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1 Introduction

Elasticity in the regime of finite strains is confusing. The intention of this
document is to help think through some core concepts such as different stress
measures, the governing equations of nonlinear elasticity in the strong and weak
forms, the idea that certain stress and strain measures are “work conjugate,”
and techniques for numerical solutions of the governing equations. The numeri-
cal results are also meant to demonstrate the power of using neural networks as a
global discretization of the displacement. Using a global basis, energy minimiza-
tion, and symbolic calculations makes it almost trivial to implement numerical
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solutions to these nonlinear problems, which contrasts greatly with the serious
implementation efforts needed with traditional finite element methods.

2 Different Stress Measures

Figure 1: The Cauchy stress tensor characterizes takes in a position in the
deformed configuration and a normal vector and returns the traction vector on
the plane at that point.

Force equilibrium is most natural to write in the deformed configuration.
Nature does not care what geometry a structure had before the application of
loads, rather only about the balance of forces at each point in a structure in
whatever state it is currently in. Thus, we imagine deforming a structure, and
characterizing its stress state by finding the traction vectors on three perpen-
dicular faces aligned with the coordinate system at each point. This gives rise
to the Cauchy stress σij . See Figure 1. But because the goal of calculations in
solid mechanics is often to find the deformation, quantities defined fully in the
deformed configuration are somewhat vague and inconvenient. For example, we
may want to know the traction/force on a plane defined by the geometry of
the structure. The normal vector to this plane changes its orientation with the
deformation, but its physical interpretation as a normal to some surface does
not change. This motivates the idea of making use of the geometry of the unde-
formed configuration. The First Piola-Kirchhoff (PK1) stress tensor addresses
exactly the question posed above: it takes in a point and normal vector in the
undeformed configuration, and returns the traction on the plane at that point
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from the deformed configuration. This allows us to query the stress state of
the structure using the geometry of the reference configuration, which is more
intuitive and convenient. For example in Figure 2, we may want the stress on
the top surface of the bar in the undeformed configuration. If we use the PK1
stress, we do not need to account for the fact that this surface rotates 90 degrees
under the action of forces when inputting a normal vector to compute this stress.
We can use a result called “Nanson’s formula” to relate the Cauchy and PK1
stresses. The deformation gradient F relates volumes in the two configurations
with

dv = det(F )dV

Capital letters are used to refer to the undeformed configuration, and lower
case to the deformed configuration. The volume of a differential parallelpiped
can be computed by dotting an area vector with another vector that defines its
“height” (though it need not be normal to the area). Using the above relation,
we can write

dsidxi = JdSidXi

where J is defined as the determinant of the deformation gradient. The area
vectors can be written in the form dsi = dsni where ni is the area normal and
ds is the differential area. We can use this and the definition of the deformation
gradient to write

dsniFijdXj = JdSNidXi

Factoring out the dX terms, this formula relates the area vectors in the
deformed and undeformed configurations with

nds = JF−TNdS

By definition, the Cauchy stress takes in a normal and outputs the traction.
This traction is turned into a differential force through a differential area. Thus,
we have that

dfi = σijnjds

Using Nanson’s formula, we can write the differential area vector in the
undeformed configuration. Thus we have the following equality:

dfi = σijnjds = JσijF
−1
kj NkdS := PikNkdS

This defines the PK1 stress in terms of the Cauchy stress and the deformation
gradient. It takes in a normal vector in the undeformed configuration and spits
out the traction on the plane defined by the deformed version of that normal.
Note that the normal vector is in the undeformed configuration but the traction
vector comes from the deformed configuration. Thus the direction of the force on
the plane defined by the reference normal may seem odd and counter-intuitive:
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Figure 2: Reference configuration (left) and deformed configuration (right). A
small bit of material with normal N and area dS transform under the deforma-
tion to the normal n and area ds. Under the action of the external loads, there
is a force vector df on the surface defined by n. The fictitious force vector df

0
in the undeformed configuration has the same relation to the normal N as df
does to n. It is clear that n and N refer to the same physical surface, but their
components are quite different.

this is because the relation between the normal vector and the traction from the
deformed state of the solid is not preserved. An element of material may be in
pure tension in the deformed configuration but appear to have a component of
stress parallel to the plane defined by the normal in the reference configuration.
This is where the second Piola-Kirchhoff stress (PK2) can be useful–it is a
stress measure which “pulls back” the force from the deformed configuration in
the same way as the normal vectors are transformed. The traction vectors are
mapped to the reference configuration with the deformation gradient in addition
to the areas. The definition of the PK2 stress is

df0i = JF−1
ij σjkF

−1
ℓk NℓdS = SijNjdS

where this differential force is a fictitious one rotated along with the normal
vector back into the reference configuration. This is what the additional inverse
of the deformation gradient is doing multiplying the PK1 stress.

3 Equilibrium Relations

The balance of linear momentum says that force is equal to the change in mo-
mentum of a body. For a region of material defined by the volume Ω, the
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external forces come from tractions along its boundary and volumetric body
forces. The statement of this principle for the body is

D

Dt

∫
Ω

ρvidΩ =

∫
∂Ω

tidS +

∫
Ω

ρfidΩ

The material time derivative is used to reflect the fact that we track a collec-
tion of particles. Remember that the balance of linear momentum applies not
to a region in space, but to a particle or collection of particles. The Reynold’s
Transport theorem allows us to pass this time derivative inside the integral. Sim-
ilarly, we can use the definition of the Cauchy stress, defined in the deformed
configuration, to write this as∫

ρ
Dvi
Dt

dΩ =

∫
σijnjdS +

∫
ρfidΩ

We then use the divergence theorem to write the surface integral as a volume
integral. Shrinking the volume Ω down to a point leads to the strong form of
the equations of motion in nonlinear elasticity:∫ (

ρ
Dvi
Dt

− ∂σij
∂xj

− ρfi

)
dΩ = 0

As above, formulation in the deformed configuration with the Cauchy stress
is the most natural starting point. However, we want to determine the equations
of mechanical equilibrium in the reference configuration in practice. We can con-
vert each term in the balance of linear momentum to the reference configuration
as follows: ∫

Ω

ρfidΩ =

∫
Ω0

ρ0
J
fiJdΩ0 =

∫
Ω0

ρ0fidΩ0∫
∂Ω

tidS =

∫
∂Ω

σijnjdS =

∫
∂Ω0

PijNjdS0 =

∫
Ω0

∂Pij

∂Xj
dΩ0

D

Dt

∫
Ω

ρvidΩ =
D

Dt

∫
Ω0

ρ0
∂ui
∂t

dΩ0 =

∫
Ω0

ρ0
∂2ui
∂t2

dΩ0

The equations of motion in the reference configuration are then

ρ0
∂2ui
∂t2

=
∂Pij

∂Xj
+ ρ0fi

Another way to see this in the case of statics is to start with the total
potential energy in the reference configuration. With no body forces, this reads

Π =

∫
ΨdΩ0 −

∫
tiuidS0

Note that another benefit of using the reference configuration is that it is
more intuitive to specify the traction vectors. We want them to operate on
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fixed surfaces of the undeformed body in given directions, not at spatial points.
The displacement solution is obtained when the energy functional obtains a
minimum. The calculus of variations tells us that this condition can be expressed
as

δΠ =
∂

∂ϵ
Π(u+ ϵw)

∣∣∣
ϵ=0

= 0

This says that small and arbitrary variations w around the displacement field
do not change the value of the energy. This is the continuous generalization of
the derivative of a function being zero. We think of the strain energy as being
a function of the deformation gradient, which will return the PK1 stress. This
is proven in the section of work conjugate pairs below. The point of using the
PK1 stress is to define force equilibrium with the geometry of the reference
configuration. The condition for a minimum is then

δΠ =

∫
∂Ψ

∂Fij
(u+ϵw)

∂

∂ϵ

(
δij +

∂ui
∂Xj

+ ϵ
∂wi

∂Xj

)∣∣∣∣∣
ϵ=0

dΩ0−
∫
ti
∂

∂ϵ
(ui+ϵwi)

∣∣∣∣∣
ϵ=0

dS0 = 0

=

∫
Pij

∂wi

∂Xj
dΩ0 +

∫
tiwidS0

We have used that the PK1 stress and deformation gradient are work con-
jugate. Integrating this expression by parts, we arrive at∫

∂Pij

∂Xj
widΩ0 −

∫
PijNjwidS0 +

∫
tiwidS0

Note that the variations are zero along the boundaries with prescribed dis-
placements. If the displacement isn’t prescribed, then the traction must be,
which means that the two surface integrals in the above expression are over
equivalent domains. Because the variation w is arbitrary, we can deduce the
governing equation and its boundary conditions from this expression:

∂Pij

∂Xj
= 0 (no body force)

PijNj = ti (on traction boundary)

4 Work Conjugate Pairs

The work done by a displacement dependent force F (x) over some deformation
up to position x∗ is

W =

∫ x∗

0

F (ξ)dξ
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For a time dependent displacement x(t), the work done is a function of time
through the displacement:

W (t) =

∫ x(t)

0

F (ξ)dξ

By definition, power is the time derivative of the work. Because the time
dependence of the work depends entirely on the limit of integration, we must
use the Leibniz rule to compute this derivative. Note that the assumption of no
explicit time dependence of the force rules out materials with time-dependent
properties, such as the case of viscoelasticity. The power is computed as

p =
∂W

∂t
=

∂

∂t

∫ x(t)

0

F (ξ)dξ =
∂x

∂t
F (x(t))

This is where the familiar definition of force times velocity comes from. We
can now extend this to elastic systems undergoing large strains. The total power
of the body comes from external forces in the form of surface tractions T and
body forces f . The power now involves dot products of the force with the
velocity:

p =

∫
TividS +

∫
fividΩ

These integrals are taken in the current configuration Ω(t). The traction
vector is related to the Cauchy stress with Ti = σijnj . Plugging this into the
above expression and using the divergence theorem, the power can be written
as

p =

∫
∂

∂xi

(
σijvj

)
dΩ+

∫
fividΩ

We can distribute the divergence, and use the governing equation of force
equilibrium in the current configuration (σij,j + fi = ρai) to arrive at

p =
∂

∂t

∫
1

2
ρvividΩ+

∫
σij

∂vj
∂xi

dΩ

where we have used that the acceleration is the time derivative of the velocity.
We can now recognize the first term and the time derivative of the total kinetic
energy of the body, and the second term is the power associated with deforma-
tion. We will now focus on this term, naming it P (confusingly, because this is
also the symbol for the PK1 stress). We can use the chain rule to rewrite the
velocity gradient in a more revealing form:

P =

∫
σij

∂vi
∂xj

dΩ =

∫
σij

∂vi
∂Xk

∂Xk

∂xj
dΩ =

∫
σij

∂

∂t

(
δik +

∂ui
∂Xk

)
∂Xk

∂xj
dΩ

=

∫
σijḞikF

−1
kj dΩ
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Now we perform a change of variables to integrate in the reference configu-
ration. This means evaluating the Cauchy stress and deformation gradient at
material points X as opposed to current positions x. We also pick up a volume
scaling factor:

P =

∫
σijḞikF

−1
kj JdΩ0 =

∫
PikḞikdΩ0

We have shown that the power is computed with the PK1 stress and the time
derivative of the deformation gradient. To finalize the demonstration that these
two quantities together form the strain energy density (not just the power), we
can use the fact that the total work done is the time integral of the power:

W =

∫ T

0

P (t)dt =

∫ T

0

∫
Pik

∂Fik

∂t
dΩ0dt

The PK1 stress does not have explicit time dependence, only depending
on time implicitly through the deformation F . We know that for an elastic
material, the total work done is independent of the path the deformation takes.
Thus, we can compute the total work done in two ways: we can parameterize the
deformation in terms of time, and sum the work contributions at each instant
of time, or we can simply integrate the PK1 stress up to the final deformation
F (T ). This amounts to a change of variables in the double integral, which reads

W =

∫ (∫ T

0

Pik
∂Fik

∂t
dt

)
dΩ0 =

∫ (∫ F (T )

0

PikdFik

)
dΩ0

This shows that the volumetric strain energy density Ψ is computed by
integrating the PK1 stress against the deformation gradient. The relation that
is typically more useful is when we start with an energy density (who knows
where these come from!) and use it to compute the stress:

∂Ψ

∂Fij
= Pij

That a stress measure is related to a strain measure through differentiating
the energy is what is meant by work conjugacy. A similar argument using the
power shows that the PK2 stress is work conjugate with the Green-Lagrange
strain E.

5 Computational Hyperelasticity

Hyperelasticity is a large deformation constitutive model for which the defor-
mation is reversible. This contrasts with more complex irreversible phenomena
like damage and plasticity. The fact that the deformation is reversible means
that problems in hyperelasticity can be formulated with a total potential energy
functional. With no body force, this energy reads
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Π =

∫
ΨdΩ0 −

∫
tiuidS0

Integrals are carried out in the reference configuration. The response of the
body to the applied traction is computed by finding the minimum of the energy
functional. It is clear that the strain energy density Ψ governs the constitutive
response of the body. We will use the compressible Neohookean model for 2D
solids, which has a known strain energy density. This strain energy makes use
of a few quantities. The right Cauchy-Green tensor and its first invariant are

Cij = FTF = FkiFkj =⇒ I1 = tr
(
C
)
= Cii = FkiFki

The Neohookean model also makes use of the determinant of the deformation
gradient

J = det
(
F
)
= F11F22 − F12F21

It is convenient that the determinant can be written in a compact and explicit
form in two spatial dimensions. The strain energy density for a 2D incompress-
ible Neohookean solid is

Ψ = C1

(
I1 − 2− 2 lnJ

)
+D1

(
J − 1

)2
where C1 and D1 are material constants. With the material model in hand, we
are now in a position to say that the response of the body is governed by zero
first variation (minimum) of the total potential energy:

δΠ =

∫
∂Ψ

∂Fij
δFijdΩ0 −

∫
tiδuidS0 = 0

This is what is typically written in deriving the weak form of the governing
equations. We differentiate the strain energy with respect to the deformation
gradient because, as we have shown, this gives rise to the PK1 stress which
allows us to work in the reference configuration. Because it is necessary to
compute integrals over the body, it is essential that we operate in the reference
configuration because otherwise the domain of integration would be unknown (as
it depends on the deformation). The notation δFij is somewhat unclear–really
what we mean by this is Fij(δu), i.e. the deformation gradient of the “variation”
δu. We will demonstrate the usual derivation of the weak form of the governing
equations, but as will be seen, this is not the approach that will ultimately
used in the solution process. This alternative approach is demonstrated in the
following sections. Here, we discretize the variation as a linear combination of
arbitrary coefficients multiplied by known spatial shape functions. Because the
displacement is a vector, this needs to be done for each component separately.
For example in two dimensions, we can write

δu1 =

N∑
i=1

wiNi(X), δu2 =

N∑
i=1

wi+NNi(X)
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There are independent degrees of freedom for each component of the vari-
ation, but the spatial shape functions are the same. The discretization of the
variation is done in the undeformed configuration, thus we use the coordinate X
(upper case). We have 2N degrees of freedom total. It becomes very important
to write the discretization in intuitive forms to keep the derivation manageable.
The two above expressions can be combined into one in the following way:

[
δu1
δu2

]
=

[
N1(X) N2(X) . . . NN (X) 0 . . . 0

0 0 . . . 0 N1(X) . . . NN (X)

]


w1

w2

...
wN

wN+1

...
w2N


This is a compact way to write the discretization of the variation in terms of

a matrix of shape functions multiplied by a vector of all the degrees of freedom.
Call the 2× 2N matrix of shape functions Hij(X) and the vector of degrees of
freedom Wj . Then we have

δui = HijWj , =⇒ δFij =
∂δui
∂Xj

=
∂Hik

∂Xj
Wk

If you are wondering why δFij ̸= δij+
∂δui

∂Xj
, which would be natural if we con-

ceptualize the variation as a displacement around a position in the undeformed
configuration, consider that in reality, what we are doing is the following:

δΨ =
∂Ψ

∂Fij
δFij =

∂Ψ

∂Fij

∂Fij

∂uk
δuk

This expressions shows that the delta function does not show up. The weak
form with the discretized variation is

∆Π = 0 =

∫
∂Ψ

∂Fij

∂Hik

∂Xj
WkdΩ0 −

∫
tiHijWjdS0

The coefficients on the variation are arbitrary, thus each term in the sum
must be zero individually. Factoring out the coefficients and renaming indices,
we obtain the residual system

Rk =

∫
∂Ψ

∂Fij

∂Hik

∂Xj
dΩ0 −

∫
tiHikdS0 = 0

At this point, we use a standard Galerkin method to approximate the dis-
placement field in the same function space as the variation. This means that
we use the same set of spatial shape functions. So as before, we have

ui = Hij(X)Uj
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We will also simplify the expression with ∂Ψ/∂Fij = Pij . The first Piola-
Kirchhoff stress is some nonlinear function of the displacement, which is defined
by the strain energy density. Thus, the residual equations are a nonlinear system
in terms of the displacement coefficients Uj . We write this as

Rk =

∫
Pij(U)

∂Hik

∂Xj
dΩ0 −

∫
tiHikdS0 = 0

This is typically solved iteratively with a Newton-Raphson procedure. Each
step in the Newton method involves linearizing the residual system around the
current set of displacement coefficients Un, where n represents the current iter-
ation. We find an update to the displacement coefficients such that linearized
system is zero. In the vicinity of Un, the residual vector is approximated with
a two term Taylor series

Rk(U) ≈ Rk(U
n) +

∂Rk

∂Uj

∣∣∣
Un

(
Uj − Un

j

)
= 0

=⇒ Un+1 = −
(
∂R

∂U

)−1

R+ Un

The displacement at the next Newton iteration is the one for which the
linearized residual system is solved. Because the system is not actually linear,
this solution may or may not be accurate. For the hyperelastic problem, the
Jacobian matrix needed for the Newton procedure is

∂Rk

∂Uℓ
=

∫
∂Pij

∂Uℓ

∂Hik

∂Xj
dΩ0

Writing out the derivative of the PK1 stress with respect to the displacement
coefficients would be a total mess. But the concept is quite simple, even if it
is not simple in practice. These are the basic moving parts of a computational
solution to a problem in hyperelasticity.

6 Ritz Method with Neural Network Basis for
Hyperelasticity

A typical discretization is linear in the sense that the displacement is a linear
combination of known spatial shape functions. The “parameters” to be deter-
mined are the weights on these shape functions. This is the technique that was
employed above. However, a discretization is simply a tool for representing a
wide class of functions. In two dimensions, the displacement is a function[

X1

X2

]
→
[
u1(X1, X2)
u2(X1, X2)

]
The discretization is just some mathematical framework to capture this re-

lationship. We think of the discretization as a means of expressing functions,
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and the physics as a guide to tune this expression. Of course, any discretiza-
tion is limited to a finite dimensional “subspace” of the space of all possible
solutions. For example linear finite elements cannot represent curvature of the
displacement field within elements. This is a restriction imposed by the choice
of discretization. In recent years, neural networks have proven to be extremely
flexible tools to represent complex input-output relationships. The simplest
neural network architecture is a “multi-layer perceptron,” which is a composi-
tion of linear transformations passed through nonlinear functions. For example,
a single layer MLP neural network representing the displacement field can be
written as

u = w2 · σ
(
w1x+ b1

)
This is an affine transformation on the coordinates x defined by the “weight”

matrix w1 and “bias” vector b1, which is then passed through a nonlinear “acti-
vation” function σ(·). The activation is applied on a component-by-component
basis. A matrix of coefficients then takes the output of the activation to the
displacement. The weights and biases are all considered to be unknown pa-
rameters of this discretization. A deeper neural network repeats this process
multiple times. For example, a two layer network looks like this:

u = w3σ
(
w2 · σ

(
w1x+ b1

)
+ b2

)
This composition operation can be repeated arbitrarily many times. Because

the weights at the last layer take spatial functions defined by the previous layers
to the displacement, we might think of the network as approximating the shape
functions in the inner layers, and the last layer as fitting their weights. In other
words, if we freeze all the parameters other than those of the last layer, this looks
like a typical linear discretization. The number of layers, the “widths” of the
layers, and the activation functions are hyperparameters defining the structure
of the network. A layers width is defined by the number of components being
fed into the activation functions. Let’s collect all the parameters into a single
vector

θ = [w1, b1, w2, . . . ]T

The weight matrices can be reshaped into vectors for this to make sense.
We will use a neural network with parameters θ to discretize the displacement
field. This will be written as

u = N(X1, X2; θ)

Using MATLAB, small to medium sized networks can be written out sym-
bolically. We choose the number of layers, the width of each layer, the activation
function, compute the total number of parameters, and build the weight and
bias matrices by reshaping elements of the parameter vector. The functional
relation between displacement and position is defined with the above composi-
tion operations symbolically. Unlike a finite element method, this discretization
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is defined globally over the computational domain, as opposed to being local
to elements. The benefit of symbolic calculations is tremendous. In the com-
pressible Neohookean model, we require derivatives of the first invariant I1 and
the determinant of the deformation gradient J with respect to the parameters
of the displacement discretization (for example in the Jacobian for the Newton
solve). With the symbolic network, we can simply define these in terms of the
displacement with

I1 = I1(C) = I1(C(F )) = I1(C(F (U))), J = J(F ) = J(F (U)))

and take derivatives in terms of the parameters symbolically. To make life
even easier, we can use a Ritz method to solve for the hyperelastic deformation.
Whereas the traditional weak form approach minimizes the energy with calculus
of variations then discretizes the variation and displacement, the Ritz method
starts with the energy, discretizes the displacement, then finds its minimum. If
we use a gradient descent method to minimize the energy, there is no need to
form a Jacobian matrix or use the Newton-Raphson method. Thus, all we need
is the gradient of the discretized energy:

∂Π

∂θm
=

∫
∂Ψ

∂θm
dΩ0 −

∫
ti
∂ui
∂θm

dS0

For the compressible Neohookean model, the parameter gradient of the strain
energy density is

∂Ψ

∂θm
= C1

(
∂I1
∂θm

− 2

J

∂J

∂θm

)
+ 2D1

(
J − 1

) ∂J
∂θm

The gradient of the energy is used in an iterative search procedure to find
a minimum in terms of the parameters θ. The parameter derivatives in the
strain energy are computed symbolically as mentioned above. We write symbolic
functions which evaluate the determinant of the deformation gradient, the first
invariant of the right Cauchy-Green tensor and their derivatives at a given set
of parameters. All we need to do at each step of the gradient descent algorithm
is integrate these quantities over the computational domain.

7 Ritz Method with Neural Network Basis for
Hyperelasticity with Contact

Some elastic contact problems are actually quite easy. This is especially true
when using a Ritz method. We can simply add a penalty term to the energy
functional that is large if the structure penetrates a surface. In general, the
hard part is detecting penetration of surfaces for a given deformation. But for
some problems, it is clear a priori where contact will occur, and simple to define
penetration. In Figure 9, it is clear from the geometry and loading that the
structure will contact the ground somewhere near the center. Penetration occurs
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Figure 3: Frame structure with fixed lower surface and upwards traction applied
at the center of the upper horizontal bar. A single hidden layer network with
10 neurons is used.

Figure 4: Integration grid for the frame structure.

when the position of any point on the lower surface of the bar passes through
y = 0. This is very easy to express mathematically. We do this by defining
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Figure 5: Convergence in the magnitude of the energy, the gradient, the strong
form and the integral of the norm of the displacement field. The strong form
error seems to track exactly with the size of the displacement. It seems that the
optimizer initially makes the displacement small, then increases it which comes
with a cost in the strong form error.

a “gap” function which measures the distance between the ground and points
along the lower surface of the horizontal bar as a function of the displacement.
For the arch structure in Figure 9, the gap can be written simply as

g(X1) = L2 − L3 + u2(X1, L2 − L3)

where L2 is the height of the arch from the ground, L1 is the width of the arch,
and L3 is the width of the horizontal and vertical bars. Once we have the gap
formulated, we can add a penalty to the energy functional of the form

γ

∫ L1−L3

L3

I2
(
g(X1)

)
dX1

The parameter γ is a large penalty which has to be tuned. The function
I(g) is zero for g > 0, and −g for g < 0. In other words, there is no penalty
until penetration occurs. A function of this sort can be approximated as

I(g) =
|g| − g

2
≈
√
g2 + ϵ2 − g

2

where ϵ is some (very) small parameter used to regularize the absolute value.
The expression for the gap and the integration over the contact surface are
specific to the arch problem, but the ideas are general: we need an expression
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Figure 6: Frame structure with fixed lower surface and downwards traction
applied at the center of the upper horizontal bar. A single hidden layer network
with 10 neurons is used.

Figure 7: Convergence results for buckling frame structure.

for a gap function, and some area to integrate over for which contact may occur.
This allows us to dramatically increase the value of the energy when penetration
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Figure 8: Frame with applied shear traction on the upper surface.

Figure 9: Arch type structure which comes into contact with the ground under
traction loading which is symmetric about the center.

occurs. The energy functional and its gradient for the hyperelastic arch with
contact are

Π =

∫
ΨdΩ0 −

∫
tiuidS0 + γ

∫ L1−L3

L3

I2
(
g(X1)

)
dX1
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∂Π

∂θm
=

∫
C1

(
∂I1
∂θm

− 2

J

∂J

∂θm

)
+ 2D1

(
J − 1

) ∂J
∂θm

dΩ0 −
∫
ti
∂ui
∂θm

dS0

+ γ

∫ L1−L3

L1

2I
(
g(X1)

)∂I
∂g

∂u2
∂θm

dX1

See Figures 10-18 for results of numerical simulations for different geometries
and loading.

Figure 10: Arch with downward traction applied symmetrically about the center
over one third the width. A single hidden layer network with 12 neurons was
used.

8 Ritz Method with Neural Network Basis and
Implicit Geometry

The geometry of a two-dimensional structure can be defined implicitly by the
zero of some function g. The boundary is the curve

g(x1, x2) = 0

This is equivalent to thinking of the graph x3 = 0 slice of the graph x3 =
g(x1, x2). A function of this sort will be called a signed distance field, or level
set function. A true signed distance field measures the shortest distance from
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Figure 11: Integration grid used in the arch contact problem.

Figure 12: Convergence profile of the energy, its gradient, the strong form er-
ror and the norm of the displacement field for the arch with centered traction
loading.

a point in a domain to some curve defining a boundary. Some of the implicit
geometries we construct may not be true SDF’s, though the idea is the same.
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Figure 13: Arch with downward traction applied off center. The same neural
network discretization and integration grid are used.

Figure 14: Arch with downward traction applied on the left and upward on the
right.
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Figure 15: Parabola shaped structure with uniform vertical traction over the
full width of the top surface. The structure topples to one side when symmetry
of the displacement is not enforced explicitly.

It is some 3D function whose zero defines a boundary. If we have a simple
SDF/level for circular, ellptical, or square geometry, we can build up more
complex boundary by combining them with a max operation. See this plot
for an illustration of this. For level sets fi(x1, x2), we can regularize the max
function with

max(fi, . . . , fN )(x1, x2) ≈
1∑N

i=1 e
αfi

N∑
i=1

fie
αfi

where α is some parameter which need not be particularly large (α > 10 for ex-
ample) for this regularization to be accurate. See Figures 19-22 for the solution
of the hyperelasticity problem with zero boundaries and a body force using level
set representation of the geometry using a neural network basis. We can simply
multiply the neural network basis by the level set defined by the regularized
max operation acting on four level sets defining ellipses in order to enforce the
boundary conditions.
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Figure 16: Deformation of hyperelastic hemisphere, computed using symmetry
boundary conditions to avoid toppling. Zero x1 displacement along the center-
line is built into a single hidden layer network with 12 neurons. The size of
integration elements is 1E-2 by 1E-2. The contact penalty parameter is 1E4
and the downward traction loading is applied uniformly over the upper surface.
The solution is obtained after 700 optimization steps.

9 Ritz Method with Neural Network Basis for
Multiscale Hyperelasticity

Analogous to the case of homogenization in linear elasticity, we can argue that
for a two-scale hyperelastic material, the “macroscopic” stress is the average of
the microscopic stress. The microscopic stress is the stress state of a block of
material microstructure. The stress in the microstructure is driven by a macro-
scopic strain, which is a particular type of volumetric forcing. These are weird
ideas until one has spent a lot of time thinking about multiscale problems. In
the case of linear elasticity, these notions can be made rigorous with a two-scale
perturbation expansion of the spatial coordinates and displacement field. See
the Appendix for a discussion of this. The idea is that the material varies at
high frequencies, which introduces the notion of separate scales. It can be seen
with this plot that the displacement of a 1D bar with a constant body force
and high frequency variations in the stiffness closely resembles a bar with the
same body force but a reduced constant stiffness. In other words, the spatial
variations primarily act to reduce the overall stiffness, not to introduce large os-
cillations in the solution. This suggests that “homogenized” material properties
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Figure 17: Von Mises stress for the symmetric part of the hemisphere, computed
by converting the PK1 stress to the Cauchy stress. The largest stresses are along
the contact surface.

Figure 18: Zooming in on large von Mises stresses along the contact surface.
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Figure 19: Signed distance field (SDF) aka level set representation of the geom-
etry of a 2D structure. The zeros of the SDF implicitly define the boundary of
the structure. Primitive SDF’s can be combined through a “max” operation to
construct more complex geometries.

can be a good model for a multiscale solid, and the two scale expansion is a way
of estimating them. See the Appendix for a derivation of this, which shows that
material can have macroscopic trends in addition to high frequency variations
within the perturbation framework. In the linked plot, it can also be seen that
directly averaging the material properties does not lead to an accurate model
of the effective stiffness.

For linear problems, it seems fair to say that the perturbation techniques
are the fundamental tool, and the interpretations of their results are basically
heuristics to make some sense of things. Though it is possible for some nonlin-
ear problems, it is not feasible in the case of hyperelasticity to honestly derive
the multiscale model with the two scale perturbation expansion. One reason
for this is that any nonlinearity ensures that the already tedious perturbation
calculations become formidable. A more fundamental reason is that nonlineari-
ties which are not polynomial make it impossible to “separate scales,” which is
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Figure 20: Geometry of 2D flower shaped hyperelastic structure constructed
implicitly with a regularized max acting on four primitive level set functions.

Figure 21: Displacement components for constant magnitude radial body force
on structure whose geometry is defined with level sets. A single hidden layer
neural network with 12 neurons is multiplied by the level set defining the geom-
etry to enforce zero displacement boundary conditions. The size of integration
elements is 3E-2 × 3E-2. Integration to form the energy and its gradient is now
conducted with a background grid, where the level set function is used to check
whether the integration point is inside or outside the boundary.

a necessary step in the usual homogenization procedure. Thus we rely on the
intuition obtained from experience with other problems in order to propose a
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Figure 22: Convergence of the energy and its gradient for flower shaped hy-
perelatsic structure. The radial body force seems to be a particularly simple
solution to find.

hyperelastic multiscale model. So let’s argue that the microstructure is hyper-
elastic with spatially varying material properties. A macroscopic deformation
gradient, which is constant over the microstructure, acts as a forcing term for
microscale equilibrium formulated in terms of the PK1 stress. We will use Y for
the microscale coordinates in the reference configuration, and lower case letters
for microscale quantities. Thus, p is the microscale PK1 stress, and ψ is the mi-

croscale strain energy, which comes from knowledge of the material constituents
of the microstructure. The governing equation reads

∂pij
∂Yj

= − ∂

∂Yj

∂ψ

∂fij

∣∣∣∣∣
F

The microstructure has spatial variations, so the material parameters are
no longer constant. The microscale hyperelastic material model for the same
compressible Neohookean solid is

ψ = C1(Y1, Y2)
(
I1 − 2− 2 lnJ

)
+D1(Y1, Y2)

(
J − 1

)2
When computing the stress response of the microstructure, the macroscopic

deformation gradient is considered as a known quantity as it determines the
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forcing term. It can be seen that this problem admits a variational formulation.
The total potential energy corresponding to the microscale stress equilibrium is

π =

∫
ψdΩY −

∫
ui

∂

∂Yj

∂ψ

∂fij

∣∣∣∣∣
F

dΩY

The energy of the microstructure can be minimized for a given macroscopic
deformation gradient in the same we solved the other hyperelasticity problems.
The only difference is that the material is spatially varying, and that there
is a peculiar body force. Solving for the displacement allows us to compute
the microscopic PK1 stress, which then permits computation of the macroscale
stress through an averaging operation:

Pij =
∂

∂Fij

(
1

|ΩY |

∫
ψ(Y1, Y2)dΩ

Y

)
+

1

|ΩY |

∫
pij(F )dΩ

Y

Figure 23: The simplest form of periodic boundary conditions where all four
corners of the sample of microstructure are fixed.

This is the stress that comes from a deformation gradient acting on the di-
rect average of the microstructure properties plus a correction from microscale
stresses driven by material fluctuations. This is entirely analogous to linear
homogenization (in fact the linear problem is the main motivation for this ex-
pression). The last thing that needs to be specified is the set of boundary condi-
tions for the microstructure. We will use the simple form of periodic boundary
conditions shown in Figure 23. Basically all multiscale models use periodic
boundary conditions for the microstructure, but there are multiple ways they
can be enforced. This is likely a “conservative” framework for enforcing periodic
boundaries–we might think that shear type deformations should be possible.
These are restricted by fixing the four corners. It is possible to build a neu-
ral network discretization of microscale displacement that which automatically
satisfies this form of periodicity. This is written as
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u(Y1, Y2) = sin(πY1) sin(πY2)N(Y1, Y2; θ)

+
(
e−Y 2

2 +e−(Y2−1)2
)
sin(πY1)g(Y1;α)+

(
e−Y 2

1 +e−(Y1−1)2
)
sin(πY2)h(Y2;β)

See this plot for an illustration of a displacement field of this sort. The
two vector valued functions of one spatial coordinate h and g represent the
displacement along the boundaries. Here we are using that the size of the
microstructure in terms of the microscale coordinate Y is unity. The parameters
θ determine the solution inside the domain. The same displacement is imposed
on opposite sides of the microstructure by construction. The half-period sine
functions enforce zero displacement at the four corners of the microstructure.
The inner displacement does not influence the boundaries because we multiply
by the tensor product of sines. The boundary displacements decay to zero
inside the domain. This discretization can be used with the microstructural
energy minimization method to find the displacement, which is then used to
compute the microscale stresses. From here, we can build a relationship between
macroscopic deformation gradients and homogenized stresses.

A Homogenization of 1D Bar

Say that there are periodic fluctuations in the stiffness of the bar with period η.
This the parameter n in the plot. We conceptualize this parameter as specifying
the size of the “microstructure” of the material. When η is very small, the entire
microstructure appears to occupy a single point x. However, we can better
resolve the microstructure by stretching out the position coordinate. This can
be accomplished with the new coordinate y := x/η. Very small changes in x
causes large changes in y. By definition, y changes value by 1 as a segment
of microstructure is traversed. The two coordinates have the same order of
magnitude. This is the set up for the perturbation techniques which are used to
derive homogenized material properties. Looking at the analytical solution, we
can see that when the size of the microstructure is small, even large amplitude
fluctuations in the stiffness do not introduce large oscillations in the solution.
To a good approximation, the bar responds as if there were a new value of
constant material properties. We attempt to compute this “effective” stiffness.
The first thing we do is treat x and y as independent coordinates. This is a
strange idea given that they are obviously related, but the intuition is that when
η is very small, the macroscopic position x is essentially constant as y varies
within the microstructure. Think about this: if we define a spatially varying
body force b(x), when η is small, we have that b(x + η) ≈ b(x). This is all the
effect that varying y has on the position x. It is thus reasonable, though very
counterintuitive, to approximate these as two independent coordinates. Next,
we argue that the effect of the periodic variations in the material is to introduce a
small additive correction to an underlying displacement field. This displacement
corrector is assumed to be periodic along with the material properties. The
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superscript η is used to indicate a quantity which varies on two scales. The
displacement is written as

uη(x, y) = u0(x) + ηu1(x, y)

The underlying displacement u0 only varies with the macroscopic coordinate
x. This is the “homogenized” displacement with updated but constant material
properties we are trying to approximate. Note that if the stiffness has low and
high frequency variations, the homogenization process will take out the high
frequency variations, but there will still be some low frequency trend. This is
shown in the linked plot. There is no reason to think that material properties
varying with macroscopic coordinate x could be accurately replaced with a
constant. We do think that the high frequency (microscale) fluctuations should
be possible to ignore. We need to take derivatives of the displacement for stress
equilibrium. Derivatives are written as

d

dx
uη =

∂uη

∂x
+
duη

dy
=
∂uη

∂x
+
∂uη

∂y

∂y

∂x
=
∂uη

∂x
+

1

η

∂uη

∂y

The factor 1/η accounts for the fact that changes in the displacement with
respect to the microscopic variable are actually happening much quicker than
they seem when viewed from a zoomed in picture of the microstructure. This
allows us to define the two-scale derivative operator as:

d

dxη
:=

∂

∂x
+

1

η

∂

∂y

We assume that the stiffness of 1D bar varies with high and low frequency
trends. The variations of the microstructure are periodic, but either the nature
of this periodic variation or the mean around which the variation takes place
change with x. Stress equilibrium for the two scale bar is written as

d

dxη

(
E(x, y)

duη

dxη

)
= b(x)

We have written the expression for the multiscale derivatives, and motivated
the expansion of the two scale displacement as a homogenized displacement
plus a small fluctuating correction. Using these results, stress equilibrium is
expanded to read

(
∂

∂x
+

1

η

∂

∂y

)(
E(x, y)

(
∂

∂x
+

1

η

∂

∂y

)
(u0(x) + u1(x, y))

)
= b(x)

Some algebra yields:

∂

∂x

(
E
∂u0

∂x

)
+

1

η

∂

∂y

(
E
∂u0

∂x

)
+ η

∂

∂x

(
E
∂u1

∂x

)
+

∂

∂y

(
E
∂u1

∂x

)
+

∂

∂x

(
E
∂u1

∂y

)
+

1

η

∂

∂y

(
E
∂u1

∂y

)
= b(x)
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Now comes a peculiar trick from perturbation theory: we claim that equa-
tions need to be satisfied at each order of the small parameter η individually.
I am not totally sure how this is justified, but one idea is that because η is so
small, the size of the terms at different orders are completely mismatched. For
example, terms involving 1/η will be extremely large, but it is not actually clear
we want them to dominate the physics of the problem. In this case, it is really
just that variations over the microstructure are extremely fast, so derivatives
are large. This grouping by orders of η is a way of “separating scales.” We
look first at the terms on the lowest order of η, which in this case is η−1. This
equation reads

∂

∂y

(
E(x, y)

∂u0

∂x

)
= − ∂

∂y

(
E(x, y)

∂u1

∂y

)
We conceptualize this as the equation of the microscale. Imagine that the

macroscopic displacement u0 is known: what this equation says is that force
equilibrium on the microscale (equation on u1) is driven by a volumetric stress-
like term arising from the macroscopic displacement field. This can be inter-
preted as the large scale driving a displacement (and stress) response on the level
of the microstructure. This equation is linear, so we can write the displacement
response of the microstructure at macroscopic position x as a function of the
macroscopic strain with

u1(x, y) = χ(x, y)
∂u0

∂x

where χ is the microstructure response to a unit strain. This is nothing other
than using linearity of this equation. Remember that x and y are treated as
independent variables. The unit strain response of the microstructure depends
on the macroscopic position x because the microstructure has a low frequency
trend. As we will see, it will be very useful to write u1 in terms of u0. This
is one of the things that the microscale equation has allowed us to do. Before
moving forward, note that this equation can be solved analytically in 1D. The
governing equation for the unit strain response is

∂E(x, y)

∂y
= − ∂

∂y

(
E(x, y)

∂χ(x, y)

∂y

)
This can be integrated once to remove the derivatives, yielding

E(x, y)
∂χ

∂y
= −E(x, y) + C

We can divide by E and integrate again to obtain

χ(x, y) = −y + C

∫ y

0

dξ

E(x, ξ)
+D

The boundary conditions on the microscale unit strain response are periodic,
given that it is used to define the displacement correction u1. In 1D, this
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means that χ(0) = χ(1). As we will see, only derivatives of the unit strain
response appear in the homogenized properties, which means that with no loss
of generality we can take the displacement on the two boundaries to be zero.
This requires that the constant of integration D is zero. The other constant of
integration is determined with

χ(x, 1) = 0 = −1 + C

∫ 1

0

dξ

E(x, ξ)

=⇒ C =
1∫ 1

0
dξ

E(x,ξ)

The unit strain response of the microscale at macroscopic position x is then

χ(x, y) = −y + C

∫ y

0

∂ξ

∂E(x, ξ)

where the constant C is defined by the above equation. Note that for finite
scale separation, meaning η > 0, the microstructure defined by the interval
[E((x, 0), E(x, 1)] will “overlap” some amount with the microstructure on the
interval [E(x + ϵ, 0), E(x + ϵ, 1)] for any parameter ϵ < η. It is not clear what
the effect of this is. We can now move on to the macreoscale equation. Turning
to the second lowest order of η, we have

∂

∂x

(
E(x, y)

∂u0

∂x

)
+

∂

∂y

(
E(x, y)

∂u1

∂y

)
+

∂

∂x

(
E(x, y)

∂u1

∂y

)
= b(x)

Note that the body force is on the order η0. What we can observe is the
following: this equation cannot be satisfied pointwise in both x and y. The
body force only depends on the macroscopic coordinate, but both the material
and the displacement correction u1 depend on the microstructure coordinate
y. In other words, the body force on the right-hand side of the equation is
constant over the microstructure, but the terms on the left-hand side vary. We
can weaken the notion of a solution to be in an average sense only. In other
words, the divergence terms on the left should equal the body force at point x
when we average over the microstructure. It can be shown that this averaging
operation comes from a technical condition on the equations at higher orders
of η called “solvability.” That being said, the intuitive interpretation seems
reasonable. The average operation is

< · >= 1

|Ωy|

∫
(·)dΩy

where Ωy is meant to indicate the volume of the microstructure. By definition,
the measure of the microstructure domain (in this case length, not volume) is
unity. This comes from the relation between the two coordinates. Applying the
average operation, we have
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∫
∂

∂x

(
E(x, y)

∂u0

∂x

)
+

∂

∂y

(
E(x, y)

∂u1

∂y

)
+

∂

∂x

(
E(x, y)

∂u1

∂y

)
dΩy = b(x)

It can be seen from periodicity of the material properties and the displace-
ment corrector

∫
∂

∂y

(
E(x, y)

∂u1

∂y

)
dΩy =

(
E(x, y)

∂u1

∂y

)∣∣∣∣∣
1

0

= 0

This is a convenient simplification of the macroscale governing equation. We
can use the relation between u1 and u0 derived from the microscale equation to
write this as∫

∂

∂x

(
E(x, y)

∂u0

∂x

)
+

∂

∂x

(
E(x, y)

∂χ

∂y

∂u0

∂x

)
dΩy = b(x)

The integration can be passed inside the macroscale derivatives. The equa-
tion we arrive at is

∂

∂x

([∫
E(x, y)

(
1 +

∂χ(x, y)

∂y

)
dΩy

]
∂u0

∂x

)
= b(x)

This looks like stress equilibrium with updated material properties with no
high frequency spatial variations. As noted earlier, there is still x dependence
through both the stiffness E(x, y) and the unit strain response χ(x, y). The
influence of the microstructure in changing the effective material properties is
accounted for with the unit strain response of the microstructure. We see that
this offers a correction to directly averaging the stiffness over the microstructure.
The new material properties can be interpreted as the direct average of the
microstructure plus the average of a correction from microstructural stresses
driven by the macroscopic strain. This is what the microstructural unit strain
response is doing inside the homogenized tensor. In 1D, we can use the analytic
expression for the unit strain response to show that the homogenized stiffness
reduces to

∫
E(x, y)

(
1 +

∂χ(x, y)

∂y

)
dΩy =

∫
E(x, y)

(
1− 1 + C

1

E(x, y)

)
dΩy

= C(x) =
1∫ 1

0
dξ

E(x,ξ)

This is a remarkably simple form. It is easy to see that the analytical solution
for the homogenized bar is

u(x) =

∫ x

0

1

C(y)

∫ y

0

b(ξ)dξ
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When we don’t include constants of integration, this displacement is zero
with zero slope on the left end. This can be compared to the “true” analytical
solution for the stiffness with high-frequency variations. Experimenting with
animated plot shows that the homogenization framework works astonishingly
well, even when the scale separation and periodicity assumptions are violated.

We saw that for the linearly elastic bar, the stress response was the stress
arising from a direct average of the material properties on the microstructure,
plus a correction term arising from the average of microscale stresses. We will
argue that the homogenized response of the hyperelastic microstructure follows
exactly this form: a direct average of the material properties plus a correction
from the average of microstructural stresses. However, because hyperelasticity
is nonlinear, we cannot “precompute” a unit strain response as a shortcut to
the microstructural stresses, instead having to solve for the response of the
microstructure for each applied deformation gradient.
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