctu-
ations in the material are captured by a reduced constant stiffness. See Figures
for results. See Figures[7]and [8for discussion of using a data-driven surrogate
model for homogenization.

As a final demonstration of this homogenization method, we can use the sur-
rogate model for uncertainty quantification. We assume that the parameters in
the multiscale material are distributed uniformly and have no spatial correla-
tion. To avoid extrapolating the surrogate model, these uniform distributions
are defined over the same range as was used to generate the training data. At
every integration point in the forward solve, the surrogate model is used to
evaluate a random homogenized material property for the multiscale material.
Note that it is no longer clear what would constitute an analytical solution for
even a single forward solve of this problem, as we are assigned microstructures
of finite size to points. See Figure [J] for results of the Monte Carlo simulation
of the random material.
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Figure 1: A particular choice of Young’s Modulus displaying multiscale behavior
from the given parameterization. Note that the oscillations are a large percent
of the average.
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Figure 2: The exact solution computed with the multiscale modulus can be
very accurately approximated by a constant modulus. Note that the multi-
scale beam is less stiff than the solution computed using the direct average
over the microstructure Fy. This is the case for second-order homogenization
problems as well. Even though the modulus displays very large oscillations,
the exact solution is smooth. This departs from exact solutions in second-order
homogenization problems and seems to be a function of the higher-order of dif-
ferentiation.
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Figure 3: The homogenized material properties calibrated on a constant bending
force of p = 1 also function to model the beam for different loading configura-
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tions. Here the force is p(x) = (1 — x) sin(27z).
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Figure 4: Another example of a multiscale microstructure generated with the
Fourier-type parameterization. The scale size 7 is significantly larger in this

case.
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Figure 5: Exact solution fit with constant stiffness solution. Once again, the
multiscale behavior manifests not in oscillations of the displacement rather as a
net loss of stiffness.
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Figure 6: Verifying that the effective modulus computed using p(z) = 1 are
accurate when used to compute the bending displacement for a distributed force

of p(z) = —(1— (%))4 The homogenized stiffness perfectly matches the exact
solution.
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Figure 7: A two-hidden layer neural network with 12 neurons per layer is written
out symbolically in MATLAB, then it is differentiated symbolically with respect
to the parameters. The forward and gradient operations are written to files as
numerical functions. A loss function is written as another file then fed to a
quasi-Newton optimizer. The parameters of the network are tuned to map
the relationship between the five parameters in the material modulus and the
homogenized stiffness. The network is capable of representing this relationship
nicely. Note that only 3 values of average parameter Ey are used in training,
which explains the disjoint values.
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Figure 8: We can verify that the surrogate model makes “well-behaved” pre-
dictions interpolating between different values of Fj that were not explicitly
seen in the training set. Though we do not know the ground truth in this case,
it is clear the interpolation behavior is quite regular. Three different sets of
parameters controlling the oscillations and scale size of the microstructure are
used here.
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Figure 9: The parameters of the microstructure are sampled uniformly within
the ranges the surrogate model was trained on, and a random effective property
is assigned at each integration point. We perform 400 Monte Carlo simulations
and show the distribution of end displacement values.



