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What do the following problems have in common?

Modeling a structure with
heterogeneous microstructure

Numerically simulating the
weather on the scale of kilometers

Making sense of diffusion
processes
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Micro governs the macro

Physical phenomena are governed by dynamics at the microscopic
level

This is cumbersome or impossible to model explicitly

Experience suggests that this level of specificity is not needed

Are there systematic ways to ignore irrelevant details? How do
we determine what is relevant? Why should simplifications like
this be possible?
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Coarse-grained models

Often care only about “macroscopic” quantities like maximum
displacement, total heat flux, average global temperature, etc.

Good models are as simple (or inexpensive) as possible while
remaining accurate

Coarse-graining is the process of throwing out unnecessary information

Homogenization is a specific example of coarse-graining
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Hierarchy of scales

Each level in hierarchy is a different “scale”

Separation into discrete scales is often a convenient simplification
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Micro- and macrostates

A microstate is a description of the system at small scale, macrostate
is a simplified (“coarse-grained”) description

Terminology comes from statistical thermodynamics

For a box of gas, microstate is vector of positions and momenta for
each particle

Macrostates are thermodynamic variables like temperature and
pressure
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Why does this work?

The pressure p is proportional to the number of random collisions of
particles with the wall. Collision probabilities for labeled particles are
random variables Xi with ⟨Xi ⟩ = µ and Var(Xi ) = σ2. The pressure is
then a random variable:

p ∼ X1 + X2 + · · ·+ XN

The central limit theorem says that

p ∼ N
(
µ,

σ2

N

)
When N is large, the variance of the pressure approaches zero and it can
be treated as a (new) deterministic quantity. Temperature is related to the
total kinetic energy of the particles and energy is a conserved quantity.
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Entropy

Not a unique relation between macrostates and microstates

Entropy is a concept arising from coarse-graining operations in
thermodynamics

Measures the number of microstates that map onto the same
macrostate

Possible to define this for any coarse-graining operation
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Equivalence of thermodynamic and statistical entropy

Consider a gas with fixed volume being heated from initial temperature T1

to a final temperature T2. The thermodynamic entropy change is

∆S =

∫
δQ

T
=

∫ T2

T1

3

2
Nk

dT

T
=

3

2
Nk ln

(
T2

T1

)
where we have used that δQ is the change in internal energy
dE = 3

2NkdT . The definition of entropy change from statistical mechanics
for the constant volume heating is

∆S = k ln

(
Ω(T2)

Ω(T1)

)
where Ω is the volume of phase space consistent with the total energy of
the gas. Each point in phase space describes a particular configuration of
positions and momenta for all of the gas particles.
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Equivalence of thermodynamic and statistical entropy

The gas has energy from the motion of the particles. The total kinetic
energy of all the particles must equal the internal energy, which is specified
by the temperature.

1

2m

N∑
i=1

3∑
j=1

p2ij = E =
3

2
NkT =⇒

N∑
i=1

3∑
j=1

p2ij = 3mNkT

Ω(T ) ∝ (3mNkT )(3N−1)/2

∆S = k ln

(
Ω(T1)

Ω(T2)

)
= k ln

(
T2

T1

)3(N−1)/2

=
3

2
Nk ln

(
T2

T1

)
− 1

2
k ln

(
T2

T1

)
Not clear why the second term appears but it is very, very small when the
number of particles N is large (> 1020 in practice).
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Micro- and macrostates in continuum mechanics
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Information loss

High entropy macrostates correspond to large uncertainty about what
is going on at small scale

Balance between model simplicity and specificity of the system
description

Accuracy depends on what we ask of the model; it may be totally
unnecessary to know the microstates in detail
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Commutation diagram

Avoid complex/expensive full scale model by coarsening problem

In general, we need to find a coarse-graining operation for the problem
input parameters and a new model which governs their evolution

If microstates are of interest, there is no point in trying to carry out
this process
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Other examples of coarse-graining

Finding effective resistance in a
circuit

Denoising a signal, dimensionality
reduction

Modeling a discrete probabilistic
process over multiple steps

Breaking history up into periods
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Review

Physical phenomena can be described at different scales

Macrostates are high-level description, microstates are descriptions of
system at small scales

Want models which use the minimum amount of information
necessary to predict quantities of interest

Coarse-graining is the process of ignoring irrelevant information at
small scales

This involves defining macrostates and their evolution
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Illustrative example
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1D elliptic boundary value problem

∂

∂x

(
E (x)

∂u

∂x

)
= − sin(πx), E (x) = 1+

1

2
sin(30πx), u(0) = u(1) = 0
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Exact and approximate solutions

The analytical solution is given by

u(x) =

∫ x

0

cos(πy)

πE (y)
dy + C

∫ x

0

1

E (y)
dy

where C is an integration constant. We can approximate the solution with

u(x) ≈
N∑

n=1

un sin(nπx)

Discretized weak form is ui = KijFj with

Kij = π2

∫ 1

0
E (x) cos(iπx) cos(jπx)dx , Fj =

∫ 1

0
sin(πx) sin(jπx)dx

Investigate the accuracy of the approximation with varying N...
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Results
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Comparison of Approximations

N=1

N=50

analytical solution

Error is relatively stationary until seeing sudden improvement

Don’t get low frequency part of solution correct until resolving
high frequency behavior

Oscillations are small, analytical solution well approximated by lowest
frequency basis function

This corresponds to a constant but unknown modulus!
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Coarse-graining criterion

Want to find “coarse-grained” modulus E ∗ which approximates
solution with fast oscillating E (x)

Need a coarse-graining criterion f
(
E (x)

)
= E ∗ such that E (x) = E ∗

in some sense

One idea would be to choose E ∗ such that the force-displacement
relations of the whole structure are in agreement
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Equivalent end displacements

∂

∂x

(
E (x)

∂u

∂x

)
= 0, u(0) = 0, E (1)

∂u

∂x
(1) = F

=⇒ u(x) =

∫ x

0

F

E (y)
dy

F

E ∗ = F

∫ 1

0

dy

E (y)
=⇒ E ∗ =

1∫ 1
0

dy
E(y)

Linearity ensures that the value of the force does not influence the
coarse-grained (homogenized) modulus

We have no control of how good the approximation is inside the bar,
only that “macroscopic” response is captured

See this plot for illustration

This turns out to be the right answer for general loading, but not
obvious why
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Harmonic mean

The homogenized modulus is the harmonic
mean of E (x)

It can be shown that E ∗ ≤ ⟨E (x)⟩
A discrete version of the harmonic mean is
used to coarse-grain springs in series

The effective spring constant is
k∗ = 1/( 1

k1
+ 1

k2
+ 1

k3
)

Lose information about “microstate” of
displacement across each spring / strain
field inside the bar
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Circuit analogy

Force (like current) is constant over the spring elements

Larger displacements over softer sections of material

Can imagine this causing reduction in stiffness
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Energy equivalence

Clapeyron Theorem∫
Ω

1

2
σijϵijdΩ =

1

2

∫
∂Ω

tiuidS +
1

2

∫
Ω
biuidΩ

Work done on a structure by external forces equals stored strain
energy

Matching force-displacement relation gives an energy equivalence
between the response of the true and homogenized material

Effective spring constant can also be derived from energy equivalence

How can computation of homogenized modulus generalize to other
loading conditions?
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From heterogeneous material to microstructure

Heterogeneous material becomes a new homogeneous material in a
limiting sense
The stress-strain relation at each point is governed by a “cell” of the
“microstructure”
Apply similar analysis as above to cell as opposed to whole structure
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Cell problem

Pick out cell with width η at arbitrary point x∗

Every point x has corresponding microstructure cell

Define a new cell coordinate y ∈ [0, 1] such that x = x∗ + ηy

Approximate the displacement with a Taylor series over the cell
u(x) = u(x∗) + ∂u

∂x (x
∗)(x − x∗) =⇒ u(y) = u(x∗) + ∂u

∂x ηy
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Cell problem

Define ϵ = ∂u
∂x (x

∗). The displacement across the cell given this strain is ηϵ.
We want to compute the stress response of the cell. The displacement of
the cell is written U(y) = ϵηy +Ψ(y) where Ψ accounts for displacement
fluctuations induced by the microstructure. Thus,

∂

∂y

(
E (y)

∂

∂y
(ϵηy +Ψ)

)
= 0

∂

∂y

(
E (y)

∂Ψ

∂y

)
= −∂E

∂y
ϵη

Use linearity of the problem w.r.t. ϵη to define a “unit response” χ:

∂

∂y

(
E (y)

∂χ

∂y

)
= −∂E

∂y

=⇒ U(y) = ϵη(y + χ(y))
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Effective stress response

The “corrector” χ(y) is computed with χ(0) = χ(1) = 0 which ensures
that the U(0) = 0 and U(1) = ϵη. The boundary condition U(0) = 0
zeros a rigid body mode of the cell, as the stress only depends on the
difference in displacement between the two boundaries. The stress in the
cell is given by

σ(y) = E (y)
∂U

∂y

∂y

∂x
= ϵE (y)

(
1 +

∂χ

∂y

)
Note that we need to take derivatives w.r.t. x to compute the strain. We
claim that the effective stress response of the cell (as seen by the
structure) is the cell average:

σ(x∗) = ϵ

∫ 1

0
E (y)

(
1 +

∂χ

∂y

)
dy = E ∗ϵ
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Equivalence of approaches

When coarse-graining an entire structure with heterogeneous material, the
homogenized modulus was the harmonic mean. When computing the
effective stress response of the microstructure, the homogenized modulus
had a different form. It can be shown that

E ∗ =

∫ 1

0
E (y)

(
1 +

∂χ

∂y

)
dy =

1∫ 1
0

dy
E(y)

by using the definition of χ. Thus the two methods agree. This shows that
stress averaging gives rise to energy equivalence between the cell and
homogenized problems.
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Scale separation

Scale separation is the idea that structure comprises many repeating
cells of microstucture (η << 1)

The top structure does not have separated scales, the bottom does

If the top structure is treated as a single cell, it has the same
homogenized modulus as the bottom structure

The “mean” response is always computed accurately regardless of
scale separation (see this plot)

Fluctuations become small with separated scales
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Why is any of this helpful?

Still have to fully resolve the microstructure to compute the
homogenized response

Can do this in an “offline” way; if the microstructure is the same
everywhere, only one solve is needed for χ(y)

Even if microstructure varies from one cell to the next, decoupling
scales is advantageous from the standpoint of computational cost
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Anything can be homogenized!

It is a question of how much information is lost in doing so...
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Periodic homogenization / method of multiple scales

“The first move [in a multiscale expansion] . . . is really kind of
bizarre. I cant give you good intuition for it, because I don’t have it
myself. Even though I have been thinking about this for 30 years.”

— Steven Strogatz (famous mathematician), found here

Periodic homogenization is an application of perturbation theory (for
a nice introduction, check out the videos in this series)

Strange piece of mathematics, but very formulaic once you are
familiar with it

Leads to exactly the same cell problem and homogenized modulus
derived above
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Set up

Introduce a new coordinate y = x/η where η is a small parameter which
specifies the size of the microstructure cell. The coordinate x is the slow
variable, or “macroscale” coordinate, whereas y is the fast variable, or
“microscale” coordinate. We assume that the displacement can be
represented as

uη(x , y) = u0(x) + ηu1(x , y)

where the superscript η indicates a “multiscale” quantity, meaning that it
varies on both the macro and micro scale. The displacement is made up of
a macroscopic part u0 and a correction u1 with slow and fast variations.
The multiscale derivative is given by

d

dxη
:=

∂

∂x
+

1

η

∂

∂y

Think duη

dxη = ∂uη

∂x + ∂uη

∂y
∂y
∂x , e.g. the total rate of change of the

displacement w.r.t. space involves contributions from both scales.
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What is going on?

The additive decomposition is not too strange
Definition of derivative more-or-less follows from treating microscale
and macroscale coordinates as independent...this assumption of
independence is the weirdness Strogatz is referring to!
The argument is that x and y = x/η are such different sizes that a
change in y does not affect x =⇒ x + dy ≈ x
But why does changing x not change y?
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Periodicity

It is not the case that y + dx ≈ y because a small change in x leads
to large changes in y

If all microscale quantities are periodic in η, jumping from one block
of microstructure to the next does not affect their value

Because the macroscale coordinate cannot vary within the
microstructure, it is as if dx = nη where n is an integer
=⇒ mod(y + dx , η) = y

Even though the numerical value of y changes with x , the fast
quantities have no sensitivity to x because of periodicity

Assuming that the material varies periodically on the small
scale is fundamental to this approach
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Navier equation

The usual strong form of the governing equation for linear elasticity is
given by

∂σij
∂xj

+ bi =
∂

∂xj

(
Cijkℓ

∂uk
∂xℓ

)
+ bi = 0

This makes use of the elastic constitutive relation, the strain-displacement
relation, and symmetries of the constitutive tensor. In the multiscale
setting, we say that the constitutive tensor oscillates on the microscale.
The multiscale Navier (displacement) equation is

d

dxηj

(
Cijkℓ(y)

duηk
dxηℓ

)
+ bi = 0

d

dxηi
=

∂

∂xi
+

1

η

∂

∂yi
, uηj = u0j (x) + ηu1j (x , y)

Conor Rowan Group Presentation 39 / 59



Plug in, expand, and group terms

η−1

[
∂

∂yj

(
Cijkℓ

∂u0k
∂xℓ

)
+

∂

∂yj

(
Cijkℓ

∂u1k
∂yℓ

)]
+ η0

[
Cijkℓ

∂2u0k
∂xj∂xℓ

+ Cijkℓ
∂2u1k
∂xj∂yℓ

+
∂

∂yj

(
Cijkℓ

∂u1k
∂xℓ

)
+ bi

]
+ η1[·] = 0

Argue that equations at given powers of η need to be satisfied
independently. This move is strange, but a central tenet of perturbation
techniques. Given that η << 1, the terms have very different magnitudes.
In first-order homogenization, we only look at the first two powers of η:

η−1 :
∂

∂yj

(
Cijkℓ

∂u1k
∂yℓ

)
= − ∂

∂yj

(
Cijkℓ

∂u0k
∂xℓ

)
η0 : Cijkℓ

∂2u0k
∂xj∂xℓ

+ Cijkℓ
∂2u1k
∂xj∂yℓ

+
∂

∂yj

(
Cijkℓ

∂u1k
∂xℓ

)
+ bi = 0
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Cell problem

The first equation is the cell problem. The term ∂u0k/∂xℓ is the
macroscopic strain and is constant over the cell (no y dependence). The
microscale displacement is forced by the macroscopic strain. We can use
linearity to write

u1i (x , y) = χ(y)imn
∂u0m
∂xn

(x)

where χimn is a displacement fluctuation over the microstructure
(analogous to 1D case above). The “corrector” χimn must be computed
from the cell problem for each unit macroscopic strain component. We can
plug this expression for u1 into the η0 (macroscale) equation and obtain

Cijkℓ
∂2u0k
∂xj∂xℓ

+ Cijkℓ
∂χkab

∂yℓ

∂2u0a
∂xj∂xb

+
∂

∂yj

(
Cijkℓχkab

∂2u0a
∂xb∂xℓ

)
+ bi = 0

The body force is purely macroscopic (no y dependence) but the other
terms vary on the microscale. This equation cannot be satisfied for all y .
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Averaging

We can average this equation over the microstructure to rid of the y
dependence. This is analogous to averaging the cell stress in the 1D case.
Note that one way to deduce the appropriateness of this averaging
operation is through a technical condition called “solvability” from
perturbation theory. The corrector varies on the small scale only and is
periodic. Averaging over the microscale, we get(∫

Cijkℓdy

)
∂2u0k
∂xj∂xℓ

+

(∫
Cijkℓ

∂χkab

∂yℓ
dy

)
∂2u0a
∂xj∂xb

+ bi = 0

∂2u0a
∂xb∂xℓ

∫
∂

∂yj
(Cijkℓχkab)dy = 0

The latter equation follows from the periodicity of Cijkℓ and χkab. The
integral of the divergence of a periodic function is zero (shown with
divergence theorem).
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Homogenized constitutive tensor

With some shuffling of indices, the macroscale equation can be written as(∫
Cijkℓ

(
δkaδℓb +

∂χkab

∂yℓ

)
dy

)
∂2u0a
∂xj∂xb

+ bi = 0 (2)

Recognize this as the Navier equation for a constant material. This
constant material is the homogenized tensor

CH
ijab :=

∫
Cijkℓ

(
δkaδℓb +

∂χkab

∂yℓ

)
dy (3)
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Energy equivalence

The multiscale displacement at an arbitrary macroscale point x∗ is

uηi = u0(x∗) +
∂u0i
∂xj

(x∗)yj + χimn(y)
∂u0m
∂xn

(x∗)

The corresponding stresses and strains are those which arise from these
displacements. We want to show that∫

ση
ijϵ

η
ijdy = σ0

ijϵ
0
ij

where superscript 0 indicates a purely macroscale quantity and superscript
η indicates a quantity varying on both scales. Start with the LHS and use
the definition of strain, stress equilibrium, and the divergence theorem:∫

ση
ijϵ

η
ijdy =

∫
ση
ij

∂uηi
∂yj

dy =

∫
∂

∂yj
(ση

iju
η
i )dy =

∫
ση
ijnju

η
i ds
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Energy equivalence

=

∫
ση
ijnj

(
u0i (x

∗) +
∂u0i
∂xj

(x∗)yj

)
ds +

(∫
ση
ijnjχimnds

)
∂u0m
∂xn

(x∗)

Periodic boundary conditions on the corrector χimn ensure that the second
integral is zero. Using the divergence theorem, the first term becomes∫

∂

∂yj

(
ση
ij

(
u0i (x

∗) +
∂u0i
∂xj

(x∗)yj

))
dy =

(∫
ση
ijdy

)
∂u0i
∂xj

=⇒ σ0
ij =

∫
ση
ijdy

ση
ij = Cijkℓ(y)

∂uηk
∂yℓ

=

(
Cijkℓ(y)

(
δkmδℓn +

∂χkmn

∂yℓ

))
∂u0m
∂xn
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Energy equivalence

This shows that averaging the stress over the microstructure is the
correct thing to do from an energy standpoint

Also shows that homogenized tensor can be derived from energy
equivalence alone

Periodic boundary conditions were used to make an inconvenient term
disappear
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Nonlinear homogenization

The macroscale stress equilibrium equation is

∂⟨σ⟩
∂x

= 0

The homogenized stress ⟨σ⟩ is determined from the cell problem. The cell
problem is governed by nonlinear physics

N
(
u(y)

)
= 0

The cell has size η and is driven by a linearized displacement and
fluctuation Ψ:

N (ϵy +Ψ) = 0

The cell problem is driven by the macroscopic strain ϵ and is used to
determine the microscale fluctuation Ψ(y).
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Nonlinear homogenization

Once we have the corrector, we can compute the stress with

σ(y) = f (ϵy +Ψ)

then average over the cell to get the effective response. Perturbation
methods are not feasible to carry out for general nonlinear equations (try
it, you’ll see why). To construct a cell problem, take a “chunk” of
heterogeneous microstructure, compute its stress response to a constant
strain, then average this stress. This is the macroscopic stress that the
structure sees. When there is not scale separation, constructing a cell
problem amounts to linearizing the displacement over cells of finite size.
This fits in nicely with typical finite element interpolations.
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Mandel-Hill condition

The Mandel-Hill condition acts as a coarse-graining criterion for nonlinear
problems. Say that we are working with hyperelasticity. Mandel-Hill
requires ∫

Pη
ij δF

η
ij dy = P0

ijδF
0
ij

This is a slightly different condition than energy equivalence. It says that
the variations of the macro- and averaged microscale energies agree. In a
sense, this condition posits equivalent behavior in a numerical setting. n
practice, it can be used to determine the boundary conditions on the
microscale, and the upscaling relation P0

ij = f (Pη
ij ). Sorting out whether

the Mandel-Hill condition is satisfied for a given model needs to be done
on a case-by-case basis.
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Mandel-Hill for hyperelasticity

Using the definition of the deformation gradient, the product rule, stress
equilibrium, and the divergence theorem, we have∫

Pη
ij δF

η
ij dy =

∫
∂

∂yj
(Pη

ij δx
η
i )dy =

∫
Pη
ijNjδx

η
i ds

The quantity xηi is the deformed position of a point in the microscale. We
can write

∆xηi = F 0
ij∆X η

j + wi

where wi is a microscale fluctuation. This means that

δxηi = δF 0
ijX

η
j + δwi
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Boundary conditions and upscaling

Plugging this in, we obtain

=

(∫
Pη
ijNjX

η
k ds

)
δF 0

ik +

∫
Pη
ijNjδwids

When the microscale fluctuation is zero along the boundary, we have
δwi = 0. When the stress is zero along the boundary, we have Pη

ijNj = 0.

When the displacement is periodic, we also have that
∫
Pη
ijNjδwids = 0.

When any one of these three boundary conditions are used, the first term
can be written as

=

(∫
∂

∂yj
(Pη

ijX
η
k )dy

)
δF 0

ik =

(∫
Pη
ikdy

)
δF 0

ik

=⇒ P0
ik =

∫
Pη
ikdy
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Boundary conditions

Zero Neumann, zero Dirichlet, and periodic boundary conditions are all
compatible with Mandel-Hill when upscaling with stress averages. What
do we choose and why? Consider homogenizing an element of a finite
element mesh. The element is driven by a constant deformation gradient
and we compute the effective stress.
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Dirichlet too stiff, Neumann too soft

A constant deformation gradient corresponds to a displacement field
within the element of [

u1
u2

]
=

[
ax + by
cx + dy

]
This is a combination of constant normal strains in both directions and
simple shear. Each element becomes a parallelogram at the macroscale.
The microscale displacement is zero at the boundary nodes but there are
three choices of BC’s to govern the displacement along element vertices.
Remember that in reality this square of material is confined by material on
all sides. Zero displacement BC’s model the confinement as totally rigid.
Zero Neumann models no confinement. We don’t actually know what the
material surrounding the element is doing when computing its effective
stress response. Periodic boundary conditions are a compromise, modeling
partial confinement.
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Elements don’t fit together

In 1D, there is no issue with pulling a cell out of the structure, computing
the effective stress as a function of macro strain, and putting it back in. In
2D and 3D, we pull an element out (say an element in a finite element
mesh), drive it with a constant strain, compute its effective stress
response, then put it back into the mesh. We also do this with the
surrounding elements. The finite element basis functions representing the
macro displacement ensure continuity along vertices, but no such
condition is imposed on the microscale displacement fields. The elements
don’t fit together! This is because the displacements from different cell
problems are not compatible with each other.
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Conclusion

In my experience, it is necessary to spend a lot of time thinking about
these things to make any sense of it

Learning about perturbation theory in general is helpful

1D problems are useful for building intuition
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