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1 Heat Conduction

Fourier’s Law and conservation of energy read

qi = −aij
∂u

∂xj
,

∂qi
∂xi

= f

where f = f(x) is a volumetric heat source. Thus, the governing equation for
heat conduction is

∂

∂xi
(aij

∂u

∂xj
) = −f(x)

We want to derive an equation for the homogenized conductivity tensor āij .
We follow the approach of periodic homogenization and think of the space being
built up from a slow and fast coordinate x and y respective. Assuming the scales
are sufficiently separated to treat these as independent, y is the position within
the microstructure and x is the macroscopic variable. Thus, we can write

∂

∂xη
i

(aij
∂uη

∂xη
j

) = −f(x)

∂

∂xη
i

=
∂

∂xi
+

1

η

∂

∂yi
, uη = u0(x) + u1(x, y)

Plugging this in reads(
∂

∂xi
+

1

η

∂

∂yi

)
aij

(
∂u0

∂xj
+ η

∂u1

∂xj
+

∂u1

∂yj

)
= −f

Grouping by the two lowest powers of η, we obtain two governing equations
for the two-scale problem:

∂

∂yi

(
aij

∂u1

∂yj

)
= − ∂

∂yi

(
aij

∂u0

∂xj

)

aij
∂2u0

∂xi∂xj
+ aij

∂2u1

∂xi∂xj
+

∂

∂yi

(
aij

∂u1

∂xj

)
= −f(x)
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The first equation shows the microscale problem is driven by macroscopic
temperature gradients which are constant over the microstructure. The problem
is linear, so it suffices to know the microstructural response to unit temperature
gradients in each direction. Thus, we can write

u1(x, y) = χm
∂u0

∂xm

Plugging this into the second governing equation, we can see that the equa-
tion cannot be satisfied pointwise. This is because there are a mixing of scales.
Instead we require that the equation is satisfied in an average sense over the
microstructure. Call the microstructural domain Ωy and use |Ωy| = 1. The
macroscopic governing equation is(∫

Ω

aijdy

)
∂2u0

∂xi∂xj
+

(∫
Ω

aij
∂χm

∂yj
dy

)
∂2u0

∂xm∂xi
= −f(x)

The third term when integrated is zero because it is the divergence of a
periodic function (by assumption). Thus, we have[∫

Ω

aij

(
δmj +

∂χm

∂yj

)
dy

]
∂2u0

∂xm∂xi
= −f(x)

and can now identify the homogenized conductivity tensor as

āim :=

∫
Ω

aij

(
δmj +

∂χm

∂yj

)
dy

2 Linear Elasticity

The Navier equation writes stress equilibrium in terms of displacements. We
know how to compute multiscale derivatives required for the strain and the
divergence of the stress tensor. We know that the displacement is expanded
into a coarse and fine scale contribution. We need a constitutive relation to
proceed. For simplicity, assume that the constitutive tensor only depends on
the microscale coordinate, otherwise the math becomes extremely cumbersome.
Note that it is possible to carry through x dependence of the constitutive tensor.
Assuming you have spent enough time with these derivations, doing this gives
you exactly what you would expect. The multiscale stress-strain relation is

ση
ij(x, y) = Cijkℓ(y)ϵ

η
kℓ(x, y) (1)

Substituting this into stress equilibrium, we can use symmetries of the ma-
terial tensor to simplify the resulting expression. Note that the body force only
depends on the macroscale coordinate:

d

dxη
j

Cijkℓ(y)
duη

k

dxη
ℓ

= −bi(x)
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Substituting the definition of the multiscale derivative and the two-term
aymptotic expansion for the displacement, this becomes

(
∂

∂xj
+

1

η

∂

∂yj

)
Cijkℓ(y)

(
∂

∂xℓ
+

1

η

∂

∂yℓ

)(
u0
k(x) + ηu1

k(x, y)
)
= −bi(x)

This expression can be expanded, and the terms grouped in powers of η. It
is a length calculation to show that, when keeping the two lowest powers of η,
the Navier equation is

1

η

(
∂

∂yj

(
Cijkℓ

∂u0
k

∂xℓ

)
+

∂

∂yj

(
Cijkℓ

∂u1
k

∂yℓ

))
+ Cijkℓ

∂2u0
k

∂xj∂xℓ

+ Cijkℓ
∂2u1

k

∂xj∂yℓ
+

∂

∂yj

(
Cijkℓ

∂u1
k

∂xℓ

)
= −bi (2)

We obtain two governing equations by claiming that terms of equal powers
of η must be equal individually. This results in

η−1 :
∂

∂yj

(
Cijkℓ

∂u1
k

∂yℓ

)
= − ∂

∂yj

(
Cijkℓ

∂u0
k

∂xℓ

)
(3a)

η0 : Cijkℓ
∂2u0

k

∂xj∂xℓ
+ Cijkℓ

∂2u1
k

∂xj∂yℓ
+

∂

∂yj

(
Cijkℓ

∂u1
k

∂xℓ

)
= −bi (3b)

The first equation only involves y derivatives. Because the macroscopic coor-
dinate is assumed to not change with the microscale coordinate (scale separation
assumption), the term ∂u0

k/∂xℓ is a constant with respect to y. Because this
equation is linear, we can write

u1
i (x, y) = χ(y)imn

∂u0
m

∂xn
(x) (4)

The 3-index tensor function χ is interpreted as giving the displacement com-
ponents of the RVE under the action of applied macroscopic unit strains. Be-
cause u1(x, y) is periodic in y, the process of solving for unit response will enforce
periodicity in χimn(y). In order to solve for the RVE’s response to unit strains,
use Eq. 4 with ∂u0

k/∂xℓ = δkaδℓb and the first governing equation:

∂

∂yj

(
Cijkℓ

∂χkab

∂yℓ

)
= − ∂

∂yj

(
Cijkℓδkaδℓb

)
(5)

This is the governing equation for χ(y). A given value of indices a and b,
yields an equation for the displacement components. Because the strain tensor
is symmetry, not every combination of indices needs to be computed. Note that
this equation has the form of stress equilibrium in the RVE for a body force
proportional to spatial variations in the constitutive tensor. Turning now to
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the second of Eqs. 3, we can substitute Eq. 4 in order to remove any u1(x, y)
dependence. Because the RVE unit response function χ only dependence on
the microscale coordinate y and the first term in the displacement expansion u0

only depends on x, we have

Cijkℓ
∂2u0

k

∂xj∂xℓ
+ Cijkℓ

∂χkab

∂yℓ

∂2u0
a

∂xj∂xb
+

∂

∂yj

(
Cijkℓχkab

∂2u0
a

∂xb∂xℓ

)
= −bi (6)

Notice how the assumption that Cijkℓ = Cijkℓ(y) is used throughout–if the
microstructure varied macroscopically, then the unit response χ would as well.
Eq. 6 cannot be satisfied pointwise in x and y. The body force and displace-
ment gradients are purely macroscopic, whereas the constitutive tensor and unit
response χ are purely microscopic. The macroscale coordinate x is essentially
naive to the small scale variations in the structure’s material and mechanics
captured by y. Returning to the analogy of zooming into a complex microstruc-
ture at each x point, we argue that the microscale interacts with the macro-
scopic mechanics through an average. Thus, we average the influence of the
microstructure and say the averaged multiscale equation is satisfied pointwise
in x:

(
1

|Ωy|

∫
Ωy

Cijkℓdy

)
∂2u0

k

∂xj∂xℓ
+

(
1

|Ωy|

∫
Ωy

Cijkℓ
∂χkab

∂yℓ
dy

)
∂2u0

a

∂xj∂xb

+

(
1

|Ωy|

∫
Ωy

∂

∂yj
(Cijkℓχkab)dy

)
∂2u0

a

∂xb∂xℓ
= −bi (7)

The third term on the left-hand side of this equation is the divergence of a
periodic function (both the material tensor and RVE unit response are periodic).
The divergence theorem can be used to show the integral of the divergence of
a periodic function is zero. Introducing delta functions to manage indices, we
obtain the following expression:(

1

|Ωy|

∫
Ωy

Cijkℓ

(
δkaδℓb +

∂χkab

∂yℓ

)
dy

)
∂2u0

a

∂xj∂xb
= −bi (8)

The integral is a four-index object with no x or y dependence. Eq. 8 is the
Navier equation in terms of the macroscopic coordinate x for a constant consti-
tutive tensor. Thus, we recognize the integral in parentheses as the homogenized
material tensor:

CH
ijab :=

1

|Ωy|

∫
Ωy

Cijkℓ

(
δkaδℓb +

∂χkab

∂yℓ

)
dy (9)

The homogenized tensor furnishes the effective material properties of a mate-
rial which exhibits periodic heterogeneities on a small scale. It can be computed
once the unit response of the RVE is known.
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3 Viscoelasticity

∂ση
ij

∂xj
+ bi = 0

ση
ij =

∫ t

0

Cijkℓ(y, t− τ)
∂ϵηkℓ
∂τ

dτ

∂

∂xη
j

∫ t

0

Cijkℓ(y, t− τ)
∂2uη

k

∂xη
ℓ∂τ

dτ = −bi

For a single-scale linear viscoelastic material with no spatial variation, the
governing equation (analogous to Navier equation) is∫ t

0

Cijkℓ(t− τ)
∂3uk

∂xℓ∂xj∂τ
dτ = −bi

We will attempt to recover an equation of this form in order find the effective
viscoelastic properties. Turning to the multiscale problem, we plug in the two
scale expansion and definition of multiscale derivative

(
∂

∂xj
+

1

η

∂

∂yj

)∫ t

0

Cijkℓ(y, t−τ)
∂

∂τ

[(
∂

∂xj
+

1

η

∂

∂yj

)(
u0
k(x) + ηu1

k(x, y)
)]
dτ = −bi

=

(
∂

∂xj
+

1

η

∂

∂yj

)∫ t

0

Cijkℓ(y, t− τ)

[
∂2u0

k

∂xℓ∂τ
+ η

∂2u1
k

∂xℓ∂τ
+

∂2u1
k

∂yℓ∂τ

]
dτ

=

∫ t

0

Cijkℓ(t−τ)
∂3u0

k

∂xℓ∂xj∂τ
dτ+

1

η

∫ t

0

∂

∂yj

(
Cijkℓ(t− τ)

∂2u0
k

∂xℓ∂τ

)
dτ+

∫ t

0

∂

∂yj

(
Cijkℓ(t− τ)

∂2u1
k

∂xℓ∂τ

)
dτ

+

∫ t

0

Cijkℓ(t− τ)
∂3u1

k

∂xj∂yℓ∂τ
dτ +

1

η

∫ t

0

∂

∂yj

(
Cijkℓ(t− τ)

∂2u1
k

∂yℓ∂τ

)
dτ

The order η−1 equation describes the response of the microscale:

∫ t

0

∂

∂yj

(
Cijkℓ(t− τ)

∂2u1
k

∂yℓ∂τ

)
dτ = −

∫ t

0

∂

∂yj

(
Cijkℓ(t− τ)

∂2u0
k

∂xℓ∂τ

)
dτ

Assume the time dependence of the applied macroscopic strain is a step
function H(t) so that

∂2u0
k

∂xℓ∂τ
=

∂

∂τ

(
∂u0

k

∂xℓ
H(τ)

)
= δ(τ)

∂u0
k

∂xℓ

This means that the RHS of the microscale governing equation becomes
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= − ∂

∂yj
Cijkℓ(t)

∂u0
k

∂xℓ

The equations are linear, so we can write

u1
i = χimn(y, t)

∂u0
m

∂xn

χimn(y, t) records the i-th time-dependent displacement response at point y
in the microstructure for a unit applied strain in direction (m,n). This assumes
linear viscoelasticity. We can plug this relation into the macroscale governing
equation (order η) and integrate over the microscale domain (|Ωy| = 1). The
divergence term will be zero because all functions are periodic.

∫ t

0

(∫
Ω

Cijkℓ(y, t− τ)dΩ

)
∂3u0

k

∂xℓ∂xj∂τ
dτ+

∫ t

0

∫
Ω

Cijkℓ(y, t−τ)
∂

∂τ

(
∂χkmn

∂yℓ

∂2u0
m

∂xn∂xj

)
dΩdτ

But we do not recover the Navier equation because the two terms being
differentiated in the second integral are time dependent. Thus, the homogenized
constitutive relation is not directly analogous to the single scale viscoelastic
solid. Evaluating the time derivative and re-arranging, we get

∫ t

0

(∫
Ω

Cijkℓ(y, t− τ)dΩ

)
∂3u0

k

∂xℓ∂xj∂τ
dτ+

∫ t

0

∫
Ω

Cijkℓ(y, t−τ)
∂2χkmn

∂yℓ∂τ

∂2u0
m

∂xn∂xj

+ Cijkℓ(y, t− τ)
∂χkmn

∂yℓ

∂3u0
m

∂xn∂xj∂τ
dΩdτ

This relation can be interpreted as giving two homogenized tensors:

∇ ·
(∫ t

0

C1(t− τ) :
∂ϵ

∂τ
+ C2(t− τ) : ϵ(τ)dτ

)
= −b

The first homogenized tensor is similar to the usual elastic homogenized ten-
sor (average of microstructure constitutive relation plus flux from unit strains),
whereas the second involves time derivatives of the microstructure to the unit
strains. Apparently, it also changes the viscoelastic constitutive relation to de-
pend on the strain directly, as opposed to its time derivative. Does this make
sense?

4 Nonlinear Heat Conduction

It may be the case that the thermal conductivity depends on the temperature
in a heat conduction problem. The simplest form of this dependence would be
linear. The governing equation for heat transfer would be
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∂

∂xi

(
au

∂u

∂xi

)
+ r = 0

where r is a volumetric heat source. Now consider a multiscale heat conduc-
tion problem of this sort, where the thermal conductivity, which is assumed to
isotropic and hence a scalar, varies on the small scale only. We define a new
microscale coordinate yi = xi/η where η is a perturbatively small parameter.
Treating these two coordinates as independent and expanding the temperature
field with uη = u0+ηu1, as is always done in the method of asymptotic homog-
enization, we can write this problem as

∂

∂xη
i

(
a(y)uη ∂u

η

∂xη
i

)
=

(
∂

∂xi
+

1

η

∂

∂yi

)(
a(y)(u0 + ηu1)

(
∂

∂xi
+

1

η

∂

∂yi

)
(u0 + ηu1)

)
As usual, this is where lots of tedious algebra is required. The need for

tedious calculations is exacerbated by the nonlearity. We often assume that the
first order term in the temperature expansion u0 is independent of the microscale
coordinate. This can be proven by looking at the expression at lowest order of
η:

η−2 :
∂

∂yi

(
a(y)u0 ∂u

0

∂yi

)
= 0

The only way that this equation can be zero, which has no volumetric forcing
and is not driven by the boundaries, is when u0 is independent of the microscale
coordinate y. The governing equation simplifies to

=

(
∂

∂xi
+

1

η

∂

∂yi

)(
a(y)

[
u0 ∂u

0

∂xi
+ ηu1 ∂u

0

∂xi
+ ηu0 ∂u

1

∂xi

+ η2u1 ∂u
1

∂xi
+ u0 ∂u

1

∂yi
+ ηu1 ∂u

1

∂yi

])
+ r = 0

We can now pick out terms at the next lowest order of η. This reads

η−1 :
∂

∂yi

(
au0 ∂u

0

∂xi

)
+

∂

∂yi

(
au0 ∂u

1

∂yi

)
= 0

Note that u0 does not depend on y and can be factored out of this microscale
equation. This makes the microscale problem linear, even though the physics
are nonlinear. We have the usual “cell” problem from a linear elliptic equation:

η−1 :
∂

∂yi

(
a
∂u1

∂yi

)
= − ∂a

∂yi

∂u0

∂xi

Because the problem is linear, we can write the solution to the cell problem
as a linear combination of solutions to unit temperature gradients, weighted
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by the actual temperature gradient coming in from the macroscale to the cell
problem. This reads

u1(x, y) = χi(y)
∂u0

∂xi

Lastly, we turn to the third highest order of η, which corresponds to the
macroscale equation. Picking out orders of η from the governing equation, this
is

∂

∂xi

(
au0 ∂u

0

∂xi

)
+

∂

∂yi

(
au1 ∂u

0

∂xi

)
+

∂

∂yi

(
au0 ∂u

1

∂xi

)
+

∂

∂xi

(
au0 ∂u

1

∂yi

)
+

∂

∂yi

(
au1 ∂u

1

∂yi

)
+ r = 0

We can plug in the expression for the microscale temperature involving the
macroscale temperature gradient. This reads

a
∂

∂xi

(
u0 ∂u

0

∂xi

)
+

∂

∂yi

(
aχj

∂u0

∂xj

∂u0

∂xi

)
+

∂

∂yi

(
au0χj

∂2u0

∂xj∂xi

)
+

∂

∂xi

(
au0 ∂χj

∂yi

∂u0

∂xj

)
+

∂

∂yi

(
aχk

∂u0

∂xk

∂χj

∂yi

∂u0

∂xj

)
+ r = 0

This equation cannot be satisfied pointwise because the volumetric heat
source only varies on the macroscale whereas the temperature necessarily varies
on both scales. We average over the microstructure domain, which has a vol-
ume of 1 by definition. Note that the third term in the above equation is the
divergence of the product of periodic functions, thus its integral is zero. This
can be verified by use of the divergence theorem. This equation becomes:

∂

∂xi

(
u0 ∂u

0

∂xi

)(∫
adΩ

)
+

∂u0

∂xj

∂u0

∂xi

(∫
∂

∂yi
(aχj)dΩ

)
+

∂

∂xi

(
u0 ∂u

0

∂xj

)(∫
a
∂χj

∂yi
dΩ

)
+

∂u0

∂xk

∂u0

∂xj

(∫
∂

∂yi

(
aχk

∂χj

∂yi

)
dΩ

)
+ r = 0

The microscale equation is linear, so we do not end up with a coupling
between scales. However, we end up with a complex nonlinear problem at the
macroscale. Perhaps this equation can be simplified further. With all the indices
floating around, what we can see is that the conductivity is now a matrix. It
makes sense that microstructural variations could introduce anisotropy into the
heat conduction problem. It also seems that we will not recover an “effective
conductivity” matrix. If such a thing existed, we would be able to write

∂

∂xi

(
Ciju

0 ∂u
0

∂xj

)
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where C is an expression involving integrals over the microstructure. It does not
appear possible to rearrange this equation to have this form. This can be seen
by noting that there are terms multiplying the product of gradients that never
multiply the product of the temperature and the Laplacian of temperature.
The two would need to have the same factors in order to recover a form of
this sort. Thus, the homogenization procedure has shown that the physics of
the macroscale are governed by some new physics. The problem will have the
general form of

u0C1
ij

∂2u0

∂xi∂xj
+ C2

ij

∂u0

∂xi

∂u0

∂xj
+ r = 0

5 1D Finite Strain Elasticity

A 1D St. Venant Kirchoff model of elasticity is

∂

∂xη
E(y)

(
∂uη

∂xη
+

1

2

(
∂uη

∂xη

)2
)

= b(x)

The η superscripts denote multiscale quantities. The problem is geometri-
cally non-linear, but the material behavior is linear. This is examlpe is taken
as a first pass at non-linear homogenization. We expand the displacement field
and derivatives in the usual way, and carry through the laborious expansions
and simplifications.

uη(x, y) = u0(x) + ηu1(x, y),
∂

∂xη
=

∂

∂x
+

1

η

∂

∂y

=

(
∂

∂x
+

1

η

∂

∂y

)
E(y)

((
∂

∂x
+

1

η

∂

∂y

)
(u0 + ηu1) +

1

2

[(
∂

∂x
+

1

η

∂

∂y

)
(u0 + ηu1)

]2)

=

(
∂

∂x
+

1

η

∂

∂y

)
E(y)

(
u0
x + ηu1

x + u1
y +

1

2

[
u0
x + ηu1

x + u1
y

]2)

=

(
∂

∂x
+

1

η

∂

∂y

)
E(y)

(
u0
x + ηu1

x + u1
y +

1

2

[
(u0

x)
2 + η2(u1

x)
2 + (u1

y)
2

+ 2η(u1
yu

1
x + u0

xu
1
x + u1

yu
0
x)
])

Look at each term individually!(
∂

∂x
+

1

η

∂

∂y

)(
E(y)u0

x

)
= Eu0

xx + η−1 ∂

∂y
(Eu0

x)
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(
∂

∂x
+

1

η

∂

∂y

)(
E(y)ηu1

x

)
= ηEu1

xx +
∂

∂y
(Eu1

x)(
∂

∂x
+

1

η

∂

∂y

)(
E(y)u1

y

)
= Eu1

xy + η−1 ∂

∂y
(Eu1

y)(
∂

∂x
+

1

η

∂

∂y

)(1
2
E(y)(u0

x)
2
)
= Eu0

xu
0
xx + η−1 ∂

∂y

(
E

2
(u0

x)
2

)
(

∂

∂x
+

1

η

∂

∂y

)(1
2
E(y)η2(u1

x)
2
)
= η2Eu1

xu
1
xx + η

∂

∂y

(
E

2
(u1

x)
2

)
(

∂

∂x
+

1

η

∂

∂y

)(1
2
E(y)(u1

y)
2
)
= Eu1

yu
1
xy + η−1 ∂

∂y

(
E

2
(u1

y)
2

)
(

∂

∂x
+

1

η

∂

∂y

)(
E(y)ηu1

yu
1
x

)
= η

∂

∂x
(Eu1

yu
1
x) +

∂

∂y
(Eu1

yu
1
x)(

∂

∂x
+

1

η

∂

∂y

)(
E(y)ηu0

xu
1
x

)
= η

∂

∂x
(Eu0

xu
1
x) +

∂

∂y
(Eu0

xu
1
x)(

∂

∂x
+

1

η

∂

∂y

)(
E(y)ηu1

yu
0
x

)
= η

∂

∂x
(Eu1

yu
0
x) +

∂

∂y
(Eu1

yu
0
x)

Now group terms corresponding to the two lowest order power of η and
ignore the rest:

η−1 :
∂

∂y
(Eu0

x) +
∂

∂y
(Eu1

y) +
∂

∂y

(
E

2
(u0

x)
2

)
+

∂

∂y

(
E

2
(u1

y)
2

)
= 0

∂

∂y

[
E(y)

(
u1
y +

1

2
(u1

y)
2

)]
= − ∂

∂y

[
E(y)

(
u0
x +

1

2
(u0

x)
2

)]
This is the governing equation for the microscale displacement driven by the

macroscale displacement gradients. This equation is non-linear, so we cannot
conclude that the solution depends linearly on the macroscopic strains. This
means that microscale and macroscale equations will be coupled. Anticipating
a finite element problem, the weak form of this equation is

∫ [
E(y)

(
u1
y +

1

2
(u1

y)
2

)]
wydy = −

∫ [
E(y)

(
u0
x +

1

2
(u0

x)
2

)]
wydy

Turning to the next order of η, we can write down the macroscale governing
equation:
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η0 : Eu0
xx +

∂

∂y
(Eu1

x) + Eu1
xy + Eu0

xu
0
xx + Eu1

yu
1
xy

+
∂

∂y
(Eu1

yu
1
x) +

∂

∂y
(Eu0

xu
1
x) +

∂

∂y
(Eu1

yu
0
x) = b(x)

As in the linear case, this equation cannot be satisfied pointwise. The body
force depends only on the macroscale coordinate, so if it were to be satisfied
pointwise there could be no microscale fluctuations. Thus we require that it
is satisfied in an average sense, so we integrate over the microscale coordinate.
Note that the microscale displacement and the modulus are periodic over the
microstructure. The macroscale displacement is constant over the microstruc-
ture. Thus the terms with microscale derivatives vanish when averaged. The
macroscale governing equation is(∫

E(y)dy

)
(1 + u0

x)u
0
xx +

∫
E(y)(1 + u1

y)u
1
xydy = b(x)

From the microscale governing equation, we know that u1 = u1
(
y, u0

x

)
, ie

there is no explicit x dependence, but that the microscale displacement does
implicitly depend on the macroscale through the macroscale displacement gra-
dient. Thus, we have that

∂2u1

∂x∂y
=

∂2u1

∂y∂u0
x

u0
xx

The macroscale governing equation becomes

(∫
E(y)dy

)
(1 + u0

x)u
0
xx +

(∫
E(y)(1 + u1

y)
∂2u1

∂y∂u0
x

dy

)
u0
xx = b(x)

Perhaps it is simpler to write this as this way, which somewhat resembles
the Navier equation and a homogenized tensor:

[(∫
E(y)dy

)
(1 + u0

x) +

(∫
E(y)(1 + u1

y)
∂2u1

∂y∂u0
x

dy

)]
u0
xx = b(x)

The above is not the right way to go about the problem. Instead, we should
write recognize that derivatives can be factored out and plan to integrate these
by parts when weakening the problem. First, recognize that we can write

Ē
∂

∂x

(
u0
x +

1

2
(u0

x)
2

)
+

∂

∂x

(∫
E(y)

(
u1
y +

1

2
(u1

y)
2

)
dy

)
= b(x)

Now we weaken the problem and integrate by parts (ignore sign on the body
force for now). We will assume zero boundaries on the macroscale domain.
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∫
Ωx

Ē
∂

∂x

(
u0
x +

1

2
(u0

x)
2

)
wxdx+

∫
Ωx

(∫
Ωy

E(y)

(
u1
y +

1

2
(u1

y)
2

)
dy

)
wxdx =

∫
Ωx

b(x)wdx

∫
Ωy

[
E(y)

(
u1
y +

1

2
(u1

y)
2

)]
wydy = −

∫
Ωy

[
E(y)

(
u0
x +

1

2
(u0

x)
2

)]
wydy

These are the governing equations for the so-called “FE2” scheme of non-
linear multiscale problems. No homogenized material properties can be com-
puted, rather boundary value problems on the microstructure need to be solved
at every Newton iteration.

6 1D Isotropic Phase Field Model

In the strong form, the governing equations for the 1D phase field model are

∂

∂x

(
E(ϕ− 1)2

∂u

∂x

)
+ b = 0

(ϕ− 1)E

(
∂u

∂x

)2

+
G

ℓ
ϕ− ∂

∂x

(
Gℓ

∂ϕ

∂x

)
= 0

We will try to use a multiscale expansion to arrive at multiscale phase field
equations. Define y as the microscale variable and x as the macroscale vari-
able. The superscript η indicates a multiscale quantity. Start with the stress
equilibrium equation:

∂

∂xη

(
E(y)(ϕη − 1)2

∂uη

∂xη

)
+ b = 0

The modulus only varies on the microscale. Use the following multiscale
relations:

∂

∂xη
=

∂

∂x
+

1

η

∂

∂y
, uη = u0(x) + ηu1(x, y), ϕη = ϕ0(x) + ηϕ1(x, y)

Plugging this into the equation for stress equilibrium, we get

(
∂

∂x
+

1

η

∂

∂y

)[
E(y)

(
(ϕ0)2+η2(ϕ1)2+1+2ηϕ0ϕ1−2ϕ0−2ηϕ1

)(
u0
x+ηu1

x+u1
y

)]
+b = 0
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(
∂

∂x
+

1

η

∂

∂y

)[
E(y)

(
u0
x(ϕ

0)2+η2u0
x(ϕ

1)2+u0
x+2ηu0

xϕ
0ϕ1−2u0

xϕ
0−2ηu0

xϕ
1

+ ηu1
x(ϕ

0)2 + η3u1
x(ϕ

1)2 + ηu1
x + 2η2u1

xϕ
0ϕ1 − 2ηu1

xϕ
0 − 2η2u1

xϕ
1

+ u1
y(ϕ

0)2 + η2u1
y(ϕ

1)2 + u1
y + 2ηu1

yϕ
0ϕ1 − 2u1

yϕ
0 − 2ηu1

yϕ
1

)]
+ b = 0

Now group terms by orders of η:

η−1 :
∂

∂y

(
E(y)u0

x(ϕ
0)2

)
+

∂

∂y

(
E(y)u0

x

)
− 2

∂

∂y

(
E(y)u0

xϕ
0

)

+
∂

∂y

(
E(y)u1

y(ϕ
0)2

)
+

∂

∂y

(
E(y)u1

y

)
− 2

∂

∂y

(
E(y)u1

yϕ0

)

This can be written more compactly as

∂

∂y

(
E(y)(ϕ0 − 1)2u1

y

)
= − ∂

∂y

(
E(y)(ϕ0 − 1)2u0

x

)
This is the microscale stress equation. The microscale displacement is linear

in the macroscopic strain but depends on the macroscopic damage. We can
write

u1(x, y) = χ(ϕ0, y)
∂u0

∂x

where χ is the solution to the microscale stress problem at a given macroscopic
damage level and for an applied unit strain. Note that the damage variable ϕ0

is constant over the microstructure. Now turn the next order of η:

η0 :
∂

∂x

(
E(y)u0

x(ϕ
0)2

)
+

∂

∂x

(
E(y)u0

x

)
+2

∂

∂y

(
E(y)u0

xϕ
0ϕ1

)
−2

∂

∂x

(
E(y)u0

xϕ
0

)

− 2
∂

∂y

(
E(y)u0

xϕ
1

)
+

∂

∂y

(
E(y)u1

x(ϕ
0)2

)
+

∂

∂y

(
E(y)u1

x

)
− 2

∂

∂y

(
E(y)u1

xϕ
0

)

+
∂

∂x

(
E(y)u1

y(ϕ
0)2

)
+

∂

∂x

(
E(y)u1

y

)
+2

∂

∂y

(
E(y)u1

yϕ
0ϕ1

)
−2

∂

∂x

(
E(y)u1

yϕ
0

)
−2

∂

∂y

(
E(y)u1

yϕ
1

)

This can be written more compactly as
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∂

∂x

(
E(y)(ϕ0 − 1)2u0

x

)
+

∂

∂y

(
E(y)(ϕ0 − 1)2u1

x

)
+

∂

∂x

(
E(y)(ϕ0

1)
2u1

y

)

+ 2
∂

∂y

(
E(y)u0

xϕ
1(ϕ0 − 1)

)
+ 2

∂

∂y

(
E(y)u1

yϕ
1(ϕ0 − 1)

)

The macroscale equation cannot be satisfied pointwise, so we average over
the microstructure. All terms involving y derivatives of periodic functions will
vanish in the averaging operation. The functions E(y), u1,ϕ1 and their products
are periodic, but not their derivatives. The second and fourth terms drop out
when averaged. The governing equation becomes

(ϕ0−1)2
(∫

Edy

)
u0
xx+

∂

∂x

(
(ϕ0 − 1)2

∫
Eu1

ydy

)
+2(ϕ0−1)

∫
∂

∂y
(Eu1

yϕ
1)dy+b = 0

Now we can use the definition of the microscale displacement in terms of the
macroscopic strain to write

(ϕ0−1)2
(∫

Edy

)
u0
xx+(ϕ0−1)2u0

xx

∫
E
∂χ(ϕ0)

∂y
dy+2(ϕ0−1)u0

x

∫
∂

∂y

(
E
∂χ(ϕ0)

∂y
ϕ1

)
dy+b = 0

For now, there are no further simplification that can be made. This is the
governing equation for the macroscopic stress equilibrium with damage. Now
we turn to the governing equation for the multiscale evolution of the phase
field. We assume that like the modululs, the energy release rate varies over the
microstructure.

(ϕη − 1)E(y)

(
∂uη

∂xη

)2

+
G(y)

ℓ
ϕη − ∂

∂xη

(
G(y)ℓ

∂ϕη

∂xη

)
= 0

= (ϕ0+ηϕ1−1)E(u0
x+ηu1

x+u1
y)

2+
G

ℓ
(ϕ0+ηϕ1)−

(
∂

∂x
+

1

η

∂

∂y

)(
Gℓ

(
∂

∂x
+

1

η

∂

∂y

)
(ϕ0 + ηϕ1)

)

= E(y)(ϕ0+ηϕ1−1)

(
(u0

x)
2+η2(u1

x)
2+(u1

y)
2+2u0

xu
1
y+2ηu1

xu
0
x+2ηu1

xu
1
y

)
+
G

ℓ
(ϕ0+ηϕ1)

−
(

∂

∂x
+

1

η

∂

∂y

)(
Gℓ(ϕ0

x + ηϕ1
x + ϕ1

y)
)

We can group terms by powers of η to obtain two governing equations:
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η−1 :
∂

∂y

(
G(y)ℓϕ1

y

)
= − ∂

∂y

(
G(y)ℓϕ0

x

)
The microscale equation for damage has a particularly simple from. The

microscale damage is linear in the macroscale damage gradient. Thus, we can
write

ϕ1(x, y) = Π(y)
∂ϕ0

∂x
where Π is the damage response of the microstructure to a damage gradient of
unit magnitude. Turning to the next order of η, we have

η0 : E(ϕ0−1)

(
(u0

x)
2+(u1

y)
2+2u0

xu
1
y

)
+
G

ℓ
ϕ0− ∂

∂x

(
Gℓϕ0

x

)
− ∂

∂x

(
Gℓϕ1

y

)
− ∂

∂y

(
Gℓϕ1

x

)
This equation cannot be obeyed pointwise, thus we average over the mi-

crostructure.

(ϕ0 − 1)

(
(u0

x)
2

∫
Edy +

∫
E(u1

y)
2dy + 2u0

x

∫
Eu1

ydy

)
+

ϕ]

ℓ

∫
Gdy

− ℓϕ0
xx

∫
Gdy − ℓ

∫
Gϕ1

xydy − ℓ

∫
∂

∂y
(Gϕ1

x)dy

Using the relationship between the macroscopic damage gradient and the
microscale damage, this can be written as

(ϕ0 − 1)(u0
x)

2

(∫
Edy +

∫
E

(
∂χ

∂y

)2

dy + 2

∫
E
∂χ

∂y
dy

)
+

ϕ0

ℓ

∫
Gdy

− ℓϕ0
xx

∫
Gdy − ℓ

∫
Gϕ1

xydy − ℓ

∫
∂

∂y
(Gϕ1

x)dy

(ϕ0 − 1)(u0
x)

2

(∫
Edy +

∫
E

(
∂χ

∂y

)2

dy + 2

∫
E
∂χ

∂y
dy

)
+

ϕ0

ℓ

∫
Gdy

− ℓϕ0
xx

∫
Gdy − ℓϕ0

xx

∫
G
∂Π

∂y
dy − ℓϕ0

xx

∫
∂

∂y
(GΠ)dy

(ϕ0 − 1)(u0
x)

2

(∫
Edy +

∫
E

(
∂χ

∂y

)2

dy + 2

∫
E
∂χ

∂y
dy

)
+

ϕ0

ℓ

∫
Gdy

− ℓϕ0
xx

(∫
Gdy −

∫
G
∂Π

∂y
dy −

∫
∂

∂y
(GΠ)dy

)
= 0
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We can now summarize the governing equations for the problem. There are
two microscale problems and two macroscale problems. The microscale problem
for the elastic displacement is

∂

∂y

(
E(y)u1

y

)
= − ∂

∂y

(
E(y)u0

x

)
For whatever reason, there is no influence of the microscale damage on the

microscale displacement equation. This equation is linear and is solved for unit
strains to obtain χ(y). The microscale damage equation is

∂

∂y

(
G(y)ϕ1

y

)
= − ∂

∂y

(
G(y)ϕ0

x

)
This equation is solved for unit damage gradients to obtain Π(y). The

macroscale equation of elasticity is

(ϕ0−1)2u0
xx

(∫
E

(
1 +

∂χ

∂y

)
dy

)
+2(ϕ0−1)u0

xϕ
0
x

∫
∂

∂y

(
E
∂χ

∂y
Π

)
dy+b = 0

The typical expression for the homogenized tensor is reproduced in the first
term, but there is an additive correction which involves the microscale damage
response and introduces a new coupling term of the damage and displacement
gradients. The macroscale equation for the damage evolution is

(ϕ0 − 1)(u0
x)

2

(∫
E

(
1 + 2

∂χ

∂y
+

(
∂χ

∂y

)2
)
dy

)
+

ϕ0

ℓ

∫
Gdy

− ℓϕ0
xx

(∫
G

(
1 +

∂Π

∂y

)
dy

)
= 0

We ignore the last term in the previous version of this equation because
the microscale damage response and energy release rate are both periodic so
the average of the derivative of their product is zero. The macroscale phase
field equation has the same form as the single scale equation, but with different
constitutive parameters. The macroscale displacement equation does not have
the same form as the single scale case. Introducing notation for the homogenized
constitutive parameters, these equations can be written as

(ϕ0 − 1)2Ē
∂2u0

∂x2
+ 2(ϕ0 − 1)J

∂u0

∂x

∂ϕ0

∂x
+ b = 0

(ϕ0 − 1) ¯̄E

(
∂u0

∂x

)2

+
Ḡ

ℓ
ϕ0 − ¯̄Gℓ

∂2ϕ0

∂x2
= 0
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