
Information Bottleneck Theory

Our goal here is twofold. First, to understand what the information bottleneck
theory is saying on a conceptual level. This involves ideas and interpreting
some equations. But we also want to understand the basics of how the relevant
quantities are computed. This is the second goal, and it will be accomplished
with the help of a simple toy problem.

Consider a discrete probability distribution Y . We can think of each of the
potential values of Y as a class label. Each class could be a di↵erent type of
animal, for example. Out in the world, our experience of Y is mediated by
another random variable X. To continue with the concrete example, if Y is the
class label of an animal, X is an image of an animal. This means X is a high
dimensional vector whereas Y is univariate. Our goal is to learn a model that
takes in a realization ofX and predicts a class label Ŷ . Thinking of this model as
a deep neural network, there is an intermediate layer T which is a deterministic
function of the input f(X), governed by parameters (weights and biases) p. If T
is low-dimensional, meaning a vector with dimension much smaller than X, this
is a compression step and the parameters p define an encoding X ! T . The
state of the intermediate layer is mapped to a prediction Ŷ through another
deterministic function g(T) governed by parameters q. See the figure.

Figure 5: Vectors of pixel values X correspond in some unknown way to class
labels Y . We try to learn a mapping from images to class labels which is accurate
on the training data and generalizes to unseen images.

The simplest way to learn the parameters p and q for the classification model is
to note that Ŷ = (g �f)(X), and compute the parameters through the following
optimization problem:

p⇤, q⇤ = argmin
p,q

E
h⇣

Ŷ (p, q)� Y
⌘2i

This is just the mean-squared error between the predicted and the actual
class labels. Nothing stops this algorithm from “memorizing” the data, which

means that it may not perform well on unseen images. This is also called over-
fitting. Our intuition is that preventing overfitting will lead to better generaliza-
tion of the learned model. We might expect that there is some abstract feature
essential to the class labels that defines why one image is a dog and another is
a cat. Getting at this abstract thing should actually require ignoring a lot of
other features. The background of the image shouldn’t matter, nor should the
size of the animal in the picture (it could be taken from close up or far away).
The model should learn “dog-ness” vs. “cat-ness,” rather than learning that all
dogs in the training data happen to have some superficial feature in common.

The information bottleneck theory is a potential answer to the question of
how a model learns to generalize. The following optimization problem is at the
heart of the information bottleneck theory:

argmin
p

I(X;T)� �I(T ;Y)

Remember that the parameters p control the relation between X and T .
The parameter � is a scalar that controls the relative weighting of the two
terms in the objective, and I(A;B) is the mutual information between two
random variables A and B. The mutual information can be conceptualized as a
(symmetric) measure of the extent to which knowing the value of one variable
decreases uncertainty about the other. What does it mean for this quantity to
be minimized? Roughly, it means that the hidden layer T becomes only loosely
related to X (driving the first term down), but still retains information about
Y (making the second term big). The intuition is that the irrelevant details of
the input are forgotten as the input is processed through the preceding layers of
the neural network, but the details relevant for the prediction of Y are retained.
The dimensionality reduction layer T is thus the “bottleneck.”

If we use the colloquial definition of information to interpret the two mutual
information terms in the objective, this makes sense. The hidden layer loses
information about the details of the input X, but keeps the information relevant
to the true output Y . When the superfluous details ofX are neglected, we expect
overfitting to be limited and generalization to be good. Though helpful, this is
some serious hand-waving. In order to further clarify (and operationalize) this
objective, we can use the chain rule for mutual information to write

I(X;T)� �I(T ;Y) = H(X)�H(X|T)� �H(Y) + �H(Y |T)

where H(·) is the information entropy. Noting that X and Y come from the
data, their entropies do not depend on the optimization variables p. This means
the minimization problem can be rewritten as

argmin
p

�H(Y |T)�H(X|T)

These conditional entropies are easier to interpret than the mutual informa-
tion. The objective is at a minimum when H(Y |T) is small and when H(X|T) is
big. The first term is small when all data with a given class label Y are mapped
onto the same “latent” state T . In other words, for a given T , there is little
uncertainty in the corresponding class label. The second term is big when many
inputs map onto a few number of latent states T . The first term controls predic-
tion accuracy, the second term controls compression, and � controls how much
accuracy is weighted over compression. This is the essence of the information
bottleneck: the tradeo↵ between prediction accuracy and compression.

Framing things in terms of conditional entropies, a measure of average un-
certainty in one variable given another, helps think more clearly about this
problem. But it is instructive to play around with an example. It seems that
the information bottleneck objective is best suited as a tool to understand how
deep neural networks can learn to generalize, not as an objective function to
train a neural network. In other words, it is used to make sense of the training
process, which is carried out with some other loss function. Despite apparently
not being realistic for training neural networks, using the information bottleneck
objective as a loss to train a simple learning algorithm is pedagogically useful.

Y (labels) X (input data)
3 0000
2 0001
0 0010
1 0100
...

...

Table 1: Made-up data for the information bottleneck toy problem. The data
X (a proxy for images) consists of all 16 binary sequences of length 4. Each
sequence corresponds to some label Y = 0, 1, 2, 3. We want to demonstrate how
the information bottleneck objective is computed given a data set of this sort
and explore what sort of mappings X ! T perform well with the given objective
function.

A snapshot of the data for the toy problem is shown in the table. As before,
we can write T = f(X; p) where p is a discrete parameter that controls how the
di↵erent realizations of X are mapped onto the discrete states of T . Notice that
the information bottleneck objective has nothing to say about the agreement
of the predictions Ŷ with the true labels Y . This is a bit strange. It seems
that this objective mostly deals with good encoding of the data where “good”
is defined by a trade-o↵ between accuracy and compression. Presumably, a
decoder could be learned in a second step if we have a good encoding in hand.
We will take the latent representation T to be the prediction Ŷ in our example.
This means that T = Ŷ = 0, 1, 2, 3. Basically, we want to see if we recover the

true relationship between the data and its labels by minimizing the information
bottleneck objective with the latent representation being the prediction itself.
The objective is then

argmin
p

�H(Y |Ŷ (p))�H(X|Ŷ (p))

In practice, there is no clear way to write the dependence of the prediction
on a parameter p. What we will do is randomly generate classification rules
X ! Ŷ and observe the value of this objective for di↵erent rules. This is why
we can think abstractly of p as a “discrete parameter.” There are a finite number
of ways to map the data to predictions. I agree, things are getting a bit weird.
Figuring out exactly what is happening at this point is an exercise left to the
reader.

A brief sketch of how the conditional entropies are computed is in order before
getting to the punchline. Say that we have randomly generated a classification
rule. This means that each X in the input data is randomly assigned to a
prediction Ŷ . This might look something like

X = 0000 ! Ŷ = 1, X = 1001 ! Ŷ = 3, X = 1111 ! Ŷ = 2, . . .

The first term in the loss can be computed as

H(Y |Ŷ) =
X

i

p(Ŷ = i)H(Y |Ŷ = i)

H(Y |Ŷ = i) = �
X

j

p(Y = j|Ŷ = i) log p(Y = j|Ŷ = i)

The conditional distribution in the second line is computed simply by using
the relative frequencies of the true labels Y corresponding to each predicted
label Ŷ = i. The second term in the loss is

H(X|Ŷ) =
X

i

p(Ŷ = i)H(X|Ŷ = i) =
X

i

p(Ŷ = i) logNi

where Ni is the number of binary sequences classified to Ŷ = i. This relies on
the assumption that each of the input data points is equally likely. Now that
we know how to compute the objective, we can look at its values for di↵erent
classification schemes.

We can run the problem with 1000 randomly generated classification schemes
for di↵erent values of �. The minimum value of the information bottleneck ob-
jective obtained over the 1000 runs will be called z(�). With the given data set,
we have zref = �2.11 for the classification scheme which perfectly reproduces
the input data. We can use this to see how the randomly generated classification
schemes fair in comparison to the “exact solution.” See the table.

� 1E-2 1E-1 1E0 1E1
z(�) -2.44 -2.37 -1.52 5.81

Table 2: Lowest information bottleneck objective taken from 1000 runs of ran-
domly generated classification schemes for di↵erent values of the trade-o↵ pa-
rameter �.

We see from the table that when compression is prioritized over prediction
accuracy (small �), at least one of the randomly generated classification schemes
does better than the exact solution. This is because the random classification
schemes occasionally produce compressions of the data where some of the T
values are not used. When one or more of the potential states of T is ignored,
the data is compressed down to fewer states. If some of the labels Y occur more
frequently than others, it is possible to do this compression without significant
loss of prediction error. When � is large, none of the random schemes do better
than perfect prediction. This makes sense, and generally illustrates how the
information bottleneck theory quantifies a trade-o↵ between prediction accuracy
and compression of the data.

	Mixed Finite Element Methods
	Flutter and Stability Analysis
	Euler Beam
	Stability of a reference solution

	Nonlinear Vibrations
	Polynomial Chaos
	Stochastic Galerkin
	ODE
	PDE

	Alternative Homogenization Approach (Thought Experiment)
	Linearizing Equations
	Control Theory
	Introduction
	Quick Review of Linear Systems
	Controllability
	Controllability and Reachability
	Feedback
	LQR
	Observability
	Full State Estimation
	Kalman Filter
	Summary
	Principle of Separation
	Three Equivalent Representations of Linear Systems
	Robust Control
	Example
	Miscellaneous

	Homogenized Advection-Diffusion Equation
	Equivalence and Classical and Statistical Notions of Entropy
	Optimization Algorithms
	Lagrange Multipliers, Generally
	Stochastic Gradient Descent
	ADAM
	AdaGrad
	RMSProp
	Momentum
	Gauss-Newton Optimization
	Trust Region and LM Algorithm
	Sequential Quadratic Programming
	Interior Point
	Active Set
	L-BFGS
	MMA
	Augmented Lagrangian
	Conjugate Gradient Method
	Simulated Annealing
	Genetic Algorithm

	Probability Stuff
	Events and Random Space
	Joint Probabilities
	Transformation of Probability
	Sampling from Uniform Distribution Inverse CDF
	Integration Change of Variables, Generally
	Monte Carlo Integration
	Linear Discriminant Analysis
	Baye's Theorem
	Continuous Baye's Theorem
	Naive Bayes
	Ridge & Lasso Regression, Matching Pursuit
	Logistic Regression
	Frequentist vs. Bayesian
	What is a kernel?
	Markov Models
	Gaussian Mixture Models
	Binomial and Hypergeometric Distributions
	Information Theory
	Singular Value Decomposition
	Likelihood Function
	Gaussian Process Regression
	MLE is like error minimization
	Bayesian Neural Networks
	Variational Inference

	Multiscale Problems in Frequency Domain
	Incompleteness Theorem
	Maxwell-Boltzmann Distribution
	Stability of time stepping scheme
	Multivariate normal
	Sufficient Statistics
	MI in Neural Networks
	Computational Universality
	Rate Distortion Theory

