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1 L2 Optimality

Consider the following boundary value problem

∂2u

∂x2
+ u = b(x), u(0) = u(1) = 0

The distributed force b(x) is an input, assumed to be known continuously,
that drives the displacement u. Solving this equation can be treated as an
approximation problem: we want to find u(x) such that its second derivative
plus itself is as close to b(x) as possible. It would be possible to do this in
a continuous way using the calculus of variations. Our objective is naturally
defined as

Π
(
u(x)

)
=

1

2

∫ 1

0

(
∂2u

∂x2
+ u− b

)2

dx

We want to find a minimum of the loss function in terms of the displacement
u(x). Using the calculus of variations, we can write the condition for a minimum
as

δΠ = 0 =

∫ 1

0

(uxx + u− b)δuxx + (uxx + u− b)δudx

To obtain a governing equation, we can integrate by parts two derivatives off
the variation δu. There are no boundary terms because we have two Dirichlet
boundaries. Noting that the variation is arbitrary, we obtain the following as a
condition for a minimum:

∂2

∂x2
(uxx + u− b) + uxx + u− b = 0

This is a useless route to take. Our method for solving a second order prob-
lem has turned it into a fourth order problem. The issues lies in trying to stay
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continuous. We need to build the solution up from a finite set of parameters.
Just like vectors can be approximated in terms of a given basis by choosing co-
efficients, we can specify a basis for approximating functions. The displacement
can be approximated with

u(x) ≈
∑
i

uifi(x)

where fi(x) is a set of functions that are either given or chosen to construct
the approximation. Note that they must respect our boundary conditions
u(0) = u(1) = 0. Returning to the expression for the error, we can plug in
this approximation to obtain

Π
(
u1, u2, . . .

)
=

1

2

∫ 1

0

(∑
i

ui

(
∂2fi
∂x2

+ fi

)
− b(x)

)2

dx

We now only have a finite number of unknowns u1, u2, . . . , uN in the form of
coefficients on the basis functions. We can minimize this loss function with the
standard multivariate calculus technique of setting its gradient to zero. Doing
so yields

∂Π

∂uj
=

∫ 1

0

(∑
i

ui

(
∂2fi
∂x2

+ fi

)
− b(x)

)(
∂2fj
∂x2

+ fj

)
dx = 0

=⇒
∑
i

ui

∫ 1

0

(
∂2fi
∂x2

+ fi

)(
∂2fj
∂x2

+ fj

)
dx =

∫ 1

0

b(x)

(
∂2fj
∂x2

+ fj

)
dx

Because the basis functions fi are known, these integrals can actually be
carried out. This leads to a linear system which can be used to solve for the
unknown displacement coefficients:

Kjiui = Fj =⇒ u = K−1F

For the given governing equation and boundary conditions, and with these
definitions of the “stiffness matrix” and “force vector”

Kji :=

∫ 1

0

(
∂2fi
∂x2

+ fi

)(
∂2fj
∂x2

+ fj

)
dx

Fj :=

∫ 1

0

b(x)

(
∂2fj
∂x2

+ fj

)
dx

the displacement coefficients are chosen to minimize the total squared error with
the distributed force. For this reason, we call this method L2 optimal, because it
minimizes the L2 loss. It possible to give a rather elegant physical interpretation
of the governing equations which arise from this method. First, let us define
the general boundary value problem
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L
(
u(x)

)
= b(x), u(0) = u(1) = 0

where L is a generic linear differential operator, i.e. a stand-in for some un-
specified differential equation for the displacement u. We approximate the dis-
placement u with the same basis expansion, and because the operator is linear,
it acts only on the basis functions whereas the displacement coefficients can be
factored out. Thus, the error is

Π(u1, u2, . . . , uN ) =
1

2

∫ 1

0

(∑
i

uiL
(
fi(x)

)
− b(x)

)2

dx

The condition for a minimum of the error in terms of the displacement
approximation is

∂Π

∂uj
=

∫ 1

0

(∑
i

uiL
(
fi(x)

)
− b(x)

)
L
(
fj(x)

)
dx = 0

The first term in the parentheses is the error of the approximation. This
measures to what extent the approximation matches the body force. Call this

error e(u). If we think of the integral as a generalized dot product
∫ 1

0
fgdx =

⟨f, g⟩, this equation states that〈
e(u),L(fj)

〉
= 0

This indicates that the best choice of displacement coefficients is when the
error is orthogonal to the each basis functions passed through the linear oper-
ator. So there is some orthogonality principle at work here, though this is still
not totally clear. It can be clarified by considering the analogous problem in the
context of linear algebra. Let’s say we have a point p = (p1, p2) that we want

to approximate in terms of a given basis vector v = [v1, v2]
T . We have a single

degree of freedom s that scales the basis vector. The condition for an optimal
approximation is

∂

∂s

(
1

2
||sv − p||2

)
= 0

=⇒ (sv − p) · v = e(s) · v = 0

where e is once again the error of the approximation. This equation states that
the coefficient s is determined by finding the point in the approximation space
defined by the basis v such that the error is orthogonal to the approximation
space. This means that there is nowhere to move within the approximation space
that reduces the error. This is shown in this plot. Note that if one were asked
to move the slider for s to find the best approximation, one is likely to discover
this orthogonality principle intuitively. This is not quite equivalent to case of
approximating a solution to the different equation, because there an operator
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showed up that does not appear here. We can easily remedy this discrepancy.
The discrete version of any continuous operator is a matrix. An operator takes
in a function and spits out another function, whereas a matrix takes in a vector
and spits out another vector. The problem in linear algebra which is directly
analogous to the differential equation is minimizing the following function

Π(s) =
1

2
||sAv − p||2

We want to approximate the point with a given basis vector but only af-
ter that basis vector is acted on by a matrix. We can think of the action of
this matrix as rotating and stretching the basis vector v, but because the ap-
proximation space spans all scalar multiples of Av, only the effect of rotation
is important. What is the optimality principle here? It is straightforward to
compute the minimal error approximation as

∂Π

∂s
= (sAijvj − pi)Aikvk = e(s) ·Av = 0

The condition for an optimal approximation is now that the error is orthog-
onal to the rotated basis vector. If we look at the expression for the total error,
we see that this is because the approximation is effectively happening in the
space of Av. In other words, if we define a new basis ṽ = Av, we can apply the
first optimality criteria (no matrix operator) to get

e(s) · ṽ = 0

In other words, we want the error not be perpendicular to the basis per se,
rather the space in which p can be approximated. This is the same with the
differential equation. Because we have

L(u) = b

we don’t actually approximate b in the space of our basis expansion of the dis-
placement u ≈

∑
i uifi, rather the “rotated” basis L(fi(x)). We can restate the

condition for a minimum error approximation of the solution to the differential
equation: 〈

e(u),L(fj)
〉
= 0

Hopefully it is now clear what is going on. The displacement coefficients are
chosen such that the approximation is error is perpendicular to each component
of the “effective” basis L(fj). Note that when one actually carries out this
process, the problem reduces entirely to linear algebra (by integrating the set of
basis functions). Thus, it is not a stretch to make use of linear algebra to build
intuition for what is going on here.
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2 Galerkin Method

The L2 optimal technique derived above is not a common technique for solving
differential equations. The reason is that the formation of the linear system
is rather complicated. A more common technique is the “Galerkin projection,”
which treats an optimal approximation as a set of coefficients for which the error
is perpendicular to the basis functions/vectors, not the basis functions/vectors
passed through the operator/matrix. See this plot for a demonstration. Find
the point for which the error is perpendicular to the effective approximation
space Av. Then find the point for which the error is perpendicular to the basis
vector. Note that these are not the same, and the discrepancy grows larger the
more the operator A rotates the basis. The governing equation for a Galerkin
method is 〈

e(u), fj

〉
= 0

For the generic linear differential equation, this is equivalent to∫ 1

0

(∑
i

uiL(fi)− b(x)

)
fj(x)dx = 0

and for our particular differential equation, it is

∑
i

ui

∫ 1

0

(
fifj −

∂fi
∂x

∂fj
∂x

)
dx =

∫ 1

0

bfjdx

where we have used integration by parts to transfer one derivative off fi and
onto fj . There are no boundary terms due to the fact that the basis functions
are zero on the boundary. This is a linear system with

Kij :=

∫ 1

0

(
fifj −

∂fi
∂x

∂fj
∂x

)
dx

Fj :=

∫ 1

0

bfjdx

The Galerkin projection is the most common method for solving differential
equations because it leads to much simpler linear systems with lower orders of
differentiation. Note that it is not clear why this method works if it not derived
from an explicit minimization principle, as was the case for the L2 optimal
method. But evidently it does work. Disparities between the L2 optimal method
and the Galerkin projection will be briefly explored later. Comparing the L2
and Galerkin stiffness matrices for this particular equation does make clear that
this method is quite a bit simpler.
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2.1 Petrov-Galerkin Method

It gets even weirder. Another approach is to treat the condition for an optimal
approximation as 〈

e(u), gj

〉
= 0

where the gj(x) are a set of functions different from those used to approximate
the displacement! Referencing linear algebra again, this is like saying that the
error is normal to a distinct set of vectors than that of the basis. Note that one
particular Petrov-Galerkin method would be using the functions

gj = L(fj)

this recovering the L2 method, but this is not required. This condition for a
Petrov-Galerkin optimal approximation can be written as∫ 1

0

(∑
i

uiL(fi)− b(x)

)
gj(x)dx = 0

and in the case of our particular equation, it is

∑
i

ui

∫ 1

0

(
figj −

∂fi
∂x

∂gj
∂x

)
dx =

∫ 1

0

bgjdx

This leads to a linear system with the following stiffness matrix and force
vector:

Kij :=

∫ 1

0

(
figj −

∂fi
∂x

∂gj
∂x

)
dx

Fj :=

∫ 1

0

bgjdx

Note that the stiffness matrix is no longer symmetric, which can make com-
puting its inverse more costly for large systems.

3 Relation to weak form

The “strong form” of a generic boundary value problem is

L(u) = b(x)

A “weak form” of this equation is obtained by integrating against an arbi-
trary “test” function w:

∫ 1

0

L(u)wdx =

∫ 1

0

bwdx =⇒
∫ 1

0

(
L(u(x))− b(x)

)
w(x)dx = 0
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This is yet another error orthogonality principle. If we discretize the solution
u in the usual way, the weak form of the governing equation be can be expressed
as 〈

e(u), w(x)
〉
= 0

where u1, . . . , uN are the displacement coefficients. This states that the error is
orthogonal to the test function. In theory, the test function is totally arbitrary
but in practice we need to look at a finite set. All of the methods discussed
above can be recovered by making particular choices of the set of test functions.
For the L2 optimal method, we choose test functions which are the basis for u(x)
acted on by the differential operator. For a Galerkin method, the test functions
are simply the basis for the displacement approximation. For a Petrov-Galerkin
method, they are some other set of functions with potentially no relation to
the displacement approximation. We can either think of the weak form as a
different name for minimizing the approximation error, or error minimization
as a nice property of the weak form.

4 Relation to collocation methods

A collocation method discretizes the displacement and minimizes the total er-
ror of the strong form evaluated at given “collocation” points. The loss for a
collocation method is

Π(u) =
1

2

∑
j

(∑
i

uiL(fi)(xj)− b(xj)
)2

The index j refers to collocation points. The idea is that if this error is
minimized, the governing equation is satisfied at the given points. We can
minimize the error in terms of the displacement coefficients with

∂Π

∂uk
=
∑
j

(∑
i

uiL(fi)(xj)− b(xj)
)
L(fk)(xj) = 0

=⇒
∑
i

ui

∑
j

L(fi)(xj)L(fk)(xj)

 =
∑
j

b(xj)L(fk)(xj)

This looks exactly like the L2 optimal method except that integrals are
approximated by sums. If we compute the integrals in the L2 optimal method
numerically on a uniform grid, the collocation method will be equivalent if
collocation points are taken as the integration points. The collocation method
is essentially a less carefully integrated L2 optimal method. It is less careful
because there is nothing that says collocation points should be evenly spaced,
but if they are not evenly spaced their relative contributions to the integral this
method approximates will not be accounted for. It is interesting to see that all
these methods are closely connected. In fact, I have explored elsewhere that the
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finite difference method can be viewed as a special case of a Petrov-Galerkin
method!

5 Numerical comparisons

We numerically solve the 1D boundary value problem we have been discussing.
The displacement is approximated with

u(x) =

N∑
i=1

ui sin(iπx)

and for the Petrov-Galerkin method we use the bizarre and made-up set of shape
functions

gj(x) = sin(πx) exp

(
−10

(
x− j − 1

N − 1

)2
)

See Figures 1-7 for comparison of the different methods for a few different
distributed forces and basis sizes. The stiffness matrices and force vectors are
all formed using MATLAB’s built-in integration tool. It is quite surprising how
well all these seemingly disparate methods agree with each other. In particular,
of all the distributed forces that I looked at, a typical difference between the
displacement coefficients computed with the L2 and Galerkin methods is less
than 1E-15!

Figure 1: When only a few basis functions are used in the approximation
(N = 4), the Petrov-Galerkin method disagrees with the other methods. The
collocation method uses 100 points and a uniformly spaced grid.

8



Figure 2: For N = 4 we try using Monte Carlo integration with a few hun-
dred points to form the stiffness and force vectors for the collocation method.
Collocation points are sampled randomly from the interval [0, 1]. This leads to
integration error which causes the solution to be inaccurate.

Figure 3: With N = 8 and uniformly spaced collocation points, all methods are
in good agreement.
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Figure 4: For N = 8 and uniformly spaced collocation points, all methods are
in good agreement. We do see some slight deviations from the other methods
on the part of the Petrov-Galerkin method.

Figure 5: All methods agree for N = 8 and uniformly spaced collocation points.

6 Stochastic Galerkin and Principle of Minimum
Expected Potential Energy

The minimum expectation of the potential energy associated with a partial dif-
ferential equation (PDE) corresponds to a solution in the stochastic and physical
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Figure 6: All methods agree for N = 8 and uniformly spaced collocation points,
even with only 20 collocation points.

Figure 7: The collocation method only works with Monte Carlo integration
when the number of points is very large. Here we use 1000 integration points
sampled randomly from a uniform distribution.

space. This is a technique for performing uncertainty quantification on PDE’s
with variational principles. The more common Polynomial Chaos Expansion
(PCE) relies on the stochastic Galerkin method, which computes a Galerkin op-
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timal approximation first in the stochastic space, and then in the physical space.
This is usually accomplished with a multiplicative (tensor product) decomposi-
tion of the solution’s dependence on the spatial coordinate(s) and parameter(s).
In our case, we will assume that that the dependence of the solution on the
physical coordinates and parameters is captured with a single set of basis func-
tions. With this setup, we can show the equivalence of the stochastic Galerkin
method with the principle of minimum expected potential energy for elliptic
PDE’s. The stochastic Galerkin method is a simple extension of the approxi-
mation techniques we have outlined above to a continuous variable representing
a parameter appearing in the partial differential equation. For example, if the
modulus of a material depends on a parameter y, then the solution u has con-
tinuous dependence on this parameter just as it does on the spatial coordinates.
Assuming that the parameter y is a random variable, the stochastic Galerkin
method treats the approximation in the “parameter space” just as it does the
approximation in physical space. Consider a simple 1D boundary value problem
(BVP)

κ(x, y)
∂2u

∂x2
+ f(x) = 0, u(0) = u(1) = 0

where u is a displacement-like quantity, x ∈ [0, 1] is the spatial coordinate,
and y ∈ [−∞,∞] is a random parameter that determines the spatially varying
material coefficient κ. Let’s say that the statistics of the random parameter are
described by a known density function ρ(y). For simplicity, we are assuming
that there is only one random parameter and one spatial dimension to ease
the presentation, though the following considerations are general. Because the
coefficient in the BVP depends on the parameter y, the solution u will as well. To
perform uncertainty quantification, we need to understand how the solution u(x)
changes with the parameter y. Once we have a relationship (x, y) → u(x, y),
we can compute statistical quantities of interest such as the mean and variance
of the solution. We can discretize the solution in the “parameter space” of y in
the same way that we discretize it in physical space. This could be done in the
following way:

u(x, y) =
∑
i

ui(x)Ψi(y)

This is a tensor-product type decomposition analogous to how we discretize
space-time PDE’s, where the coefficients control the time dependence of spatial
basis functions. This is how a typical Polynomial Chaos Expansion proceeds.
When using neural networks to discretize a PDE, it is convenient to not distin-
guish between the parameters and spatial coordinates: they both influence the
solution as inputs to the first layer of the network. More closely aligned with
the neural network’s “indifference” to parameters, we discretize the solution in
physical and parameter space with a single set of basis functions:

u(x, y) =
∑
i

uiΨi(x, y)
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The solution u(x, y) is simply some surface, and we can build it up in any
way we wish. We take this approach because it is more closely aligned with
how a neural network handles the spatial coordinates and parameters. The
Galerkin method must account for the fact that y is a random variable. Instead
of simply integrating against each element of the basis for the displacement
approximation, we use the density of y to weight contributions to the weak
form by their corresponding density. This is natural if we think of the density as
“prioritizing” points in parameter space which are more likely to be observed. In
other words, we typically have no notion of importance for points in the spatial
domain, but in the parameter space, there are some regions with zero or almost
zero probability. There is no sense in weighting these equivalently in forming
the residual for the weak form. More concretely, it can be seen that integrating
against the density is equivalent with Galerkin optimality for the expected error
of the approximation. It is hopefully clear that in the presence of randomness,
we would like to minimize the expected error as opposed to an unweighted error,
as the expectation operation will tend to prioritize reducing error in regions
which are frequently observed. The stochastic Galerkin projection for the 1D
boundary value problem yields∫ 1

0

∫ ∞

−∞

(
κ(y)

∂2u

∂x2
+ b

)
Ψjρ(y)dydx = 0

Plugging in the displacement approximation, integrating by parts, and not-
ing that Ψj(0, y) = Ψj(1, y) = 0 for each j, we obtain the discrete standard
weak form for the stochastic PDE:

∑
i

ui

(∫ 1

0

∫ ∞

−∞
κ(y)

∂Ψi

∂x

∂Ψj

∂x
ρ(y)dydx

)
−
∫ 1

0

∫ ∞

−∞
bΨjρ(y)dydx = 0

=⇒
∑
i

ui⟨Kij⟩ − ⟨Fj⟩ = 0

where ⟨·⟩ indicates the expected value taken with respect to the random pa-
rameter y. The notation Kij and Fj is used for the usual definition of the
stiffness matrix and force vector. We know that equations like this come from
the gradients of quadratic energies of the form

Π =
1

2
⟨Kij⟩uiuj − ⟨Fi⟩ui

In this case we have expected value operations on the stiffness matrix and
force vector. It can be seen by “reversing the discretization” that the continuous
form of the energy functional is

Π =

∫ 1

0

∫ ∞

−∞

(
1

2
κ(y)

(
∂u

∂x

)2

ρ(y)− buρ(y)

)
dydx
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Thus, the stochastic Galerkin method applied to the strong form of the
governing equations is equivalent to minimizing the expectation of the potential
energy. This is analogous to the equivalence in the deterministic case between
the condition of minimal energy and the weak form of the governing equations.
Thus, we see that the minimum expectation of the energy is simply a re-casting
of the stochastic Galerkin method which, in our case, is especially convenient
for conducting uncertainty quantification when the PDE is discretized with a
neural network.
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