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About me

Interested in machine learning for engineering mechanics and
philosophical problems in scientific research
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Background—equation discovery

Sparse identification of nonlinear dynamics (SINDy) introduced in
2016 [2]

Uses measurement data to identify governing ordinary or partial
differential equations from library of candidate terms

Recover Navier-Stokes equations [17], equations of nonlinear
pendulum [3], various wave equations [19]

Conor Rowan NREL Group September 2025 3 / 26



Background—symbolic regression

Symbolic regression uses genetic algorithms to search through large
space of mathematical functions

“AI Feynman” discovers algebraic equations from physics using noisy
data [22]

Rediscover gravitational force law from trajectory data of planets in
solar system [12]
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A new paradigm for science?

Machine learning excels where human intuition fails in other
domains—these tools suggest a new approach to scientific discovery
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This promise relies on a number of assumptions...

1 There are fundamental differential equations left to discover (not
obvious)

2 The crux of scientific discovery is fitting equations to data (wrong)
3 There is a difference between fitting data and true discovery; nature is

parsimonious (not obvious)
4 Science is interpretable, traditional machine learning tools are not

(what does this mean?)
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Interpretable machine learning

Interpretability is considered important for safety, ethics, trust, and
debugging [18]

Here, interpretation is extracting the causal logic from a trained model

This does not distinguish between a surrogate model and a law
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Definitions of interpretability in scientific machine learning

Author(s) Sparsity Transparency Mechanism
Bongard & Lipson [1] ✓ ✗ ✗

Lipson & Schmidt [20] ✓ ✗ ✗

Brunton et al. [2] ✓ ✗ ✗

Champion et al. [3] ✓ ✗ ✗

Tripura & Chakraborty [21] ✓ ✓ ✗

Lu et al. [13] ✓ ✓ ✗

Desai & Strachan [5] ✓ ✗ ✓
Massonis et al. [16] ✓ ✓ ✓
Garbrecht et al. [8] ✓ ✓ ✗

Flascehl et al. [6] ✓ ✓ ✗

Fuhg et al. [7] ✓ ✓ ✗

Udrescu & Tegmark [22] ✓ ✗ ✗

Cranmer [4] ✓ ✗ ✗

Wang et al. [23] ✓ ✓ ✗

Makke & Chawla [15] ✓ ✓ ✗

Guimera et al. [9] ✓ ✗ ✗

Literature review suggests three definitions: sparsity, transparency,
mechanism

Sparsity distinguishes between a surrogate model and a law
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Does sparsity guarantee interpretability?

Consider hypothetical data on force-displacement relation of
cantilevered beam, obtain the model u = λ1F − λ2F

2

First term is linear elastic response, second term captures geometric
nonlinearity

This interpretation requires a lot of prior knowledge...
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Sparsity without prior knowledge

F = number of hours spent studying for a test, u = performance on
the test, discover from data the relation u = λ1F − λ2F

2

Not clear what this (sparse) equation tells us about the “system of
interest”

Can define interpretation to mean whatever we want, but sparsity
does not capture the common sense notion of interpretation here
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The failure of sparsity

Claim: interpretation in science happens at the level of mechanisms,
not equations—interpretation is an answer to a “why” question

There is no algorithm to back out mechanisms from sparse equations
(think: statistical mechanics)

Addressing “why” questions requires appeal to some kind of
primitive/axiom

Explanation/interpretation is a matter of pulling back to something
more fundamental

Primitives in science are empirical laws with universal applicability
(conservation of mass, momentum, energy, charge, etc.) [10]

Fundamental laws are the vehicle for interpretation, and not
themselves interpretable [14]
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Laws and interpretation
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The case of solid mechanics

Consider governing equation of stress equilibrium ∇ · σ + b(x) = 0
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Amended definition of interpretability

Definition

A learned model is interpretable when it can be derived from fundamental
physical principles or it represents an empirical component of a model
derived from fundamental physical principles

This definition prevents “great scientific theories” from being
interpretable

Limits interpretation to Kuhnian normal science [11] in which prior
knowledge is abundant

Sparsity does not guarantee interpretation, but it leaves the door
open for it
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The example of Kepler’s laws

Many works cite Kepler’s laws as a paradigmatic case of interpretable
scientific discovery [4, 22, 3, 2]

Kepler’s three laws are 1) planets move in elliptical orbits with the
sun as one of the two foci, 2) at all positions of a planet’s orbit, a line
drawn from a planet to the sun sweeps out equal areas over a given
unit of time, 3) the square of a planet’s orbital period is proportional
to the cube of the semi-major axis of the orbit

Kepler’s laws only become interpretable as a consequence of Newton’s
law of gravitation
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Conservation of mass?

We wish to discover the space-time dynamics of a scalar quantity
c(x , t):

∂c

∂t
= N

(
c,

∂c

∂x
,
∂2c

∂x2
, . . . ;λ

)
Use your favorite method to obtain:

∂c

∂t
+ λ1

∂c

∂x
− λ2

∂2c

∂x2
− λ3c + λ4

∣∣∣∂c
∂x

∣∣∣c = 0

Assign meaning to the terms in order to gain insight into the
discovered equation:

∂c

∂t︸︷︷︸
time evolution

+ λ1
∂c

∂x︸ ︷︷ ︸
advection

−λ2
∂2c

∂x2︸ ︷︷ ︸
diffusion

− λ3c︸︷︷︸
reaction

+λ4

∣∣∣∂c
∂x

∣∣∣c︸ ︷︷ ︸
?

= 0

The unfamiliar term is only interpretable if it can be connected to a
mechanism of mass transport
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Conclusion

Sparse equations have few parameters and few parameter models
have the ability to generalize—there is definitely something
fundamental about sparsity in science

But generalization and interpretability are distinct properties of a
model

Truly novel discoveries are not interpretable, interpretable discoveries
are not truly novel

Data-driven models are a new paradigm for doing science and claims
about them should be informed by the history & philosophy of science

Many questions remain about the prospects of these tools for
scientific discovery...
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Thanks for listening! Questions/discussion?

Rowan, C., and Doostan, A., “On the definition and importance of
interpretability in scientific machine learning,” Preprint, 2025.
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