
Nonlinear Basis for Dynamics

Conor Rowan

March 2024

Contents

1 Introduction 1

2 Lagrangian Formulation 2

3 Generic Nonlinear Discretization 4

4 Finding a Stationary Point 4

5 Equivalence with Weak Form 8

6 Bad News 9

7 Collocation Method 9

8 Iterative Adaptivity 10

9 Last Resort: Finite Differences? 12

1 Introduction

Here we document a quest for a useful and novel method of using nonlinear
basis expansions of solutions to partial differential equations for time dependent
problems. The utility of a nonlinear basis is that the spatial shape functions
are not fixed, and can be fit in the solution process to optimally capture the
physics of the problem at hand. For many statics problems in solid mechanics,
a minimum of a “total potential energy” governs the solution. For any spatial
basis, such a minimum can be found, and is even guaranteed to be unique in
some situations. This includes a basis which is a very poor approximation of the
true solution–the minimum of the total potential simply says “this is the best
you can do with what you got!” That being said, there is a straightforward cor-
respondence between lower energy values and better solutions. So the minimum
of the energy for a solution approximated with a good basis is lower than that
of a bad basis. At the end of the day, the notions of “good” and “bad” relate to

1



how well the boundary conditions and strong form of the governing equations
are satisfied. When a nonlinear discretization is used, there are degrees of free-
dom which control the form of the spatial basis. When we minimize the total
potential, these degrees of freedom can be updated in search of lower and lower
energy values, thus taking full advantage of the nonlinearity to come up with
a good solution. As is shown here, this is not the case in the dynamics–even
for problems whose elasticity is variational, there is no energy-like functional
whose minimum corresponds to a solution. Thus, we have to be careful to con-
struct a method which adapts the basis to find good solutions. The twists and
turns chronicled below indicate there may not be such an elegant formulation
for dynamics as there is for variational statics problems.

2 Lagrangian Formulation

We seek to model the dynamics of a 1D bar undergoing small strains with a
nonlinear stress-strain relation. Assume that there is a strain energy density
Ψ which is a function of the displacement gradient (strain) that governs the
elastic response of the material. Our starting point will be the Lagrangian for
the dynamical system. When an elastic bar of length L is fixed at x = 0 and
has a time dependent force applied at x = L, the Lagrangian is

L =

∫ T

0

∫ L

0

1

2
ρ

(
∂u

∂t

)2

−Ψ

(
∂u

∂x
(x, t)

)
+ F (t)u(L, t)dxdt

The first term in the integral is the kinetic energy of the bar, and the second
two terms are the strain energy and external work respectively. A stationary
point of the Lagrangian governs the dynamics of the system. Note that the
displacement solution in space and time we are after is not guaranteed to be
a minimizer of the Lagrangian, as is the case with the total potential energy
in statics. This is a subtle point which has important implications for how
dynamics problems can be solved–we cannot discretize the displacement in space
and time and directly minimize the Lagrangian to find a solution, as the solution
may in fact be a saddle point. For a saddle point problem, a gradient descent
algorithm could make the Lagrangian arbitrarily small. As it turns out, saddle
point solutions are not limited to pathological cases. For example, consider a
linearly elastic bar with ρ = E = 1 and no external forces. The Lagrangian for
this problem is

L =

∫ T

0

∫ L

0

1

2

(
∂u

∂t

)2

− 1

2

(
∂u

∂x

)2

dxdt

Consider some general space-time discretization u(x, t) =
∑

i aiNi(x, t).
Here, we treat the space and time variables equivalently, as we would in a prob-
lem of two spatial dimensions. Why not? It is not clear mathematically why
space and time should always be distinguished in numerical solutions. There
is the intuition that the time response of a system is “local,” in the sense that

2



the future and distant past do not contribute to the system’s response at the
current time. This contrasts with statics problems, for which there is no di-
rection of information propagation in the spatial coordinate, and the solution
at one point has some influence on the solution everywhere in the domain.
But mathematically, this simply says that a typical dynamics problem has two
boundary conditions on one side of the time domain (the initial time), unlike
boundary value problems in statics. Information propagates forward in time
because an initial position and velocity uniquely determine the solution at later
times. Perhaps apart from additional complication introduced by the Second
Law of Thermodynamics, typical time variables differ from spatial ones in the
distribution of boundary conditions. Either way, we plug in the space-time
discretization to the Lagrangian for the linearly elastic bar and obtain

L =
1

2
aiaj

(∫ T

0

∫ L

0

∂Ni

∂t

∂Nj

∂t
dxdt

)
− 1

2
aiaj

(∫ T

0

∫ L

0

∂Ni

∂x

∂Nj

∂x
dxdt

)

=
1

2
aiaj

(
Tij − Vij

)
For a multi-dimensional function of this sort, we can identify a saddle point

by showing that the Hessian, or matrix of second derivatives, has both positive
and negative eigenvalues. The Hessian of the Lagrangian is

Hij =
∂2L

∂ai∂aj
= Tij − Vij

We need to pick a discretization in order to compute the eigenvalues. Let’s
go with

Ni(x, t) = sin

(
f(i)πx

L

)
sin

(
g(i)πt

T

)
The functions f and g are just to indicate that there is some re-shaping

operation to turn what is mostly simply written as a matrix of indexed shape
functions into a vector. This basis discretizes the problem with some boundary
conditions we are not interested in. What is interesting is that when the Hessian
is computed with this discretization, it has both positive and negative eigenval-
ues. This demonstrates that the simplest elastic dynamical system is a saddle
point problem for which the usual minimization methods cannot be used. This
makes the use of a nonlinear basis tricky because energy methods are the most
straightforward to get the adaptivity properties we are looking for. The value of
the energy can be further reduced by adapting the basis, but weak formulations
of the dynamics problem can be satisfied for any given basis. Thus, it is not
clear that a weak formulation will pick the “best” basis. We thus need to think
carefully about how to force the method to choose an optimal basis.

3



3 Generic Nonlinear Discretization

With either spectral or finite element methods, the displacement is discretized
with

u(x, t) =
∑
i

ai(t)Ni(x)

The spatial shape functions Ni are known, and the time-dependent coeffi-
cients ai are to be determined with the physics of the problem. Our challenge is
to explore using neural network or other nonlinear discretizations in the context
of dynamics. In the literature, dynamics problems are solved with collocation
methods by finding the parameters of a neural network such that the strong
form error is minimized. Neural network bases are interesting in the case of
dynamics because of their ability to capture localized behavior in the solution.
This is especially the case when some localized behavior translates in time, as
this response could not be captured by a single basis function in the set, even if
the spatial structure up to a shift is constant in time. Intuitively, it is wasteful
to use many basis functions to capture the translation of some coherent spa-
tial phenomenon when a single shape function could be shifted in time. But
by including parameters which determine the shape functions themselves, we
cannot avoid nonlinear dependence of the solution on the parameters. Neu-
ral networks are simple and flexible ways to construct a discretization of this
sort. We will explore approximating the displacement as a neural network with
time-dependent parameters. The only fundamental difference between this and
the typical discretization mentioned above is that the solution is a nonlinear
function of the time-dependent parameters. This discretization takes the very
general form

u(x, t) = N
(
x, θ(t)

)

4 Finding a Stationary Point

The displacement is approximated with a neural network, so the “coordinates”
of the problem are the parameters θ(t). Governing equations for the dynamical
system can be obtained by finding a stationary point of the Lagrangian. The
calculus of variations says that a functional L is minimized when

δL :=
∂

∂ϵ

(
L(θ(t) + ϵη(t))

)∣∣∣∣∣
ϵ=0

= 0 ∀η(t) s.t. η(0) = η(T ) = 0

This is the continuous equivalent of saying that a stationary point is ob-
tained when the gradient of a function is zero. Zero gradient is recognized at
some point by checking whether small nudges in any direction change the value

4



Figure 1: The spatial coordinate x is input into the network and is acted on by
parameter θ which vary in time to produce the displacement.

of the function. This is what the calculus of variations is saying, but in re-
gards to functionals–a stationary point is obtained when the functional does
not change its value from small nudges to the coordinates. The “variations” η
are arbitrary except that they must not violate boundary/initial conditions. It
is always a little bit strange why η(T ) = 0 when only an initial displacement
is specified. The reason seems to be that the final value of the displacement
is uniquely determined by the initial displacement and velocity. This implies
that the variations should actually come from the space of functions such that
η̇(0) = 0 so that the initial velocity is not varied. But nowhere in the following
derivation do we make use of the values of the time derivatives of the variation
at the boundaries, so neglecting this apparent restriction should not have any
effect. It is necessary to proceed carefully through the calculus of variations here
because the usual derivations do not straightforwardly carry through when the
solution is a nonlinear function of the parameters. The Lagrangian for nonlinear
bar and neural network discretization is

L =

∫ T

0

∫ L

0

1

2
ρ

(
∂

∂t
N(x, θ(t))

)2

−Ψ− F (t)N(x, θ(t))dxdt

We will compute the first variation in steps: first we plug in the varied
parameters, then take the time derivative with respect to ϵ, then we will evaluate
the resulting expression at ϵ = 0. We will call the varied parameters θ̃ = θ+ ϵη
to simplify some notation. The utility of this will be seen shortly. It is clear

that θ̃
∣∣∣
ϵ=0

= θ. Plugging in the varied parameters, we have

L(θ + ϵη) =

∫ T

0

∫ L

0

1

2
ρ

(
∂

∂t
N(x, θ + ϵη)

)2

−Ψ(θ + ϵη)− F (t)N(x, θ+ ϵη)dxdt

5



The time derivative in the kinetic energy term must be computed with the
chain rule. This expression reads

L(θ + ϵη) =

∫ T

0

∫ L

0

1

2
ρ

(
∂N

∂θ̃i

(
∂θi
∂t

+ ϵ
∂ηi
∂t

))2

−Ψ(θ̃)− F (t)N(x, θ̃)dxdt

Now that we have written how the varied Lagrangian, we compute its deriva-
tive with respect to ϵ:

∂

∂ϵ
L(θ̃) =

∫ T

0

∫ L

0

ρ

(
∂N

∂θ̃i

(
∂θi
∂t

+ ϵ
∂ηi
∂t

))(
∂N

∂θ̃j

∂ηj
∂t

+
∂2N

∂θ̃j∂θ̃k
ηj

(
∂θk
∂t

+ ϵ
∂ηk
∂t

))

− ∂Ψ

∂θ̃i
ηi + F (t)

∂N

∂θ̃i
ηidxdt

The next step is to evaluate this at ϵ = 0 to consider only small variations
around the stationary point. This simplifies the expression:

∂

∂ϵ
L(θ̃)

∣∣∣∣∣
ϵ=0

=

∫ T

0

∫ L

0

ρ

(
∂N

∂θi

∂θi
∂t

)(
∂N

∂θj

∂ηj
∂t

+
∂2N

∂θj∂θk
ηj

∂θk
∂t

)
−∂Ψ

∂θi
ηi+F

∂N

∂θi
ηidxdt

We have used the fact that evaluating the varied parameters at ϵ = 0 simply
returns the parameters. This is how we get rid of derivatives involving θ̃. This
is a condition for a stationary point of the Lagrangian in terms of the time-
dependent neural parameters, but it is not useful in this form. We want to
derive a “strong” version of this principle in the form of a system of ordinary
differential equations in time. This can be accomplished in the following way.
First, we transfer the time derivative off of the variation η with integration by
parts. The boundary term does not contribute because η(0) = η(T ) = 0 as
noted previously. The equation becomes

=

∫ T

0

∫ L

0

−ρ
∂

∂t

(
∂N

∂θi

∂θi
∂t

∂N

∂θj

)
ηj+ρ

∂N

∂θi

∂θi
∂t

∂2N

∂θj∂θk
ηj

∂θk
∂t

− ∂Ψ

∂θj
ηj+F

∂N

∂θj
ηjdxdt

=

∫ T

0

(∫ L

0

−ρ
∂

∂t

(
∂N

∂θi

∂θi
∂t

∂N

∂θj

)
+ ρ

∂N

∂θi

∂θi
∂t

∂2N

∂θj∂θk

∂θk
∂t

− ∂Ψ

∂θj
+ F

∂N

∂θj
dx

)
ηjdt = 0

All terms in the time integral have a common factor of the variation η.
A theorem from the calculus of variations says that because the variation is
arbitrary, the term it multiplies in the integrand must be zero pointwise. This
makes sense if we imagine ηj being a set of functions which are zero except for
a small neighborhood around each time point t. This gives us the strong form
of the governing equations:

6



∫ L

0

−ρ
∂

∂t

(
∂N

∂θi

∂θi
∂t

∂N

∂θj

)
+ ρ

∂N

∂θi

∂θi
∂t

∂2N

∂θj∂θk

∂θk
∂t

− ∂Ψ

∂θj
+ F

∂N

∂θj
dx = 0

We can distribute the time derivative on the first term to obtain

∫ L

0

−ρ
∂2N

∂θi∂θk

∂θk
∂t

∂θi
∂t

∂N

∂θj
− ρ

∂N

∂θi

∂2θi
∂t2

∂N

∂θj
− ρ

∂N

∂θi

∂θi
∂t

∂2N

∂θj∂θk

∂θk
∂t

+ ρ
∂N

∂θi

∂θi
∂t

∂2N

∂θj∂θk

∂θk
∂t

− ∂Ψ

∂θj
+ F (t)

∂N

∂θj
dx = 0

Mercifully, the third and fourth terms cancel out. We note that the pa-
rameters θ do not depend on space, so they can be factored out of the spatial
integration. The index j is free defining a system of ODE’s. Multiplying through
by −1, the governing equation becomes

θ̈i

(∫
ρ
∂N

∂θi

∂N

∂θj
dx

)
+ θ̇kθ̇i

(∫
ρ

∂2N

∂θi∂θk

∂N

∂θj
dx

)
+

∫
∂Ψ

∂θj
dx =

∫
F (t)

∂N

∂θj
dx

This is a system of ODE’s for the time-dependent parameters. As a sanity
check, we can verify that this equation reduces to the usual equations of motion
for a linear basis expansion and a simple constitutive model. Consider N(x, t) =∑

n θn(t)wn(x) and Ψ = 1
2

(
∂N
∂x

)2
. Then we have that

∫
∂Ψ

∂θj
dx =

∫
∂

∂θj

(
1

2

∑
n

∑
m

θnθm
∂wn

∂x

∂wm

∂x

)
dx = θn

(∫
∂wn

∂x

∂wj

∂x
dx

)
This is the usual expression for the internal force of a linearly elastic system

where the quantity in parentheses is the stiffness matrix. Now we turn to the
term with second time derivative of the parameters. We can plug in the linear
discretization and see that∫

ρ
∂N

∂θi

∂N

∂θj
dx =

∫
ρwiwjdx

This is the usual expression for the mass matrix which multiplies the second
time derivative of the parameters. It is simple to see that the forcing term
returns what we expect from the linear expansion. Finally, we turn our attention
to the second term in the governing equation:

θ̇kθ̇i

(∫
ρ

∂2N

∂θi∂θk

∂N

∂θj
dx

)
= 0

for the linear expansion. This is because we take two derivatives with respect
to the parameters. For the neural network, however, this term is nonzero. We

7



expect that this term does not appear for the governing equations with the
usual linear discretization, not least because it has a quadratic nonlinearity
in time. Equations which are nonlinear in time are quite rare, but in this
case, it is the price we pay for a nonlinear basis expansion of the displacement.
Note that the matrix/tensor quantities in parentheses are functions of time
implicitly through the parameters. The following definitions will help simplify
the governing equation:

Mji

(
θ(t)

)
:=

∫
ρ
∂N

∂θj

∂N

∂θi
dx

Aikj

(
θ(t)

)
:=

∫
ρ

∂2N

∂θi∂θk

∂N

∂θj
dx

F int
j

(
θ(t)

)
:=

∫
∂Ψ

∂θj
dx

F ext
j

(
t, θ(t)

)
:=

∫
F (t)

∂N

∂θj
dx

The governing equation is both nonlinear in the parameters and nonlinear
time. Finally, we arrive at a reasonable form of the governing equation for the
parameters of the network. This reads

Mji

(
θ(t)

)
θ̈i +Aikj

(
θ(t)

)
θ̇iθ̇k + F int

j

(
θ(t)

)
= F ext

j

(
θ(t)

)
5 Equivalence with Weak Form

The strong form of the governing equation for the 1D inelastic bar is

ρ
∂2

∂t2
u =

∂

∂x

(
∂Ψ

∂ϵ

)
+ F (t)

When we discretize the displacement with u(x, t) = N(x, θ(t)), this becomes

ρ
∂

∂t

(
∂N

∂θi

∂θi
∂t

)
= ρ

∂2N

∂θi∂θk

∂θi
∂t

∂θk
∂t

+ ρ
∂N

∂θi

∂2θi
∂t2

=
∂

∂x

(
∂Ψ

∂ϵ

)
+ F (x, t)

We can use Galerkin projection in the case of a solution defined on a mani-
fold, which states that residual (error) of the strong form error is orthogonal to
the local tangent of the approximation. The tangents to the space in which the
displacements are approximated are ∂N/∂θj . The weak form of the governing
equation is

∫
ρ

∂2N

∂θi∂θk

∂θi
∂t

∂θk
∂t

∂N

∂θj
dx+

∫
ρ
∂N

∂θi

∂2θi
∂t2

∂N

∂θj
dx =

∫
∂

∂x

(
∂Ψ

∂ϵ

)
∂N

∂θj
+F (x, t)

∂N

∂θj
dx

8



Factoring out the displacement coordinates which do not depend on space
and using integration by parts,

∂θi
∂t

∂θk
∂t

∫
ρ

∂2N

∂θi∂θk

∂N

∂θj
dx+

∂2θi
∂t2

∫
ρ
∂N

∂θi

∂N

∂θj
dx = −

∫
∂Ψ

∂
(
∂N
∂x

) ∂2N

∂x∂θj
+F (x, t)

∂N

∂θj
dx

Finally, we can run the chain rule in reverse to rid of the strain derivative
of the energy density, and move this term to the other side of the equation. In
doing the integration by parts, we assumed that there is no end traction applied
at x = L. We see that we get back the governing equation derived from the
calculus of variations:

∂θi
∂t

∂θk
∂t

∫
ρ

∂2N

∂θi∂θk

∂N

∂θj
dx+

∂2θi
∂t2

∫
ρ
∂N

∂θi

∂N

∂θj
dx+

∫
∂Ψ

∂θj
dx =

∫
F (x, t)

∂N

∂θj
dx

6 Bad News

Unfortunately, the above appears to amount to nothing more than an elaborate
exercise in the calculus of variations and weak solutions to PDE’s. Curiosity
got the best of the author–it should have been clear from the onset that finding
a stationary point to the Lagrangian does not necessarily find an optimal basis
expansion. The Lagrangian can be made stationary for any time-independent
basis, no matter how poor the approximation is. It seems that there is no sense
in which the governing equation we derived will make the Lagrangian “more
stationary” in the sense of adapting the basis to obtain good approximations.
Although this method has not been implemented, there is no notion of a “good”
solution built into this method. We should expect that a solution is obtained
as some random local extremum, and we have no reason to think this is the one
which globally minimizes the energy or strong form error. So far we still do not
have a good way to make use of the nonlinear expansion of the displacement.

7 Collocation Method

Another alternative is to directly minimize the error of the strong form of the
governing equations. This is definitely not a saddle point problem, so a min-
imization procedure should be able to be used. Minimizing the error with a
collocation method should lead to the basis adaptivity we are looking for. It
does not, however, lead to a system of ordinary differential equations, as a gra-
dient descent procedure would be used. This method is logical, but has already
been established as a technique for solving dynamics problems. Though it will
not be pursued here, we can briefly illustrate the method for completeness. The
collocation error and its gradient are

E =

∫ T

0

∫ L

0

1

2

(
ρ
∂2

∂t2
N − ∂

∂x

∂Ψ

∂ϵ
− F

)2

dxdt

9



∂E
∂θm

=

∫ T

0

∫ L

0

(
∂2

∂t2
N − ∂

∂x

∂Ψ

∂ϵ
− F

)(
ρ

∂3N

∂t2∂θm
− ∂3Ψ

∂ϵ∂x∂θm

)
dxdt

Note that a hybrid optimization problem could also be introduced, whereby
we simultaneously minimize the norm of the residual equations and the strong
form error. The residual equations are defined by

∂L
∂θm

= 0

This is the condition for a stationary point of the Lagrangian discretized in
terms of the parameters of the nonlinear basis. This optimization problem is
called hybrid because it incorporates the weak and strong form of the governing
equations. The objective and its gradient are

Πh =
1

2

∑
m

(
∂L
∂θm

)2

+ E

∂Πh

∂θn
=
∑
m

∂L

∂θm

∂2L
∂θm∂θn

+
∂E
∂θn

Here we have adaptivity, and potentially reap some of the rewards of weak
formulations of the problem, but at the cost of having to form a Jacobian ma-
trix (which we do not write out explicitly). Forming this matrix can be quite
expensive. It would be interesting to study whether the hybrid formulation
outperforms a pure colllocation method.

8 Iterative Adaptivity

Our situation is becoming dire. We have yet to come up with a satisfactory
solution to our problem. Dear reader, I implore you, please do not lose hope.
In the absence of an energy functional to minimize, we are forced to use the
strong form error in some fashion to drive adaptivity of the basis. Minimizing
the collocation error is one way to do this, but this method is fruitless from
the standpoint of novelty. It is just a little too obvious...so we will cook up
something bizarre instead. Let’s call this method “iterative adaptivity1” The
idea is as follows: we perform a staggered optimization problem where at each
time step, we fix the basis and find coefficients at the next time step, then with
these fixed coefficients, we adapt the basis to minimize the strong form error.
The nonlinear basis expansion of the displacement will be written as

u(x, t) =
∑
i

αi(t)hi(x, β(t))

1This is probably in the literature somewhere under another name. I have not read up on
adaptive methods in computational mechanics.

10



The full set of parameters is θ = α+ β, but we have split them into weights
α and shape function parameters β. The governing equations for fixed β are
obtained by integrating the strong form against the spatial shape functions:∫ L

0

ρühi(x;β(t))dx =

∫ L

0

∂σ

∂x
hi(x;β(t)) + Fhi(x;β(t))dx

With zero end traction, integration by parts yields

∫ L

0

ρühi(x;β(t))dx+

∫ L

0

σ
∂hi

∂x
(x;β(t))dx =

∫ L

0

Fhi(x;β(t))dx

Plugging in this discretization of the displacement, we obtain

∑
j

α̈j

(∫ L

0

hi(x;β(t))hj(x;β(t))dx

)
+

∫ L

0

σ

∑
j

αj
∂hj

∂x

hi(x;β(t))dx =

∫ L

0

Fhi(x;β(t))dx

=⇒ Mij(β(t))α̈j + F int
i (α(t), β(t)) = F ext

i (t, β(t))

The simplest way to illustrate this method is to use central differencing to
approximate the acceleration term. The acceleration at the next time point can
be computed as

αn+1 = M−1(βn)
(
F ext(tn;βn)− F int(αn, βn)

)
+ 2αn − αn−1

For the evaluation of the next acceleration, the shape function parameters
are held fixed. Having solved for the next acceleration in this way, the next
set of shape function parameters are computed by holding the αn+1 fixed and
adjusting the shape function weights. The criteria for adjusting shape functions
is the strong form residual. The residual at the next time step is

Rn+1(βn+1) =

∫ L

0

(
∂σ

∂x
(x;αn+1, βn+1) + F (x, tn+1)− ρün+1(x;αn+1, βn+1)

)2

We have a continuous representation of the displacement, and hence the
stress, in terms of the spatial coordinate x. Thus, the first term in the strong
form residual can be computed exactly. Similarly, we have an analytic repre-
sentation of the distributed force, so its value at the next time step is computed
exactly. We do not, however, have a continuous representation of the displace-
ment in time, thus the acceleration needs to be approximated in terms of past
time steps. Using the same central difference scheme, we see that

ün+1(x) =
1

∆t2

(∑
i

αn+1
i hi(x;β

n+1)− 2
∑
i

αn
i hi(x;β

n) +
∑
i

αn−1
i hi(x, β

n−1)

)

11



Note that the sums in parentheses cannot be combined because the spatial
shape functions are different at each point in time through parameters β. This
makes the resulting equations quite complicated. The “optimal” shape functions
for the next time step are then computed by solving a minimization problem,
governed by

∂Rn+1

∂βn+1
m

= 0

What is the rationale for holding the weights αn+1 fixed during this process?
Well for one, we would be solving a collocation problem if we allowed them to
vary, such that the time integration would not be needed. Intuitively, fixing the
weights on the shape functions makes sense if they only need slight updates to
find a solution at the next time step which minimizes the strong form error. The
time integration finds appropriate weights on slightly suboptimal shape func-
tions, then this error minimization step tweaks the shape functions as necessary.
Note that the implementation of this method is fairly involved: it is not even
simple to plot the solution as a function of time because the shape functions are
constantly changing! Furthermore, an o ptimization problem needs to be solved
at every time step, and the mass matrix recomputed according to the shape
function updates. The changing β parameters also prohibit pre-computing any
quantities in the internal force vector. We expect this method to be complex and
expensive. Perhaps most importantly, it is not clear what advantage it offers
over a pure collocation approach. Sure, there are certain theoretical guarantees
on the performance/stability of Galerkin methods2 which may not apply to a
collocation solution, but if we see the strong form error as the gold standard
of PDE solutions, it is tempting to think a collocation method is strictly bet-
ter than this weird hybrid. Fixing the weights on the shape functions at each
time step imposes a restriction on the discretization which collocation methods
do not have. Plus, implementing the iterative adaptivity method is immensely
difficult compared to a collocation method.

9 Last Resort: Finite Differences?

We have shown that a lot of the machinery for solving dynamics problems is not
well-suited for the adaptive basis discretization. One method that has not been
touched on is the finite difference method. Is there any possibility of usefully
applying the finite difference method (FDM) with neural network bases or other
nonlinear discretizations? To the extent that finite difference methods rely on
storing nodal values of the solution, the answer is no. If somehow nodal values
were discretized with an underlying basis which had fewer degrees of freedom
than there were nodal values at which to finite difference, then maybe there
would be some logic to adaptivity. But this would be a very unusual situation.
Plus, with the global basis, it would make sense to use a collocation method

2Don’t ask me exactly what they are though.

12



with analytic computations of the derivatives instead of finite differencing. So
from the author’s humble point of view, there is little hope of using FDM with
the nonlinear basis. But, since we have already surveyed a number of interesting
topics in dynamics, we will continue this thread. We can prove that a traditional
finite difference method is equivalent to a particular Petrov-Galerkin method.
We will do this for the case of a wave equation, or the equation of motion for a
linearly elastic bar. The continuous form of the governing equation is

∂2u

∂t2
=

∂2u

∂x2
+ F (x, t)

We assume the density and modulus are unity for simplicity. A spatial finite
difference scheme can be written as

ü(xj , t) =
1

∆x2

(
u(xj+1, t)− 2u(xj , t) + u(xj−1, t)

)
+ F (xj , t)

We leave the problem continuous on time, noting that the second time deriva-
tives could be approximated in the same way as the second spatial derivatives.
The 1D spatial domain is broken up into a grid, and the solution is stored at
nodal points (x1, x2, . . . , xN ). The time update to the displacement at grid point
xj is driven by the distributed force at that point F (xj , t), and the second spa-
tial derivative of the displacement (which should be interpreted as the gradient
of the stress) evaluated using one point to the left and right. This is a central
difference method for the second derivative. We want to show that this is equiv-
alent to a particular weak form of the governing equations. Consider the linear
finite element discretization shown in Figure 2. The shape function associated
with nodal position xj spans two elements (where an element is defined by the
space between grid points). For simplicity, we assume that the nodal spacing
(element size) is the constant ∆x. Using the piecewise linear shape functions,
the displacement can be written as

u(x, t) =
∑
i

ui(t)Ni(x)

The time dependent coefficients ui(t) are the nodal degrees of freedom eval-
uated at time t. In other words, ui(t) = u(xi, t) by the definition of the finite
element basis. This is our discretization of the solution field. We construct the
weak form of the governing equations by substituting the discretization into the
governing equations and integrating over the spatial domain against a set of test
functions. When the space of test functions differs from that of the approxi-
mation space, the resulting weak form is called a Petrov-Galerkin method. In
our case, this simply says that the test functions are not finite element basis
functions we use to construct the solution. For simplicity, assume that we have
zero displacement boundary conditions at all instants of time on both ends of
the bar. This means that only the interior nodes of the “mesh” correspond to
unknown degrees of freedom. We will test against Dirac delta functions cen-
tered at each interior node. When the j − th test function is δ(x − xj), the
Petrov-Galerkin weak form reads

13



Figure 2: Piecewise linear finite element shape functions used to interpolate the
displacement in space.

∫ (∑
i

üiNi(x)

)
δ(x−xj)dx =

∫ (∑
i

ui
∂2Ni

∂x2

)
δ(x−xj)dx+

∫
F (x, t)δ(x−xj)dx

We use the sifting property of the delta functions and the linearity of inte-
gration to simplify this to∑

i

üiNi(xj) =
∑
i

ui
∂2Ni

∂x2
(xj) + F (xj , t)

By construction, the finite element shape functions have the “interpolation
property,” which states that Ni(xj) = δij . The governing equation reduces

üj = ü(xj , t) =
∑
i

ui
∂2Ni

∂x2
(xj) + F (xj , t)

This looks awfully close to the finite difference method laid out earlier. How-
ever, we have to deal with the stress term, which involves second derivatives of
the hat shape functions. This is a tricky thing because the second derivative
of these piecewise linear shape functions is not well-defined. We can make a
simplification: though at this point, we do not know how to compute second
derivatives of these shape functions, we can say that

∑
i

ui
∂2Ni

∂x2
(xj) = uj−1

∂2Nj−1

∂x2
(xj) + uj

∂2Nj

∂x2
(xj) + uj+1

∂2Nj+1

∂x2
(xj)

14



The shape functions to the left and right of node xj do not contribute to the
displacement at xj , but we do expect them to contribute to the curvature of the
solution at this point. That more distant shape functions do not contribute is
an approximation. Based on this assumption, we will approximate the second
derivatives of these three shape functions using only their values at nodes xj−1,
xj , and xj+1. This involves using a forward scheme for xj−1 (looking at the
displacement two nodes ahead), a centered scheme for xj (looking to the left
and right), and a backwards scheme for xj+1 (looking two nodes behind). We
assume that the curvature is constant over the domain of each hat function.
Mathematically, this is written as

∂2Ni−1

∂x2
(xj) ≈

1

∆x2

(
Ni−1(xi−1)−2Ni−1(xi)+Ni−1(xi+1)

)
=

1

∆x2
(1−0+0) =

1

∆x2

∂2Ni

∂x2
(xj) ≈

1

∆x2

(
Ni(xi−1)− 2Ni(xi) +Ni(xi+1)

)
=

1

∆x2
(0− 2 + 0) = − 2

∆x2

∂2Ni+1

∂x2
(xj) ≈

1

∆x2

(
Ni+1(xi−1)−2Ni+1(xi)+Ni+1(xi+1)

)
=

1

∆x2
(0−0+1) =

1

∆x2

If these expressions look confusing, return to Figure 2 and think about how
curvature of each shape function is being computed. We need three points to
compute curvature, and the j−1, j, and j+1 grid points are used to approximate
the curvature of each of three shape functions. By using these three points and
assuming curvature is constant over the non-zero region of each hat function, we
are implicitly fitting a quadratic polynomial to the three nodal points. When
we plug this back into the weak form, we obtain

üj(t) =
1

∆x2

(
uj−1 − 2uj + uj+1

)
+ F (xj , t)

This is exactly the finite difference scheme laid out in the beginning. We have
shown that a piecewise linear discretization of the displacement tested against
delta functions at the nodes gives rise to FDM when curvature of the shape
functions is approximated in a particular way. In other words, finite difference
methods are intimately related to Petrov-Galerkin methods. This bridges a gap
between FDM and weak solution techniques for partial differential equations.

We can go even further. Consider a statics problem for which the inertial
term disappears. Using the finite difference scheme we have constructed, the
governing equation is

1

∆x2

(
− uj−1 + 2uj − uj+1

)
= F (xj , t)

This can be written as a matrix system of the following form:

15



1

∆x2


2 −1 0 0 0 . . .
−1 2 −1 0 0 . . .
0 −1 2 −1 0 . . .
0 0 −1 2 −1 . . .
...

...
...

...
...

...




u(x1)
u(x2)
u(x3)
u(x4)

...

 =


F (x1)
F (x2)
F (x3)
F (x4)

...


This is equivalent to the matrix system we arrive at with a finite element

method bar discretized with piecewise linear shape functions and zero displace-
ment boundary conditions. To see this note, note that the force vector from
finite element methods is computed with

Fi =

∫ L

0

F (x)Nidx ≈ F (xi)

∫ L

0

Nidx =
1

∆x
F (xi)

Here we assume a Bubnov-Galerkin method where the test functions are the
same as those used in the discretization of the displacement. We approximate
the distributed force as constant over the element, evaluating it at node xi. The
integral of the hat shape function can be computed from basic geometry. The
stiffness matrix is

Kij =

∫ L

0

∂Ni

∂x

∂Nj

∂x
dx

When i = j, it is easy to see that

Kii (no sum) =

∫ L

0

∂Ni

∂x

∂Nj

∂x
dx = 2∆x

(
1

∆x

)2

=
2

∆x

The factor of 2 arises because the hat shape function associated with node i
spans two elements. When |i− j| > 1, Kij = 0 because the shape functions do
not overlap at all. For |i− j| = 1, we have that

Kij =

∫ L

0

∂Ni

∂x

∂Nj

∂x
dx = −∆x

(
1

∆x

)2

= − 1

∆x

This can be seen by noting that shape functions of adjacent indices overlap
only in one element, and have slopes of opposite sign. This proves that the finite
element problem is

1

∆x


2 −1 0 0 0 . . .
−1 2 −1 0 0 . . .
0 −1 2 −1 0 . . .
0 0 −1 2 −1 . . .
...

...
...

...
...

...




u(x1)
u(x2)
u(x3)
u(x4)

...

 = ∆x


F (x1)
F (x2)
F (x3)
F (x4)

...


which is equivalent to the matrix system obtained by the finite difference method
when we divide both sides by ∆x. It is likely the case that the equivalence
between the finite element method and finite difference method holds for two
dimensions when the domain is rectangular.

16


	Introduction
	Lagrangian Formulation
	Generic Nonlinear Discretization
	Finding a Stationary Point
	Equivalence with Weak Form
	Bad News
	Collocation Method
	Iterative Adaptivity
	Last Resort: Finite Differences?

