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1 Brief Notes

For a mechanical system with no spatial derivatives (a system of particles) and
for the Lagrangian L = T − V , Lagrange’s equations are

∂

∂t

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0

where qi are the generalized displacement degrees of freedom, T is the kinteic
energy, and V is the potential. The conjugate momenta are defined as

pi =
∂L

∂q̇i

which means that from Lagrange’s equations, we have

ṗi =
∂L

∂qi

These are the necessary preliminary ideas we need to construct the Hamilto-
nian formulation of mechanics. Note that the given form of Lagrange’s equations
does not work for continuous elastic systems where spatial derivatives of the dis-
placement variable arise. Spatial derivatives would enter Lagrange’s equations
in this case. This formulation restricts us to discretized elastic systems. The
goal of Hamiltonian mechanics is to formulate a system of governing equations
which are first order in time. In the Lagrangian version of mechanics, the state
of the system is specified by the n displacement degrees of freedom. Velocities
are computed by taking time derivatives of the displacement. But because the
governing equations are second order in time, we require 2n initial conditions to
solve the system. The Hamiltonian formulation seeks a first order formulation,
which necessitates increasing the size of the system to 2n. Each initial condition
corresponds to an explicit degree of freedom. It is simple to turn Lagrange’s
equations into a first order system by introducing a differential equation of the
sort vi = q̇i. This is a common way to carry out numerical integration of second
order systems. The new variable vi represents a new degree of freedom that re-
moves a time derivative from the governing equations. Hamiltonian mechanics
seeks to do this, but instead of velocities as the new coordinate, we want the
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generalized momenta. The state of the system at any instant in time is then the
set of position and generalized momenta. Essentially, we need to change coordi-
nates from the Lagrangian construction L(qi, q̇i, t) to a new quantity H(qi, pi, t)
which obeys a new set of 2n first order differential equations. To this end, we
introduce the Legendre transform. For a function of two variables f(x, y), we
have

df =
∂f

∂x
dx+

∂f

∂y
dy = udx+ vdy

We want to change variables from (x, y) to (u, y). Introduce the new function

g = f − ux =⇒ dg = df − udx− xdu = vdy − xdu

Given that the differential of g is also

dg =
∂g

∂u
du+

∂g

∂y
dy

we have that

x = −∂g

∂u
, v =

∂g

∂y

Apparently, the Legendre transforms use is that taking differentials of the
new function g eliminates dependence on the variable x which we are seeking to
eliminate. The differential dx is replaced with the differential of the new variable
du. Thinking about the meaning of this in the context of the Lagrangian, it
is tempting to think that if we know how to write the conjugate momenta
in terms of the positions and velocities, we could simply plug this into the
Lagrangian. The problem is that we are still taking derivatives with respect to
the velocities not the momenta. The Legendre transform replaces derivatives
w.r.t. the “velocity” variable x with the new “momentum” variable u. Thus,
the problem is fully formulated in terms of position and momentum. Turning to
the mechanics problem, we take the negative of the Legendre transform given
above to write the Hamiltonian as

H(qi, pi, t) = q̇ipi − L(qi, q̇i, t)

Here, q̇i plays the role of x and ∂L
∂q̇i

= pi plays the role of u = ∂f
∂x . Using the

relations spelled out in the beginning, the differential of the Lagrangian is

dL = ṗidqi + pidq̇i +
∂L

∂t
dt

This means that the differential of the Hamiltonian is

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂H

∂t
dt = q̇idpi − ṗidqi −

∂L

∂t
dt

Differentials with respect to q̇i have been removed with the Legendre trans-
form. Equating the two forms of the differential, the governing equations are
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q̇i =
∂H

∂pi
, −ṗi =

∂H

∂qi
, −∂L

∂t
=

∂H

∂t

It can be shown that in many situations, the Hamiltonian is the total energy
of the system. In these cases (and perhaps in others), it is possible to write the
Hamiltonian explicitly in terms of the generalized position and momenta without
resorting to the Lagrangian. Thus it is clear how to take the derivatives of the
Hamiltonian in terms of momenta even when the Hamiltonian is constructed in
terms of the Lagrangian where the momenta do not appear. We can consider
an example from linear elasticity as an attempt to demonstrate this. Call the
discretized displacement degrees of freedom qi. The Lagrangian is

L = T − V =
1

2
Mij q̇iq̇j + Fiqi −

1

2
Kijqiqj

The conjugate momenta are

pi =
∂L

∂q̇i
= Mij q̇j

Using this definition, the Hamiltonian is then

H = q̇ipi −
1

2
q̇ipi − Fiqi +

1

2
Kijqiqj

We can also write q̇i = M−1
ij pj to fully eliminate the velocity degrees of

freedom. The Hamiltonian can be written fully in state space as

H =
1

2
M−1

ij pipj − Fiqi +
1

2
Kijqiqj

The only explicit time dependence of the problem shows up in the force
vector Fi(t). The third of the governing equations then says that

∂H

∂t
= −qi

∂Fi

∂t

which says that the rate of change of energy of the system is the power input
from the forcing. If there were no forcing, or a static forcing, this equation
would tell us that energy is conserved. The other two equations for the state
are

q̇i = M−1
ij pj , ṗi = Fi −Kijqj

The second equation is a force equation (rate of change of momentum). As
expected, the force is the balance between the applied load and the elastic forces
in the system. One benefit of the Hamiltonian formulation is that conservation
equations pop out more naturally. Any coordinate (whether position or momen-
tum) ξi which does not appear in the Hamiltonian will have a corresponding
governing equation
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∂H

∂ξi
= 0 = ξ̇i

This says that its value is constant in time and it is a conserved quantity. A
coordinate which does not appear in the Lagrangian or Hamiltonian is thought
of as a symmetry, because changing its value does not change the corresponding
energy functional. Thus, symmetries in systems lead to conserved quantities,
and the Hamiltonian is particularly convenient for showing this because the
problem is formulated explicitly in terms of the position and momenta as inde-
pendent variables.

2 Liouville Theorem and Equation

The Liouville Theorem is an interesting result from Hamiltonian mechanics
which says that a region containing a set of initial conditions in phase space
does not change volume under the evolution of the dynamics. The Liouville
equation is an analogous result which provides a method for evolving forward in
time a probability distribution over initial conditions. Surprisingly, techniques
from fluid mechanics are extremely useful for deriving and making sense of all
of this. To make things simple, consider a simple harmonic oscillator governed
by the Hamiltonian

H =
1

2m
p2 +

1

2
kq2

Phase space is a plane describing possible configurations of position and
momentum. We ask the following question: how does the area of an initial
region in phase space, called Ω0, change in time when the initial states it encloses
are evolved according to the system dynamics? Mathematically, we can write

∂

∂t

∫
Ω(t)

dΩ

This is the time rate of change of the area, where Ω(t) is the area corre-
sponding to Ω0 evolved forward with Hamilton’s equations of motion. We can
use the Leibniz rule and the divergence theorem to write this integral as

∂

∂t

∫
Ω(t)

dΩ =

∫
∂Ω

[
q̇
ṗ

]
n̂dS =

∫
Ω

[
∂/∂q
∂/∂p

]
·
[
∂H/∂p
−∂H/∂q

]
dΩ = 0

We have used the equations of motion to derive this result. This states that
the volume in phase space occupied by a particular set of systems (defined by
their initial conditions) is constant in time. It is interesting to think about this
what means for chaotic systems, where very small differences in initial conditions
lead to dramatically different solutions. This is the Liouville theorem. To derive
the Liouville equation, we now imagine that a probability density exists over a
set of initial conditions. We can say that
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D

Dt

∫
Ω

ρdΩ = 0

When the region Ω follows material particles, the time varying region will
always enclose all of the the systems it started with, and thus all the probability
density. We can actually use the Reynold’s transport theorem to say that

0 =
D

Dt

∫
Ω

ρdΩ =

∫
Ω

∂ρ

∂t
+

[
∂ρ/∂q
∂ρ/∂p

]
·
[
q̇
ṗ

]
dΩ

Using the equations of motion and localizing the integral (a valid collection
of material particles is a single particle), we obtain

∂ρ

∂t
+

(
∂H

∂p

)
∂ρ

∂q
−
(
∂H

∂q

)
∂ρ

∂p
= 0

This is a partial differential equation defined over state space for the evolu-
tion of the probability density. The initial condition is simply the initial prob-
ability density ρ(p, q, 0) = ρ0(p, q). It is not clear (to me!) what the boundary
conditions are. For the simple harmonic oscillator, this equation becomes

∂ρ

∂t
+

p

m

∂ρ

∂q
− kq

∂ρ

∂p
= 0

This is a linear partial differential equation with “spatially varying” coef-
ficients. Solving this equation gives the distribution over system states over
time. In a sense, this PDE solves a differential equations corresponding to all
the points (initial conditions) contained in Ω0 simultaneously. We think of the
probability density as a quantity that is carried along with the “flow” of the
systems through state space, analogous to a dye dropped in a fluid flow. Think-
ing in terms of physical flows seems to be a helpful way to build up intuition
for these concepts.
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