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1 Introduction

The Korteweg-de Vries equation is a third-order nonlinear PDE that can be used
to model waves of finite amplitude in shallow water. But it is also interesting
for its mathematical properties. For example, it admits a stable traveling wave
solution called a “soliton,” even though the underlying dynamics are nonlinear.
The stability of the soliton is the result of a balance between dispersive and
nonlinear effects. The KdV equation is

∂u

∂t
+ u

∂u

∂x
+ k

∂3u

∂x3
= 0

We derive a numerical solution to this equation for some initial velocity
profile u(x, 0) = u0(x) and zero velocity boundary conditions u(0, t) = u(L, t) =
0.

2 Discretization and Weak Form

Since the spatial part of the velocity is one-dimensional, it can easily be dis-
cretized with a global basis. The individual basis functions in the set will satisfy
the zero displacement boundary conditions by construction. The velocity is dis-
cretized as

u(x, t) =
∑
i

ai(t)fi(x)

Next, we weaken the spatial part of the governing equation. Integrating
against an arbitrary test function w, the weak form is∫ L

0

(
∂u

∂t
w + u

∂u

∂x
w + k

∂3u

∂x3
w

)
dx = 0

The test function is discretized with the same spatial shape functions as the
displacement. This reads w =

∑
i wifi(x). Plugging in the discretization of the

displacement and test function, and using that the coefficients wi are arbitrary,
we obtain a system of ordinary differential equations:
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∫ L

0

[∑
i

∂ai
∂t

fifj +

(∑
i

aifi

)(∑
k

ak
∂fk
∂x

)
fj + k

∑
i

ai
∂3fi
∂x3

fj

]
dx = 0

=
∑
i

∂ai
∂t

∫ L

0

fifjdx+
∑
i

∑
k

aiak

∫ L

0

fifj
∂fk
∂x

dx+
∑
i

ai

∫
k
∂3fi
∂x3

fjdx

The integral expressions are seen to be matrix quantities. Renaming indices,
and using the summation convention, this first order system of ODE’s is

Aij
∂aj
∂t

+Bikjakaj + Cijaj = 0

This is the weak form of KdV equations. The displacement boundary con-
ditions are satisfied automatically, and the initial condition becomes

a0i = ai(t = 0) =

∫ L

0

u0(x)fi(x)dx

3 Time Integration

To solve the weak form of the governing equations, we need a numerical tech-
nique for ODE’s. Let’s use the backward Euler time stepping method to experi-
ment with implicit time integration. Consider the following differential equation:

∂y

∂t
= f(y(t))

A forward Euler scheme discretizes the time derivative with

y(t+ 1)− y(t)

∆t
= f(y(t))

whereas backward Euler evaluates the right-hand side at the next time step:

y(t+ 1)− y(t)

∆t
= f(y(t+ 1))

For the KdV equation equation, the logic is the same but the application a
bit messier. Denote the i-th displacement coefficient at time t as ati. Inverting
the matrix A off of time derivatives of the displacement coefficients and using
the backward Euler scheme, the governing equation reads

at+1
i − ati
∆t

+A−1
ij Bjkℓa

t+1
k at+1

ℓ +A−1
ij Cjka

t+1
k = 0

This is a non-linear system of equations for at+1 given at. At every time
step, the future state is computed through solving this nonlinear system. This
shows how the implicit time integration greatly increases the cost of solving this

2



problem. We can use a Newton-Raphson method to solve this system. The
residual equation is

Ri = at+1
i +∆tA−1

ij

(
Bjkℓa

t+1
k at+1

ℓ + Cjka
t+1
k

)
− ati = 0

The Jacboain matrix of this sytem is required for the Newton solve. This
reads

∂Ri

∂at+1
m

= δim +∆tA−1
ij (Bjmℓa

t+1
ℓ +Bjkmat+1

k )

Denoting iterations in the Newton solve with the index n, we have that

∆at+1,n = −
(

∂R

∂at+1,n

)−1

R(at+1,n)

at+1,n+1 = at+1,n +∆at+1,n

4 Results

Don’t have time.
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