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Figure 1: Stress distributions of a sphere in contact with a plane.

Contact mechanics seeks to model elastic deformations caused not by applied
forces, rather by contact with other bodies. Hertz developed a theory of contact
mechanics in the late 1800’s that permitted some analytical solutions. These
analytical solutions are mostly useful for benchmarking numerical methods at
this point, but they are quite elegant. These notes present some results from
Hertzian contact mechanics, and mostly make use of this book. The story of
Hertzian contact mechanics begins with the “fundamental” solution of a point
force applied to an infinite plane. See Figure 2. A vertical force Fδ(x−x∗, y−y∗)
is applied on the supper surface of an elastic body which is defined over the
region [−∞,∞]×[−∞,∞]×[0,∞]. The point of application (x∗, y∗) is arbitrary.
It is possible to compute the stress and displacement response of the solid to
this point force analytically. A simpler case of this is the so-called Flamant
solution (outlined here) which finds the response of a semi-infinite solid to an
applied line-load using polar coordinates. This is effectively a 2D problem, and
the solution is actually quite simple. Note that these solution techniques often
produce stresses, which need to be converted to strains and integrated to find

1

https://link.springer.com/content/pdf/10.1007/978-3-662-53081-8_5.pdf
https://ptgmedia.pearsoncmg.com/images/chap3_0130473928/elementLinks/chap3_0130473928.pdf


displacements. This is a tedious process. We will cite the fundamental solution
to the problem shown in Figure 2 without proof. Using the coordinate system
specified in the figure, the displacement components for a concentrated force
applied at (x, y, z) = (0, 0, 0) are shown in Figure 3. Going forward, we are
primarily interested in the displacement of the free surface at z = 0, and in
particular the vertical component of the displacement, as this will govern the
important features of the contact response. In other words, the displacement
normal to the surface controls the extent to which the bodies “squish” together.
The vertical displacement on the free surface is given by:

Figure 2: A point force is applied to the semi-infinite elastic solid.

Figure 3: Displacement components for semi-infinite elastic solid under the
action of concentrated force of magnitude Fz applied at the origin.
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uz =
1− v2

πE

Fz√
x2 + y2

Because the response of the solid is linearly elastic, we can compute the
displacement from many forces by summing up their individual contributions.
In fact, we can use the fundamental solution to find the vertical displacement
of the free surface from a pressure distribution p(x, y) through superposition:

uz(x, y) =
1− v2

πE

∫ ∫
p(x′, y′)√

(x− x′)2 + (y − y′)2
dx′dy′

This equation states: to find the displacement at position (x, y), sum up
the displacement contribution from all the forces p(x′, y′)dx′dy′ scaled by their
distance from that point. The bounds of integration are defined by the region
over which the pressure is non-zero. This assumes that the pressure distribu-
tion is known. This pressure distribution will be used to model the interaction
between two bodies in contact. There is no reason to think that we know how
to characterize this interaction. If we knew how to do that a priori, there would
be no need for contact mechanics! In classic “old school” mechanics form, the
approach is to guess a solution and then confirm that the guess was good. Specif-
ically, we will guess pressure distributions and show that their corresponding
displacement fields correspond to contact interactions with clear physical inter-
pretations. There are many such cases, but we will show a particularly simple
one: a rigid sphere contacting an elastic plane. Consider the following pressure
distribution:

p(x, y) = p0

√
1−

(
x2 + y2

a2

)
,

√
x2 + y2 ≤ a

This is a pressure distribution defined over a circular contact area that is
axisymmetric and decreases monotonically as we approach the boundary. Note
that the integral which must be computed for the displacement field is very
complex. Apparently, this can be accomplished analytically, though in practice
it would be reasonable to do numerically. One could do this to verify the
analytical expression if desired. Defining r =

√
x2 + y2, we cite the result

of this integration without proof as

uz(r) =
πp0(1− v2)

4Ea
(2a2 − r2), r ≤ a

So the displacement from this contact pressure distribution only depends
on the radius and is a paraboloid inside the contact region. Note that this
pressure distribution could be used for points outside the contact region r ≤ 0
to compute the displacement. It will have a different functional form than the
displacement inside the contact region, but they will be continuous at their in-
terface. Remember that this pressure distribution is essentially pulled out of
thin air, and we are studying the corresponding displacement field to see if it

3



has a physical interpretation. The contact region is defined as the region for
which the pressure is nonzero. Consider the problem of a rigid sphere indenting
an elastic plane shown in Figure 4. As is explained in the figure, we observe
that the displacement in contact region is approximately quadratic. This can be
visualized with this plot. This means that the pressure distribution we assumed
which gave rise to a quadratic displacement behaves like a rigid sphere indenting
an elastic plane! The displacement from the spherical indenter is purely geo-
metric, whereas the displacement field computed with the fundamental solution
and ansatz pressure distribution involves forces and material parameters. The
two expressions can be equated:

d− r2

2R
=

πp0(1− v2)

4Ea
(2a2 − r2)

Figure 4: A rigid sphere of radius R is pressed into a deformable plane to a
maximum depth of d. Given the z is defined downward, the displacement field
can be written for the contact region as R2 = x2 + (z + R − d)2, which is

approximately z = d− x2

2R . The 3D case is obtained by making the substitution
x → r.

Equating the terms multiplying r2 and r0 respectively, we find that

a =
R(1− v2)πp0

2E
, d =

(1− v2)πp0a

2E
=

a2

R

The total force applied to the indenter to obtain this contact interaction can
be obtained from integrating the assumed pressure distribution:

F =

∫ a

0

p(r)2πrdt =
2

3
p0πa
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We can solve for p0 in terms of other parameters using the above relations:

p0 =
d

a

2E

π(1− v2)
=

√
d

R

2E

π(1− v2)

Plugging in for p0 and a2 = Rd into the force relation, we obtain

F =
4

3

E

1− v2
R1/2d3/2
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This is interesting because the force-displacement relationship is nonlinear,
even though we are working with linear elasticity. It makes sense that it would
require increasing increments of force to obtain the same increment of displace-
ment as the contact area grows and more material is resisting deformation. It
is possible to solve more complex contact problems with these methods. They
can be extended to model contact problems in which both bodies are elastic and
have curvature by defining a fictitious rigid body with an “effective” geometry
and an elastic plane with an “effective” modulus. These effective quantities
are used to capture the total curvature and total elasticity of the system while
pulling back the contact problem to the one we have outlined here.
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