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1 Introduction

The Korteweg-de Vries equation is a third-order nonlinear PDE that can be used
to model waves of finite amplitude in shallow water. But it is also interesting
for its mathematical properties. For example, it admits a stable traveling wave
solution called a “soliton,” even though the underlying dynamics are nonlinear.
The stability of the soliton is the result of a balance between dispersive and
nonlinear effects. The KdV equation is
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We derive a numerical solution to this equation for some initial velocity
profile u(z,0) = up(x) and zero velocity boundary conditions u(0,t) = u(L,t) =
0.

2 Discretization and Weak Form

Since the spatial part of the velocity is one-dimensional, it can easily be dis-
cretized with a global basis. The individual basis functions in the set will satisfy
the zero displacement boundary conditions by construction. The velocity is dis-
cretized as

u(x,t) = Z a;(t) fi(x)

Next, we weaken the spatial part of the governing equation. Integrating
against an arbitrary test function w, the weak form is
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The test function is discretized with the same spatial shape functions as the
displacement. This reads w =), w; f;(x). Plugging in the discretization of the
displacement and test function, and using that the coefficients w; are arbitrary,
we obtain a system of ordinary differential equations:
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The integral expressions are seen to be matrix quantities. Renaming indices,
and using the summation convention, this first order system of ODE’s is
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This is the weak form of KdV equations. The displacement boundary con-
ditions are satisfied automatically, and the initial condition becomes

L
al = a;i(t=0) = /0 uo(z) fi(z)dx

3 Time Integration

To solve the weak form of the governing equations, we need a numerical tech-
nique for ODE’s. Let’s use the backward Euler time stepping method to experi-
ment with implicit time integration. Consider the following differential equation:
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A forward Euler scheme discretizes the time derivative with
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whereas backward Euler evaluates the right-hand side at the next time step:
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For the KdV equation equation, the logic is the same but the application a
bit messier. Denote the i-th displacement coefficient at time ¢ as a}. Inverting
the matrix A off of time derivatives of the displacement coefficients and using
the backward Euler scheme, the governing equation reads

aft! —al 1 1 t+1 1 1
L A L —|—A1_J Bjkga?_ G,?_ +A C ka?‘ =0
This is a non-linear system of equations for a’*! given a‘. At every time
step, the future state is computed through solving this nonlinear system. This

shows how the implicit time integration greatly increases the cost of solving this



problem. We can use a Newton-Raphson method to solve this system. The
residual equation is
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The Jacboain matrix of this sytem is required for the Newton solve. This
reads
OR; _
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Denoting iterations in the Newton solve with the index n, we have that
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4 Results

Don’t have time.
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