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1 Brief Notes

For a mechanical system with no spatial derivatives (a system of particles) and
for the Lagrangian L = T − V , Lagrange’s equations are

∂

∂t

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0

where qi are the generalized displacement degrees of freedom, T is the kinteic
energy, and V is the potential. The conjugate momenta are defined as

pi =
∂L

∂q̇i

which means that from Lagrange’s equations, we have

ṗi =
∂L

∂qi

These are the necessary preliminary ideas we need to construct the Hamilto-
nian formulation of mechanics. Note that the given form of Lagrange’s equations
does not work for continuous elastic systems where spatial derivatives of the dis-
placement variable arise. Spatial derivatives would enter Lagrange’s equations
in this case. This formulation restricts us to discretized elastic systems. The
goal of Hamiltonian mechanics is to formulate a system of governing equations
which are first order in time. In the Lagrangian version of mechanics, the state
of the system is specified by the n displacement degrees of freedom. Velocities
are computed by taking time derivatives of the displacement. But because the
governing equations are second order in time, we require 2n initial conditions to
solve the system. The Hamiltonian formulation seeks a first order formulation,
which necessitates increasing the size of the system to 2n. Each initial condition
corresponds to an explicit degree of freedom. It is simple to turn Lagrange’s
equations into a first order system by introducing a differential equation of the
sort vi = q̇i. This is a common way to carry out numerical integration of second
order systems. The new variable vi represents a new degree of freedom that re-
moves a time derivative from the governing equations. Hamiltonian mechanics
seeks to do this, but instead of velocities as the new coordinate, we want the

1



generalized momenta. The state of the system at any instant in time is then the
set of position and generalized momenta. Essentially, we need to change coordi-
nates from the Lagrangian construction L(qi, q̇i, t) to a new quantity H(qi, pi, t)
which obeys a new set of 2n first order differential equations. To this end, we
introduce the Legendre transform. For a function of two variables f(x, y), we
have

df =
∂f

∂x
dx+

∂f

∂y
dy = udx+ vdy

We want to change variables from (x, y) to (u, y). Introduce the new function

g = f − ux =⇒ dg = df − udx− xdu = vdy − xdu

Given that the differential of g is also

dg =
∂g

∂u
du+

∂g

∂y
dy

we have that

x = −∂g

∂u
, v =

∂g

∂y

Apparently, the Legendre transforms use is that taking differentials of the
new function g eliminates dependence on the variable x which we are seeking to
eliminate. The differential dx is replaced with the differential of the new variable
du. Thinking about the meaning of this in the context of the Lagrangian, it
is tempting to think that if we know how to write the conjugate momenta
in terms of the positions and velocities, we could simply plug this into the
Lagrangian. The problem is that we are still taking derivatives with respect to
the velocities not the momenta. The Legendre transform replaces derivatives
w.r.t. the “velocity” variable x with the new “momentum” variable u. Thus,
the problem is fully formulated in terms of position and momentum. Turning to
the mechanics problem, we take the negative of the Legendre transform given
above to write the Hamiltonian as

H(qi, pi, t) = q̇ipi − L(qi, q̇i, t)

Here, q̇i plays the role of x and ∂L
∂q̇i

= pi plays the role of u = ∂f
∂x . Using the

relations spelled out in the beginning, the differential of the Lagrangian is

dL = ṗidqi + pidq̇i +
∂L

∂t
dt

This means that the differential of the Hamiltonian is

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂H

∂t
dt = q̇idpi − ṗidqi −

∂L

∂t
dt

Differentials with respect to q̇i have been removed with the Legendre trans-
form. Equating the two forms of the differential, the governing equations are
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q̇i =
∂H

∂pi
, −ṗi =

∂H

∂qi
, −∂L

∂t
=

∂H

∂t

It can be shown that in many situations, the Hamiltonian is the total energy
of the system. In these cases (and perhaps in others), it is possible to write the
Hamiltonian explicitly in terms of the generalized position and momenta without
resorting to the Lagrangian. Thus it is clear how to take the derivatives of the
Hamiltonian in terms of momenta even when the Hamiltonian is constructed in
terms of the Lagrangian where the momenta do not appear. We can consider
an example from linear elasticity as an attempt to demonstrate this. Call the
discretized displacement degrees of freedom qi. The Lagrangian is

L = T − V =
1

2
Mij q̇iq̇j + Fiqi −

1

2
Kijqiqj

The conjugate momenta are

pi =
∂L

∂q̇i
= Mij q̇j

Using this definition, the Hamiltonian is then

H = q̇ipi −
1

2
q̇ipi − Fiqi +

1

2
Kijqiqj

We can also write q̇i = M−1
ij pj to fully eliminate the velocity degrees of

freedom. The Hamiltonian can be written fully in state space as

H =
1

2
M−1

ij pipj − Fiqi +
1

2
Kijqiqj

The only explicit time dependence of the problem shows up in the force
vector Fi(t). The third of the governing equations then says that

∂H

∂t
= −qi

∂Fi

∂t

which says that the rate of change of energy of the system is the power input
from the forcing. If there were no forcing, or a static forcing, this equation
would tell us that energy is conserved. The other two equations for the state
are

q̇i = M−1
ij pj , ṗi = Fi −Kijqj

The second equation is a force equation (rate of change of momentum). As
expected, the force is the balance between the applied load and the elastic forces
in the system. One benefit of the Hamiltonian formulation is that conservation
equations pop out more naturally. Any coordinate (whether position or momen-
tum) ξi which does not appear in the Hamiltonian will have a corresponding
governing equation
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∂H

∂ξi
= 0 = ξ̇i

This says that its value is constant in time and it is a conserved quantity. A
coordinate which does not appear in the Lagrangian or Hamiltonian is thought
of as a symmetry, because changing its value does not change the corresponding
energy functional. Thus, symmetries in systems lead to conserved quantities,
and the Hamiltonian is particularly convenient for showing this because the
problem is formulated explicitly in terms of the position and momenta as inde-
pendent variables.
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