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The incompressible Navier-Stokes equations are
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where ui is the component of velocity in direction xi and p is the pressure. The
first equation expresses the balance of linear momentum, and the second states
that the fluid does not change volume as it flows (hence “incompressible”). It
is not obvious how to solve these equations with traditional methods such as
finite difference or finite elements because the incompressibility constraint needs
to be enforced at each point in time. Chorin’s method is a popular technique
for enforcing the incompressibility constraint. This method is an example of an
“operator splitting” approach. We will conceptualize the pressure as acting to
enforce incompressibility. Chorin’s approach is to first compute a velocity field
which does not satisfy incompressibility by ignoring the pressure term in the
momentum equation. This velocity field is called the ”intermediate” velocity,
and can be computed explicitly with a time-stepping scheme. Subsequently, the
pressure field is computed in such a way as to restore incompressibility, and is
used to correct the intermediate velocity. To see how this works, we discretize
the momentum equation in time with a forward difference scheme, and neglect
the pressure term
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The superscript ”t” indicates the solution at the current time, and ”∗” de-
notes the intermediate velocity. We define the kinematic viscosity ν = µ/ρ for
convenience. At this point, we do not need to consider discretizing the spatial
part of the velocity field. Now, the pressure term is reintroduced with
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This is another forward difference approximation of the time derivative, but
this time using the intermediate velocity. It is clear why Chorin’s method is
an operator split, as the time derivative is divided into one contribution from
the velocity-dependent terms, and another contribution from the pressure. This
division is the essence of Chorin’s method. At face value, it is not clear why this
is a fruitful approach, or why it accurately reflects the underlying equations. A
satisfying answer to the latter concern is beyond the scope of this report. In
response to the former, we can rearrange this equation and write
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This demonstrates that knowing the pressure allows us to update the ve-
locity field in time. At this point, we have the intermediate velocity but need
the updated velocity to be divergence free, which the intermediate velocity is
not. The pressure is unknown. Thus, the pressure can be used to correct the
intermediate velocity in order to be divergence free. To do this, we can take
the divergence of this equation and require that ∇ · ut+1 = 0. This gives the
following governing equation for the pressure
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In order for the velocity at the next time step to be divergence free with
the Chorin operator split, the pressure must obey a Poisson equation driven
by the failure of the intermediate velocity to satisfy incompressibility. Having
discretized in time and used the operator splitting approach, we now have a
method to update the velocity field in time. In order to fully specify a numerical
solution strategy, we must discuss spatial discretization schemes.

The simplest approach to spatial discretization is to use finite differences for
the intermediate velocity, and to solve the Poisson equation for pressure weakly.
The problem will be solved in two spatial dimensions. If we store the velocity
components on a uniform spatial grid, we can approximate derivatives with
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These are all the derivatives that are needed for the finite difference scheme.
Noting that this approximation for spatial derivatives is employed, we can write
the equation for the intermediate velocity at each grid point as
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Note that the problem must have Dirichlet boundary conditions in order to
make use of finite differencing. The grid on which finite differences are computed
is ”padded” by nodes with specified velocities. Thus, derivatives are only com-
puted on interior points, and the intermediate velocity is given by the velocity
boundary conditions at the next time point. On the other hand, derivatives are
computed with current values of velocity at the boundary. We will not use ve-
locity boundary conditions that represent an inflow of fluid for simplicity. With
the intermediate velocity computed on a grid, we can use this in the Poisson
equation for the pressure. This reads
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This is a time-independent Poisson problem that does not lend itself to a
solution via finite differencing. Thus, we discretize this problem with a spatial
basis functions and solve it weakly. Begin by integrating against a scalar test
function q over the domain∫
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We will use integration by parts to transfer a derivative from the pressure to
the test function. This introduces a boundary term, which forces us to consider
boundary conditions on the pressure field. Given that the intermediate velocity
respects the Dirichlet boundaries, and the intermediate velocity is corrected
with the gradient of the pressure, we can conclude that the pressure gradient is
zero on the boundary. Thus the boundary term drops out and we have∫
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On the spatial domain [0, L] × [0, L], the pressure and test function can be
discretized with typical piecewise linear finite element basis functions. The finite
element approximation of the test function can be written as
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∑
n

qngn(x1, x2)

Plugging the test function into the governing equation and noting that the
degrees of freedom qn are arbitrary, we obtain
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Now discretize the pressure field in the same way as the test function and
plug into the governing equation to obtain
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This is a linear system for the pressure degrees of freedom
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Because we have computed the intermediate velocity at discrete grid points,
it must be interpolated in order to carry out the integral required to form
Fn. This method allows us to solve the pressure Poisson equation in terms
the intermediate velocity. The final step is to use the pressure to correct the
intermediate velocity:
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We take the weak pressure solution and evaluate it on the spatial grid then
finite difference to compute its gradient. We have now fully outlined a numer-
ical solution to the 2D incompressible Navier-Stokes with Dirichlet boundary
conditions using the Chorin splitting method.
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